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Abstract. Confrustion, a mix of confusion and frustration sometimes experi-
enced while grappling with instructional materials, is not necessarily detrimental
to learning. Prior research has shown that studying erroneous examples can
increase students’ experiences of confrustion, while at the same time helping
them learn and overcome their misconceptions. In the study reported in this
paper, we examined students’ knowledge and misconceptions about decimal
numbers before and after they interacted with an intelligent tutoring system
presenting either erroneous examples targeting misconceptions (erroneous
example condition) or practice problems targeting the same misconceptions
(problem-solving condition). While students in both conditions significantly
improved their performance from pretest to posttest, students in the problem-
solving condition improved significantly more and experienced significantly less
confrustion. When controlling for confrustion levels, there were no differences
in performance. This study is interesting in that, unlike prior studies, the higher
confrustion that resulted from studying erroneous examples was not associated
with better learning outcomes; instead, it was associated with poorer learning.
We propose several possible explanations for this different outcome and
hypothesize that revisions to the explanation prompts to make them more
expert-like may have also made them – and the erroneous examples that they
targeted – less understandable and less effective. Whether prompted self-
explanation options should be modeled after the shorter, less precise language
students tend to use or the longer, more precise language of experts is an open
question, and an important one both for understanding the mechanisms of self-
explanation and for designing self-explanation options deployed in instructional
materials.
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1 Introduction

Erroneous examples, or examples that illustrate typical student errors and miscon-
ceptions, can support performance, learning, and transfer [1–6]. Researchers have
hypothesized that erroneous examples derive their benefits through multiple processes,
including helping students to recognize errors in their own work [7] and highlighting
the underlying principles necessary for understanding correct solutions [2, 8]. How-
ever, no studies to our knowledge have examined the affective consequences of
erroneous examples. In particular, it is unclear whether students experience confusion
and frustration as they try to identify and understand errors that they might make
themselves. To understand how and when erroneous examples are most effective, we
examined the effects of erroneous examples on the affective state of confrustion – a
combination of confusion and frustration – and its consequences for learning outcomes.

Many previous studies have shown a learning advantage when students are
prompted to compare correct and incorrect examples [9] or explain and fix errors in
incorrect examples [5, 10], in contrast to more typical worked-example study or
problem-solving practice. In particular, studying erroneous examples may highlight for
students the common errors that they are likely to make and discourage them from
underestimating the difficulty of a problem. Erroneous examples have been shown to be
particularly beneficial for supporting long-term learning and transfer [2, 5, 6].

Erroneous examples relate more broadly to research on desirable difficulties [11,
12] and productive failure [13, 14]. Experiencing difficulty on a task can increase
engagement and mental effort and improve long-term learning outcomes [12, 13].
Critically, difficulty should directly relate to the concepts or procedures being taught. In
other words, simply making a task difficult for the sake of difficulty likely will not
improve learning; however, making the task difficult enough to require more effort or
some initial failure can ultimately help the learner. Erroneous examples may operate
through a similar mechanism by presenting students with solutions that they may have
thought were correct, based on their own inaccurate knowledge and misconceptions.

Although emotions likely play a role in learning from difficulty or productive
failure, the learner’s affective experiences while struggling in such contexts has not, to
our knowledge, been explored. The affective states of confusion and frustration are
likely to be especially relevant in these contexts. Although confusion and frustration
are theoretically distinct constructs, both have strong but mixed connections to learning
[15–17]. Confusion is typically viewed as positive if the student believes it can be
resolved [18–20], and it has been related to positive motivational experiences such as
engagement and flow [21]. Frustration can arise when a student cannot resolve their
confusion, and it can lead to disengagement and poor learning outcomes [22].

Despite the differences between confusion and frustration, research on affect
detection has suggested there are predictive benefits to combining the two as a measure
of confrustion. Affect detectors rely on students’ interaction data from a learning system
to determine the students’ affective states. They can examine affect at a grain-size of
about 20-s intervals and can predict immediate performance as well as long-term student
outcomes [23, 24]. To create affect detectors, human coders first label data based on the
absence or presence of an affective state [25–28]. After acceptable inter-rater reliability
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is established, machine learning algorithms identify behaviors in the learning system
that correspond to the affect judgments made by human coders.

Confusion and frustration are often hard for an observer to distinguish based on the
students’ interactions with educational technology [22]. Perhaps for this reason, a study
comparing the predictive value of confrustion assessed through affect detectors against
separate measures of confusion and frustration found that confrustion was a more
accurate predictor of learning [22]. Consequently, in this study we combine these
constructs and calculate a single measure of confrustion.

To explore the role of confrustion in learning from erroneous examples, we
examined students’ log interactions with an educational technology platform that
presents a series of 32 erroneous examples and 16 practice problems targeting common
decimal number misconceptions [29–31]. Previous research with this technology
showed that students who corrected and explained erroneous examples performed
better than students who solved and explained the same problems, but only on a
delayed posttest [1, 5]. This suggests that studying and correcting erroneous examples
might hinder – or at least not benefit – immediate performance but does lead to long-
term learning.

If erroneous examples support learning by creating difficulty, students who are
working through the materials might experience greater confrustion than students
completing similar materials without erroneous examples. To examine this, we created
affect detectors to assess students’ experiences of confrustion [32]. A re-analysis of log
files from the experiments reported in [1, 5] indicated that students did experience
greater confrustion in the erroneous examples condition. However, confrustion was
negatively related to performance. Confrustion thus does not appear to be beneficial on
its own, but it may be a necessary consequence of the cognitively demanding learning
processes supported by erroneous examples. In other words, students studying erro-
neous examples might learn more despite experiencing greater confrustion.

The current study aimed to replicate and build on the previous results in several
ways. First, the data that was reanalyzed with affect detectors was collected more than
six years ago. Use of educational technology has continued to increase in the time since
those data were collected, potentially changing the ways students would view and
interact with the materials. Erroneous examples have also gained prominence among
teachers and instructional designers. As a result, students might be more accustomed to
interacting with erroneous examples. For these reasons, we wanted to replicate both the
learning and confrustion results with a new group of students.

Second, students in the erroneous example condition previously received several
explanation prompts focused on each erroneous example and thus were prompted to do
more self-explanation than students in the problem-solving condition [1, 5]. Self-
explanation is a robust instructional technique [33, 34], and it is possible some of the
benefits experienced by students in the erroneous example condition resulted from
extra self-explanation. Additionally, the extra self-explanation may have contributed to
students in the erroneous example condition spending nearly twice as much time as
students in the problem-solving condition [1, 5]. To reduce the difference in time
between conditions and decrease the chance that benefits were being derived from extra
self-explanation, were moved one of the additional self-explanation prompts, leaving
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only one extra self-explanation prompt focused directly on making sense of the erro-
neous example.

Third, we saw opportunities to revise the self-explanation prompts to improve
precision in the mathematical language used, and we worked with a math education
expert (the seventh author of this paper) to make these changes. For example, the
previous materials referred to the misconception that “longer decimals are larger,”
while it is more mathematically precise to express the idea as “decimal numbers with
more digits to the right of the decimal point are greater in magnitude”. While prior
research has established that self-explanation can still be beneficial when students
select or complete explanations using provided options within a computer-based
learning environment [35, 36], instead of generating the explanations themselves, we
know of no prior research that has explored the question of whether these provided
explanations should be more similar to the less mathematically precise language stu-
dents typically use or the more mathematically precise language of math experts. In the
current study, we investigated whether the same learning benefits would be observed if
students selected self-explanation prompts using more mathematically precise
language.

Fourth, materials were updated to operate in HTML instead of Flash and to con-
form with modern look-and-feel instructional technology. For instance, prompted
explanation boxes, a common interface feature in this educational technology system,
were created with current HTML multiple-choice widgets. Using these revised mate-
rials, we sought to replicate previous results by testing the following hypotheses:

H1: Students in both conditions will improve in performance from pretest to
posttest and from pretest to delayed test. We do not expect any of the changes made
to the materials to disrupt the basic learning benefits of the intervention.
H2: Confrustion will be negatively related to performance, even when controlling
for prior knowledge. We do not expect the changes to the materials to change the
confrustion students experience, which related negatively to learning in prior
studies.
H3: Students in the erroneous example condition will experience greater confrus-
tion than students in the problem-solving condition. We made revisions aimed at
simplifying the appearance of the erroneous example materials (modern look-and-
feel) and to reduce extra text they had to read (elimination of extra self-explanation
prompt text). However, we expect that the greater levels of confrustion come from
the erroneous examples themselves and not from other features of the problem
interface.
H4: Students in the erroneous example condition will perform better than students
in the problem-solving condition on the delayed posttest. We do not expect any of
the changes to disrupt the relative benefits of erroneous examples.

While we had no way of empirically testing the effect of revisions on the amount of
time students required to complete the materials, we expected them to take less time on
the materials overall and to show less of a time difference between conditions.
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2 Methods

2.1 Participants

Participants were recruited from a suburban, public middle school (four teachers) and
an urban, public elementary school (four teachers) in the metropolitan area of a
northeastern U.S. city. Participants’ parents provided written consent to collect and
analyze students’ data. Students completed materials as a part of their regular, in-class
instructional activities. A total of 53 fifth-grade students and 134 sixth-grade students
participated. Six fifth-grade students and seven sixth-grade students were dropped for
failing to complete the materials in the allotted time. The final dataset included 174
students: 47 fifth-graders (30 male, 17 female; mean age 10.4) and 127 sixth graders
(69 male, 58 female; mean age 11.2). Students were randomly assigned to conditions at
the individual level, with 89 students assigned to the problem-solving condition and 85
students assigned to the erroneous example condition.

All students had previously learned about decimal numbers during their regular
math instruction (Common Core standard CCSS.Math.Content.5.NBT.A.3 for fifth
grade; CCSS.Math.Content.6.NS.B.3 for sixth grade). To avoid introducing informa-
tion that could affect students’ performance, teachers were asked to refrain from pro-
viding decimal-number instruction or practice outside of the intervention during the
study.

2.2 Materials

Materials were developed using the Cognitive Tutor Authoring Tool (CTAT) and
delivered through Tutorshop, a learning management system for CTAT tutors that
supports classroom deployment via web delivery [37]. We followed updated look-and-
feel principles to revise the presentation of materials (see Figs. 1 and 2). Materials were
aimed at addressing misconceptions while providing feedback and practice to students
who had basic knowledge of decimal numbers. Both the erroneous example and
problem-solving materials presented the same problems in the same order. Materials
were organized into three-item sets of two erroneous example or problem-solving items
with self-explanation, followed by one practice item without self-explanation. Practice
items were the same across conditions. The materials included a total of 48 problems
targeting different decimal number misconceptions. Tasks included number line
placement, ordering by magnitude, addition, and completing a decimal number
sequence.

Each erroneous example item presented a decimal number word problem with an
incorrect solution from a hypothetical student (Fig. 2). Students worked through the
problem in three steps and could not advance until they completed each step correctly.
First, the student was prompted to explain the error in the example. Second, they
corrected the error by solving the problem. Third, they explained the correct solution or
relevant principles through two self-explanation prompts with multiple-choice solution
options [35, 36]. The tutor provided feedback on all incorrect responses.

Each problem-solving item presented the same decimal number word problem but
without an incorrect solution. Students worked through the problem in two steps and
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could not advance until they completed each step correctly. They solved the problem
and then explained the solution or principle by answering two multiple-choice self-
explanation questions. The tutor provided feedback on all incorrect responses.

The third problem in each set was a practice problem targeting the same miscon-
ception as the previous two erroneous example or problem-solving items. Practice
problems consisted of only one step: solving the problem. Items were identical across
conditions and were included to give students additional practice applying what they
were learning in the materials. Previous research has shown that including practice
problems immediately after example problems can improve learning outcomes [38].

Tests were administered on computers using the same educational technology
platform as the intervention. There were 25 items on the pretest, posttest, and delayed

Fig. 1. A sample erroneous example problem from the original materials used in [1, 5]. This
problem involves an ordering task and targets the “longer decimals are larger” misconception.

Fig. 2. A sample erroneous example problem from the current study, which has the same
decimal content as Fig. 1. Students still received a prompt to explain the error, but the prompt
disappeared from the screen after it was answered.
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posttest, with some items containing multiple parts and points. The tests were worth a
total of 61 points, and test scores were computed as the number of points earned out of
61. We deployed three versions of the test with isomorphic problems, and test version
order was counterbalanced across students. Items targeted the same misconceptions as
the instructional materials and also included some transfer items that did not directly
address a specific misconception. Items included tasks such as adding decimal numbers
(e.g., 2.41 + 0.6 = ___) and identifying the largest or smallest decimal number from a
list (e.g., 5.413, 5.75, 5.6). Transfer items targeted an understanding of decimal number
principles (e.g., “Is a longer decimal number larger than a shorter decimal number?”)
and included new skills not covered in the intervention (e.g., “Select all of the fol-
lowing numbers that are equal to 0.43”).

2.3 Procedure

All materials were deployed during students’ regular math classes over the course of
one week. Members of the research team were present each day to assist in adminis-
tering the materials and ensure the protocol was followed. Students completed the
pretest, instructional materials, and posttest at their own pace and their progress was
saved each day. Students who completed the posttest before the end of the week were
given math assignments by their teachers that did not target decimal number concepts.
One week after the intervention, all students completed a delayed posttest.

2.4 Affect Detection

We developed affect detectors using labels from text replay coding, where segments of
log files are pretty-printed and coded by humans. Those codes are input into machine
learning algorithms to emulate the coders’ judgments, based on prior studies that
showed it was feasible to detect confrustion using this approach [27]. The detectors
were built on log file data from 598 students across five middle schools collected in
previous research with this educational technology platform [1, 5]; data related to the
dropped self-explanation step in the previous version of the erroneous example con-
dition were removed from the dataset before developing automated detectors, but
remained included during text replay coding. Students’ log files were broken down into
individual clips for text replay coding, with each problem corresponding to a single
clip. Two coders manually labeled 1,600 clips for confrustion based on holistic
assessment of confrustion in the current task. For example, for multiple-choice prob-
lems, did the student spend a significant amount of time on a first, incorrect attempt and
then make a subsequent incorrect attempt? For number line problems, did the student
make two substantially distant, incorrect attempts (e.g., 0.3, then 1.1, then 1.8) or
multiple incorrect attempts in both directions on the number line (e.g., 0.7, then 0.81,
then 0.55)? As with most labels, these text replay labels are imperfect – we do not
know if they genuinely capture the affective experience of confusion or frustration in
all cases. As these labels are derived only from log files, unlike work that also considers
facial expressions or posture [e.g. 25], these labels may in some cases capture only
behavior associated with confrustion, rather than true confrustion. Agreement was
computed after two coders separately labeled the same 129 clips, and results indicated
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high agreement (j = .82, p < .001). The remaining 1,471 clips were coded indepen-
dently by one of the two coders. The set of clips coded was stratified to equally
represent both student cohorts, both conditions, and all four problem types.

We built the confrustion detector using the Extreme Gradient Boosting (XGBoost)
classifier based on these labeled clips [39]. The classifier uses an ensemble technique
that trains an initial, weak decision tree and calculates its prediction errors. It then
iteratively trains subsequent decision trees to predict the error of the previous decision
tree, with the final prediction representing the sum of the predictions of all the trees in
the set. We determined that the detector could effectively infer students’ confrustion
(j = .82, AUC = .92) based on 10-fold student-level cross-validation, which involved
repeatedly building the model on some students’ data and testing it on other students’
data. Once effective detection was confirmed, we applied the detector to the new
dataset (9,065 clips across 187 students). A total of 30 features were used to predict
confrustion, and the importance of each feature was calculated as the proportion it
contributed to the final model. The detector reported the probability that a student
experienced confrustion on each problem; overall confrustion scores were computed as
the average probability of confrustion across all problems.

3 Results

We report results in the order of our hypotheses. To examine whether students’ per-
formance improved as a result of the intervention (H1), we conducted a series of
paired-samples t-tests separately by condition. Results indicated that students in the
problem-solving condition improved significantly from pretest to posttest, t(88) = 6.83,
p < .001, d = .44, and from pretest to delayed test, t(88) = 8.18, p < .001, d = .48
(Table 1). Likewise, a paired-samples t-test indicated that students in the erroneous
example condition improved significantly from pretest to posttest, t(84) = 4.26,
p < .001, d = .28, and from pretest to delayed test, t(84) = 5.29, p < .001, d = .37.

To test the relation between confrustion and performance (H2), we examined the
correlation between the variables. Confrustion was negatively correlated with pretest
performance, r = −.64, p < .001, posttest performance, r = −.63, p < .001, and
delayed posttest performance, r = −.62, p < .001. To examine the relation between
confrustion and performance when controlling for prior knowledge (H2), we tested a
multiple regression including pretest and confrustion to predict posttest. The model was
significant, R2 = .70, F(2, 171) = 195.66, p < .001. Both confrustion, b = −.186,

Table 1. Proportional confrustion and test scores by condition.

Measure Problem solving Erroneous example

Confrustion M = .22, SD = .12 M = .33, SD = 12
Pretest M = .53, SD = .22 M = .54, SD = .21
Posttest M = .62, SD = .21 M = .59, SD = .21
Delayed test M = .63, SD = .22 M = .62, SD = .23
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p = .001, and pretest, b = .69, p < .001, were significant predictors of posttest per-
formance when holding the other factor constant. We applied the same multiple
regression model to predict delayed posttest. The model was significant, R2 = .69, F(2,
171) = 188.22, p < .001. Both confrustion, b = −.15, p = .006, and pretest, b = .72,
p < .001, were significant predictors of posttest performance when holding the other
factor constant. These results indicate that confrustion predicted test performance even
when accounting for students’ prior knowledge. In other words, the predictive value of
confrustion was not merely a reflection of students’ prior knowledge.

To examine the effect of condition on confrustion (H3), we conducted a one-way
analysis of variance (ANOVA) that indicated students in the erroneous example con-
dition experienced greater confrustion than students in the problem-solving condition,
F(1, 172) = 41.29, p < .001, d = 0.38. To determine whether the relation of confrus-
tion and test performance differed between conditions, we conducted a moderation
analyses using PROCESS, an SPSS macro that uses 5000 bootstrap estimates to test
mediation and moderation by creating confidence intervals for indirect effects [40]. We
tested a PROCESS 1 model using condition as a moderator of the relation between
confrustion and posttest performance and, separately, delayed test performance. For the
immediate posttest, there was no significant interaction between confrustion and con-
dition, B = .29, 95% CI [−.10, .67], and the inclusion of the interaction term did not
explain significantly more variance in the model, DR2 = .007, F(1, 170) = 2.11,
p = .15. For the delayed posttest, there was also no significant interaction between
confrustion and condition, B = .27, 95% CI [-.14, .68], and the inclusion of the
interaction term did not explain significantly more variance in the model, DR2 = .006,
F(1, 170) = 2.11, p = .19. These results indicate that the relation between confrustion
and performance did not differ between conditions.

To test the effect of condition on performance (H4), we conducted an ANOVA that
revealed no differences between conditions on pretest, F(1, 172) = 0.08, p = .77,
d = 0.04, posttest F(1, 172) = 0.82, p = .37, d = 0.14, or delayed posttest, F(1,
172) = 0.17, p = .68, d = 0.06 (Table 1). When controlling for pretest, an analysis of
co-variance (ANCOVA) indicated that there was a significant effect of condition on
posttest, F(2, 171) = 4.10, p = .045, ηp

2 = .023, with students in the problem-solving
condition performing better. There was no effect of condition on delayed posttest when
controlling for pretest, F(2, 171) = 1.29, p = .26, ηp

2 = .008.In other words, students in
the problem-solving condition improved on the posttest significantly more than stu-
dents in the erroneous example condition, but there were no differences in improve-
ment on the delayed test. To understand the role of confrustion in this effect, we
conducted ANCOVAs testing the effect of condition on test performance controlling
for both confrustion and pretest. Results revealed no effect of condition on posttest, F
(3, 170) = 0.02, p = .90, ηp

2 < .001, or on delayed posttest, F(3, 170) = 0.35, p = .56,
ηp
2 = .002. This indicates that the variance in confrustion between conditions accounted
for the condition effect on posttest improvement.

To understand other potential consequences of the revisions, we examined the
amount of time students spent on the materials. An ANOVA indicated a significant
difference in total time spent on the instructional materials, F(1, 172) = 9.95, p = .002,
d = 0.48, with students in the erroneous example condition (M = 62.90, SD = 23.24)
taking longer to complete the materials than students in the problem-solving condition
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(M = 51.59, SD = 23.99). This suggests that the extra self-explanation prompt that was
eliminated from the erroneous examples was not responsible for the difference in times
across conditions observed in previous studies.

4 Discussion

Unlike prior studies [1, 5], students in the erroneous example condition performed
worse than students in the problem-solving condition on the immediate posttest when
controlling for the pretest, and there were no differences between conditions on the
delayed posttest. While the results are reversed in terms of which condition performed
better, there is a similar trend in the difference between posttest and delayed posttest. In
prior studies, the benefits of erroneous examples emerged only on a delayed posttest,
suggesting that students did not experience initial performance benefits but ultimately
learned and were able to transfer knowledge better [1, 5]. These previous results were
consistent with other research on erroneous examples, which have tended to show the
greatest benefit on delayed or transfer tests [2, 6, 10]. In the current study, students in
the problem-solving condition showed an immediate performance advantage on the
posttest but that advantage did not persist to the delayed posttest, suggesting that
benefits from the problem-solving condition primarily affected performance and not the
lasting, transferrable learning benefits that are typically most valued as an instructional
goal. Thus, while results were inconsistent with prior work in the sense that students in
the erroneous examples condition did not perform better on the delayed posttest, it was
not a full reversal of effects as would have been seen if students in the problem-solving
condition performed better on the delayed posttest.

We predicted that the benefits of erroneous examples would be robust enough to
persist despite several changes made to better align the conditions with one another and
with the more precise mathematical language used by experts. While this prediction
was not upheld, there are several possible explanations for the different outcome. First,
students might be more accustomed to using instructional technology than they were
when the original materials were tested six years ago. While we would not expect this
to change the cognitive benefits of the instructional materials, it might reduce any
confusion or frustration students would experience with the interface, such as under-
standing how to drag numbers to reorder them or select options from a drop-down
menu. However, this idea is not supported by the time students spent on the materials.
Students in the current study spent on average 50 to 60 min across conditions, while
students in the previous studies spent on average 40 to 50 min across conditions [1, 5].

Second, the elimination of the extra self-explanation prompt in the erroneous
example condition might have reduced learning in that condition. We think this is
unlikely, as students in the erroneous example condition still responded to three self-
explanation prompts per question. However, only a direct comparison between versions
with and without the additional prompt could provide conclusive evidence.

Third, and we think most likely, the shift to more mathematically precise language
may have diminished the benefit of studying and explaining erroneous examples.
Students on average spent 10 more minutes on the revised materials compared to the
original ones. No other major changes were made to the content of the problem-solving
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materials, and the other major change to the erroneous examples condition involved
removing materials. Students’ prior knowledge in the current experiment was slightly
lower than in prior studies (.53 current, .57 prior), which could cause an increase in the
amount of time students needed. Nevertheless, the dramatic increase in time spent on
materials supports the idea that students struggled more with reading the new expla-
nation prompts and thus may not have benefitted from them as much. Erroneous
example interventions typically instruct students to engage in an evidence-based
learning activity to study and understand the erroneous examples, such as comparison
[9] or explanation [10]. Without these instructionally robust activities to provide
scaffolding, students may not pay as close attention to the erroneous examples or may
fail to identify the underlying principles they represent. Put another way, if the
mathematically precise language of the new explanation prompts was too difficult for
students to understand, then the effect may have been similar to having no explanation
prompts at all.

Future research should investigate these possible explanations empirically. We plan
to attempt to replicate previous results by randomly assigning students to either the
erroneous example or problem-solving conditions using either the original or revised
materials, which will also permit a more direct comparison of times and perfor-
manceacrossversions. Examination of students’ own self-explanations has suggested
that the act of engaging in self-explanation is beneficial even when explanations are
flawed or mathematically imprecise [41]. Whether provided self-explanation options
should be modeled after the imprecise language students tend to use or the more precise
language of experts is an open question, and an important one both for understanding
the mechanisms of self-explanation and for designing self-explanation options
deployed in instructional materials. Since many instructional technologies use the self-
explanation method of offering options from which students may choose [35, 36], this
is important question to resolve.
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