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Abstract Intelligent Tutoring Systems have been shown to be very effective in supporting
learning in domains such as mathematics, physics, computer programming, etc. However,
they are yet to achieve similar success in tutoring metacognition. While an increasing
number of educational technology systems support productive metacognitive behavior
within the scope of the system, few attempt to teach skills students need to become better
future learners. To that end, we offer a set of empirically-based design principles for
metacognitive tutoring. Our starting point is a set of design principles put forward by
Anderson et al. (Journal of the Learning Sciences, 4:167–207, 1995) regarding Cognitive
Tutors, a family of Intelligent Tutoring Systems. We evaluate the relevance of these
principles to the tutoring of help-seeking skills, based on our ongoing empirical work with
the Help Tutor. This auxiliary tutor agent is designed to help students learn to make
effective use of the help facilities offered by a Cognitive Tutor. While most of Anderson’s
principles are relevant to the tutoring of help seeking, a number of differences emerge as a
result of the nature of metacognitive knowledge and of the need to combine metacognitive
and domain-level tutoring. We compare our approach to other metacognitive tutoring
systems, and, where appropriate, propose new guidelines to promote the discussion
regarding the nature and design of metacognitive tutoring within scaffolded problem-
solving environments.

Keywords Meta-cognition . Help seeking . Intelligent tutoring systems .
Cognitive tutors . Instructional design principles

One of three key instructional design principles proposed in “How People Learn”
(Bransford et al. 2000) is to support metacognition. Having better metacognitive skills
can help students learn better within a learning environment (such as a tutoring system or
traditional classroom), and furthermore, can help them self-regulate their learning across
domains and contexts. Indeed, research shows that well-designed metacognitive instruction
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has a positive impact on metacognitive behavior and subsequently on domain learning, for
example, instruction on the use of debugging skills (Carver and Mayer 1998) or self-
regulatory strategies (Bielaczyc et al. 1995).

Supporting metacognition is a challenge that has been tackled by an increasing number
of tutoring systems. Several researchers have developed systems focused on self-
explanation (e.g., Aleven and Koedinger 2002; Conati and VanLehn 1999); others teach
their students to monitor learning of computer agents (e.g., Biswas et al. 2004; Reif and
Scott 1999); Baker et al. (2006a, b) encourage students to not “game the system” (i.e., to
not try to guess answers or abuse hints repeatedly); and Gama (2004) focuses on coaching a
reflection process. Azevedo describes several characteristics of metacognitive support by
tutoring systems, including student control over setting subgoals and the use of learning
resources; having a model to support the use of both metacognitive and domain-level skills;
human or virtual assistance; and the use of metacognitive skills by the student within the
learning context (Azevedo 2005b).

However, not every system that supports metacognition also teaches it. Merely
channeling students toward more productive metacognitive behavior may lead to increased
learning at the domain level, but is not likely to improve the students’ general learning
skills. The improved metacognitive behavior in such cases is not likely to persist beyond
the scope of the tutored environment; one might say that it is the result of a metacognitive
“crutch,” as opposed to a metacognitive “scaffold.” For example, following research that
showed that students lack efficient help-seeking skills (Aleven and Koedinger 2000), a
2 seconds time threshold between consecutive hint requests was added to the Cognitive
Tutor. This type of scaffold improved the way students ask for hints within the system, but
did not improve students’ general hint-reading skills, as discussed later. In this paper we
focus on guidelines for teaching metacognition, and not merely supporting it.

Relatively few tutoring systems can be considered metacognitive tutoring systems under
the requirements stated above. An example of such system is the SE-Coach (Conati and
VanLehn 1999), which attempts to teach, and not only require, the use of self-explanations
in learning Physics. In our work with the Help Tutor discussed in the current paper, we
attempt to improve students’ help-seeking behavior in a cross-domain, cross-environment
fashion. Other systems have been shown to be successful in tutoring metacognition using
the support of a human tutor (e.g., Azevedo et al. 2004; White and Frederiksen 1998).

Metacognitive vs. cognitive tutoring

It is commonly agreed that metacognitive knowledge includes two main types of skills
(Brown 1987): knowledge of knowledge (“What is my knowledge gap?”) and regulation of
knowledge (“What should I do to overcome it?”). Metacognitive tutoring has a number of
characteristics that make it fundamentally different from domain-level tutoring. First,
metacognition is somewhat domain independent in nature; ideally, the metacognitive
knowledge that students acquire should be flexible enough to be applied while learning
new domains, in a variety of different learning environments. Second, metacognitive tutoring
is usually situated within the context of domain learning, and thus imposes extra cognitive
load. Third, metacognitive learning goals are often perceived by students as secondary to the
domain learning goal, or even as insignificant. Finally, while for most domains the targeted
knowledge is independent of the student, this is not the case in metacognitive tutoring, in
which the “correct” answer depends on students’ knowledge, performance, motivation, and
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goals at the domain level, as well as on characteristics of the task to be completed. These
unique characteristics impose special challenges for the design of metacognitive tutoring.

Within the traditional classroom, a number of programs for teaching students specific
metacognitive processes have been successful, in the sense that they led to better domain
learning (Carver and Mayer 1998; Schoenfeld 1992). However, by and large, these
successes are hard to achieve (Resnick 1987).

Considerable progress has been made in designing for metacognition within open
learning environments, such as inquiry (Luckin and Hammerton 2002; Quintana et al. 2005;
White and Frederiksen 1998), discovery (de Jong and van Joolingen 1998), and hypermedia
(Azevedo 2005a) environments. However, not much is known yet regarding design
guidelines for metacognitive tutoring in Intelligent Tutoring Systems (ITS). Typically, these
systems guide students in problem-solving activities. They offer a rich problem-solving
environment, and use a cognitive model of the domain to adapt instruction to individual
learners. By tracing students’ actions and knowledge relative to a cognitive model, the ITS
can tailor the curriculum (Corbett and Anderson 1995; Koedinger et al. 1997), the scaffold
(Razzaq et al. 2005), the feedback (Corbett and Anderson 2001), or any combination of
these to the students’ needs. These systems have been shown to approach the effectiveness
of a good one-on-one human tutor (Koedinger and Corbett 2006).

Recently, an increasing number of ITS attempt to support metacognitive learning.
Various researchers describe methods for modeling metacognitive knowledge (Aleven et al.
2006; Baker et al. 2006b; Bunt and Conati 2003). Yet, guidelines concerning the
pedagogical and interactive aspects of metacognitive tutoring are currently less available.
One exception is Gama (2004) who presents two such guidelines: (1) Not to add cognitive
load and (2) to help students recognize the importance of metacognitive learning goals.

In this paper we formulate and discuss a set of empirically-based design guidelines for
metacognitive tutoring in ITS. We use Anderson et al. (1995) as the basis for our work. They
offer a comprehensive set of design principles on which Cognitive Tutors, a prominent type
of ITS, are based. Since we attempt to tutor metacognition using Cognitive Tutors, their
guidelines offer an interesting framework for us to explore. Given the proven success of
Cognitive Tutors at domain-level tutoring (e.g., Koedinger et al. 1997) we expect these
principles to be applicable also at the metacognitive level. Yet, the different challenges
imposed by metacognitive tutoring require, at least, some adaptation. We focus on a specific
aspect of metacognition, namely, help seeking, and study it within a context of “tutored
problem solving,” that is, problem-solving practice with the help of a Cognitive Tutor.

The help tutor—a metacognitive tutor to teach help seeking

Students’ help-seeking behavior while working with ITS is known to be suboptimal (see
Aleven, Stahl, Schworm, Fischer, and Wallace, 2003 for an extensive review). By help-
seeking skills we mean the strategies involved in identifying the need for help, selecting
appropriate sources of help, eliciting the needed information, and applying the help that was
received. Productive help seeking requires the two main aspects of metacognitive knowledge
mentioned earlier: knowledge of knowledge (“Do I know enough to succeed on my own?”)
and regulation of knowledge (“How can I obtain additional information I may need?”).

Students perform different types of help-seeking errors. In particular, students often
avoid help when needed (e.g., by repeatedly guessing instead of asking for help) or abuse
help (e.g., by asking for the most elaborated hint that conveys the answer immediately,
without attempting to read or reflect upon hints that explain the reasons behind the answer).
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In our research we have attempted to teach students better help-seeking skills while
working with Cognitive Tutors. Cognitive Tutors (Koedinger et al. 1997; see Fig. 1) are a
leading family of ITS, currently used by students in over 2,000 middle- and high-schools in
the United States. Cognitive Tutors are available in several full-year math curricula (such as
Geometry and Algebra) and combine two class periods per week of Cognitive Tutor work
with three class periods per week of classroom instruction, including many small-group
activities. The Algebra Cognitive Tutor was recently recognized by the What Works
Clearinghouse as one of only two curricula in Algebra proven to improve learning (Morgan
and Ritter 2002) according to the highest standard of scientific rigor.

The Help Tutor, which we use as a case study throughout this paper, is an add-on
tutoring agent that can be integrated with different Cognitive Tutors. In line with the
Cognitive Tutor approach, the Help Tutor traces students’ actions relative to a (meta)
cognitive model of help-seeking (Aleven et al. 2006; see Fig. 2). The help-seeking model is
a prescriptive model of effective help-seeking behavior. The model uses several parameters
(such as estimated mastery of the domain knowledge involved in the step and previous
interaction on the same step) to predict what actions would be most useful at each point of
the learning process: A solution attempt, hint request, glossary search, or asking the teacher

Fig. 1 The Help Tutor is integrated with a Cognitive Tutor for geometry. It traces students’ actions within
the Scenario window (left) against a model of effective help-seeking behavior. The Help Tutor uses several
parameters such as estimated skill level (top right) and previous interactions (e.g., whether the student has
already made multiple unsuccessful attempts at solving the given step) in order to arrive at a set of
“acceptable” metacognitive actions. Deviations from these actions result in metacognitive error messages
(pop-up window in the center), specifying the error, the appropriate action to take, and the general applicable
metacognitive rule

I. Roll, et al.



a question. When the student’s action deviates from the model, it is classified as one of
several types of help-seeking errors, which triggers an immediate and tailored feedback
message. The error feedback includes an explanation about the nature of the error and a
recommendation for a better action, for example, “Even though you have missed this step,
you probably know enough to solve it without a hint.” The Help Tutor is integrated with the
Geometry Cognitive Tutor so that students practice help seeking in the actual learning
context, as shown in Fig. 1. The system traces each student action both with respect to the
help-seeking model and with respect to the domain-level model. When feedback on the
same action is generated by both models, the Help Tutor uses a simple conflict resolution
strategy to determine which message will be displayed, so that students do not receive more
than a single message at any point in time (Aleven et al. 2005).

The Help Tutor has been designed iteratively, using offline analysis, pilot studies, and in
vivo classroom studies (see Table 1). We began by studying the help-seeking errors students
make, as well as reviewing the relevant literature about help seeking in ITS and in
traditional classrooms (Aleven et al. 2003; Aleven and Koedinger 2000). Based on that data
we designed and evaluated the help-seeking model (referred to in this paper as study 1), and
then evaluated it using data sets from different domains (referred to as study 2). At this
point we designed the help-seeking feedback in the form of help-seeking error messages.
The Help Tutor was evaluated first in a small-scale pilot study within a school (study 3),
and following that, with 60 students in two high schools who used it for 3 weeks (study 4).
After each of these steps the Help Tutor was tuned and improved based on previous
findings. The most recent study evaluated the Help Tutor and classroom instruction with 80
students working with the system for 2 months (study 5).

Fig. 2 The help-seeking model describes ideal help-seeking behavior with the Cognitive Tutor. When
actions of students deviate form the model they are being classified as one of several types of metacognitive
errors, and immediate and tailored feedback is given to the student. For example, the dotted lines demonstrate
errors in which the student asks for hint, or attempts to solve, too quickly
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So far the Help Tutor has achieved mixed results. On the one hand, it has improved students’
help-seeking behavior within the Cognitive Tutor. For example, in study 4 we found that
students working with the Help Tutor asked to see the bottom-out hint significantly less often
than the Control group students (46 vs. 72% respectively, p<0.001). On the other hand, the
improved help-seeking behavior did not transfer to a paper-and-pencil evaluation of students’
help-seeking strategies, and we did not yet see improved learning at the domain level.

Instructional principles for metacognitive ITS

Based on our experiences with the Help Tutor we examine the relevance of the principles
stated in Anderson et al. (1995) to metacognitive tutoring. We sort the principles into three
groups, as suggested by Carver (2001):

– Goals, which describe the design of metacognitively appropriate learning objectives for
ITS

– Instruction, which discusses the design of the instructional means, interaction style, and
pedagogy to be used; and

– Assessment, which discusses the evaluation of the metacognitive tutoring

Table 1 Evaluation studies of the Help Tutor

Study Goal Methodology Main findings Further details

1 Design the help-seeking
model

Log-file analysis 73% of students’ actions
were classified as different
types of help-seeking errors.

(Aleven et
al. 2006)

These errors were
significantly negatively
correlated with learning
(p=−0.65, p<0.0005)

2 Evaluate the model across
domains and cohorts

Log-file analysis Students’ errors in two
different Cognitive Tutors
were highly correlated
(r=0.89, p<0.01)

(Roll et
al. 2005)

3 Implement and pilot the
Help Tutor

Pilot Students improved the
help-seeking behavior while
working with the tutor

(Aleven et
al. 2005)

4 Evaluate the Help Tutor Randomized
experiment with
60 students

Students improved several
aspects of their
help-seeking behavior.

(Roll et
al. 2006)

No improved learning
at the domain level
was observed

5 Evaluate the combination
of the Help Tutor,
preparatory Self-assessment
sessions, and help-seeking
classroom instruction

Experiment with
80 students

Under analysis (Roll et
al. 2007)
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Metacognitive goals: what should be taught?

Principle 1: Represent student competence as a production set (Anderson #1)

We find Anderson’s first principle to be fully applicable at the metacognitive level. In the
Cognitive Tutors, a domain-level cognitive model is used to describe the procedural
knowledge students should acquire. Similarly, a metacognitive model can be built,
comprised of production rules, to encompass the desired metacognitive learning goals.
Figure 2 shows the model we implemented to describe desired help-seeking behavior. This
model is the basis for the production rule set used to trace students’ actions in the tutor.

Such models can be designed using a variety of methods. In addition to traditional cognitive
modeling methods such as think-aloud protocols and log file analysis, students’ learning gains
at the domain level can inform the design of the metacognitive model. In developing the model,
we ran it off-line against existing log data of students’ interactions with the Geometry Cognitive
Tutor. By correlating the metacognitive actions generated by the model to students’ learning
outcomes, we were able to identify (metacognitive) actions that are associated with productive
learning (at the domain level), and (metacognitive) actions that are not. In subsequently refining
the model, we tried to maximize the correlation between the modeled metacognitive behavior
and students’ domain-level learning. Aleven et al. (2006) describe the process by which we
attempted to improve the help-seeking model, changing the way it handles repeated errors by
students. Further changes based on log-file analysis were made following study 3, in order to
reduce the proportion of student actions that do not conform to the model (and hence will be
designated as metacognitive errors by the Help Tutor) from 73 to 17% while maintaining the
same correlation with learning. We made the model focus on errors that were highly
negatively correlated with learning (such as rapidly repeating hint requests) while changing it
so that it no longer “outlawed” other actions previously considered to be metacognitive errors
(such as fast attempts at solving steps by skilled students).

Principle 2: Set explicit declarative, procedural, and dispositional learning goals
of the desired metacognitive skill (new principle)

While most teachers and curriculum designers would agree that instruction should address
appropriate metacognitive goals, it is rare that such goals are stated explicitly. In our work
with the Help Tutor, we found out that we should specify clearly, simply, and accurately
what help-seeking behavior we want students to acquire. Following Anderson’s principle
#1 (described above), our original thought was to focus on the procedural help-seeking
skills to be taught. At the time, this approach seemed right, since the main goal of the Help
Tutor is to improve students’ help-seeking behavior. However, since then we have found
that it is important that the instruction focuses on declarative knowledge of help seeking as
well. In study 5, a declarative help-seeking assessment revealed that many students lack an
adequate conceptual understanding of help seeking. For instance, in response to one of the
questions in this assessment, 42% of the students reported that when the tutor poses a tough
problem on which their friends have made progress, the appropriate action to perform
would be to ask immediately for the bottom out hint (that gives away the answer) without
attempting to solve it first. This and other examples demonstrated that declarative learning
goals should be supported in addition to procedural goals.

Having the appropriate declarative and procedural knowledge in place may not be
sufficient for successful application of metacognitive skills, however, as was illustrated in
one of our pilot studies (study 3), in which we observed how students use the Help Tutor.
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One student repeatedly avoided help even though he clearly needed it. When asked whether
the system was right to suggest that he ask for hints, he replied: “Yes, I needed them.”
However, when asked why he had not followed these recommendations, he replied: “Real
men never ask for help.”

Quite often, the metacognitively correct approach takes more time. This is the case with
self-explanation, as well as with help seeking. When classroom culture at times encourages
performance goals and quick progress within the curriculum, students may choose
suboptimal learning strategies, such as repeated guessing or clicking through hints (termed
“Gaming the System”; Baker et al. 2004). It is important to offer students motivational
support that will encourage the use of desired metacognitive skills. For example, del
Soldato suggests a system that adapts to students’ motivational, as well as cognitive, state
(Del Solato and du Boulay 1995).

To summarize, in the Help Tutor project, we have three sets of goals:

– Declarative: Improve students’ knowledge of the source of help that should be used in
the various situations.

– Procedural: Improve students’ behavior in the online learning system.
– Dispositional: Improve students’ understanding of the importance of appropriate help-

seeking behavior.

Instruction: how should these goals be achieved?

Principle 3: Promote an abstract understanding of the problem-solving knowledge
(Anderson #4)

Anderson et al. (1995, p. 180) describe the way Cognitive Tutors reinforce abstraction
through “the language of our help and error messages.” Recently, Koedinger and Corbett
(2006) rephrased this principle: Promote a correct and general understanding of the
problem-solving knowledge. We believe that this principle can be applied in a very similar
manner in the metacognitive domain. The instruction and practice of metacognitive skills
should emphasize, and link, the three types of learning goals: declarative, procedural, and
dispositional. For example, the help-seeking error messages specify the error made by the
student, the general rule that should be learned, and provide appropriate motivational
support (e.g., “by clicking through hints you may solve the problem faster, but you will not
learn, and you may have similar problems the next time you encounter a similar problem”).

On top of phrasing the instructional messages appropriately, another aspect of
metacognition can be used to help students acquire properly-abstracted metacognitive
knowledge: its domain-independent nature. While students are accustomed to “putting
aside” the skills acquired at the domain level once they are done with an instructional unit,
they should not do so with metacognitive skills. One way to promote such abstraction is to
provide metacognitive instruction in several domains. In study 2 we studied two different
groups of students working with two different Cognitive Tutors in different areas of
mathematics (high-school geometry and middle-school data analysis). The overall pattern
of metacognitive errors students made was remarkably similar (r=0.89, p<0.01). The high
correlation suggests that student apply similar metacognitive strategies (and thus, also
errors) across tutoring systems. Therefore, it may be beneficial to apply the same (or
similar) metacognitive tutoring techniques in different instructional units. To evaluate this
hypothesis, in study 5 students worked with the Help Tutor over two instructional units—
Angles and Quadrilaterals (A good next step would be to investigate whether such tutoring
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is even more beneficial when done across learning environments, not just across
instructional units.) In study 4 we found a significant correlation between the quality of
students’ help-seeking behavior in the tutor (as evaluated by the help-seeking model) and in
the paper-and-pencil test (as evaluated by their use of the embedded hints in the paper test;
r=0.5, p<0.01). Therefore, in the next study (study 5), we added complementary
declarative instruction in a traditional classroom setting, in order to promote abstraction
of the principles across learning environments.

Principle 4: Provide immediate feedback on errors (Anderson #6)

As Corbett and Anderson (2001) showed, immediate feedback contributes to learning.
Koedinger and Corbett (2006) later restated this principle as follows: Provide immediate
feedback on errors relative to the model of desired performance. Cognitive Tutors apply
this principle by giving immediate feedback to students when they make errors. This
principle is applicable also in tutoring metacognition. Mathan and Koedinger (2005)
evaluated a Cognitive Tutor that teaches skills related to the coding of formulas in
Microsoft Excel, and compared two versions of feedback based on different cognitive
models. One version of the tutor used a domain-level model of Excel coding skills to trace
students’ performance. This tutor gave feedback when the student made a mistake in coding
an Excel formula (i.e., a domain-level error). In the other version, the feedback was based
on a model that included, in addition to the Excel coding skills, a metacognitive
component, namely, self monitoring. According to this model, students needed to notice
their own domain-level mistakes before moving on to the following step. This tutor
provided the feedback once the student failed to notice and correct the error (instead of after
the error itself). The latter kind of feedback led to increased learning.

We apply the principle of direct feedback within the Help Tutor by giving students
immediate feedback on their help-seeking errors. Yet, in order to better fit the metacognitive
nature of the instruction, a number of exceptions are made. First, when students commit a
metacognitive error (such as attempting to solve a step too quickly) but get the answer right
at the domain level, no metacognitive feedback is given. It was thought that students are not
likely to pay attention to (negative) metacognitive feedback immediately following a
successful attempt (e.g., feedback saying “even though you got this step right, you should
have spent more time on it,” however well-intentioned, might not be very effective).
Another exception is made when both a domain-level and a metacognitive-level feedback
message are available following a student action. In order to reduce cognitive load, we
implemented a prioritizing algorithm, which chooses which content to display at each
situation (Aleven et al. 2005). When the student commits an error, feedback messages with
domain-level content (e.g., messages pointing out why the step is wrong, or what the
students should be doing instead) receive priority over those focused on improving
students’ metacognitive behavior. When no domain-level feedback message is available (as
happens often in Cognitive Tutors—most of the time, they provide only implicit feedback
on domain-level errors), any applicable metacognitive message is displayed. The opposite
occurs when the student asks for a hint – the Help Tutor messages (which provide feedback
on the appropriateness of asking for a hint in the given situation, taking into account the
student’s current estimated knowledge level) receive priority over domain-level hint
messages, in order to encourage students to view only as many hints as needed. For
example, a domain-level hint may be pre-empted by a message from the Help Tutor
emphasizing the value of reading hints deliberately, or suggesting that the student knows
enough to solve the step without further hints from the tutor.
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We emphasize that metacognitive tutoring systems should let students err (i.e., they
should not prevent metacognitive errors). This point may seem obvious at the domain
level—students should be allowed to make errors when solving problems, so as to learn to
avoid them, and the system should not take over the hard parts of the task until the student
has mastered them. Scaffolding metacognition may prevent students from making errors at
the metacognitive level. For example, the geometry Cognitive Tutor displays a hint after
three consecutive errors were made. This mechanism does not require the student to
recognize her need for help. Since most ITS estimate the student’s knowledge level, learning
decisions can be made by the system for the students. This type of scaffold may be effective
at the domain level. For example, Wood and Wood (1999) describe a contingent tutor that
automatically adapts the hint level to the students’ needs. However, empirical results suggest
that metacognitive scaffolding may not yield metacognitive learning. For example, following
earlier findings about help misuse, a 2-seconds delay was added to Cognitive Tutors in
between hints, to prevent rapid repeated hint requests (which typically represent an attempt to
get the system to reveal the answer to a problem step). When this scaffold was removed in
study 4, students reverted back to quickly “clicking through” hints: 30% of the requested hints
were viewed for less than 2 s by students who did not work with the Help Tutor.

Principle 5: Support metacognition before, during, and after the problem-solving process
(an adaptation of Anderson’s principle #3: Provide instruction in the problem-solving context)

At the domain level, students are often given instruction on a given skill or topic before
they are asked to solve problems. Further instruction is given during problem solving, via
hints and error messages. The successful completion of a problem is rarely followed by
instruction on the same topic. However, the timing of metacognitive tutoring presents an
interesting challenge from the viewpoint of instructional design. On the one hand, there are
good reasons for giving instruction on metacognitive skills in the context of (and during)
domain problem solving. What better opportunity to help students learn to seek help at
appropriate times than at the very moment that they need it. At the same time, these
challenging situations are the least suitable context for adding metacognitive instruction,
due to the high cognitive load that they impose even without an explicit focus on
metacognition. First, the student is likely to pay little attention to metacognitive content
since her attention is focused on solving the problem. Second, metacognitive instruction
may distract the student and thus hinder learning at the domain level. Third, metacognitive
feedback at this time may be somewhat discouraging.

Several approaches for timing the metacognitive instruction can be used. Gama (2004)
describes a system in which all metacognitive interaction precedes or follows the domain-
level problem solving, which therefore remains unchanged. However, students may not pay
attention to delayed feedback on their actions once they have solved a problem correctly.
Also, as noted earlier, delayed feedback is often less effective than immediate feedback for
the acquisition of cognitive skills (Corbett and Anderson 2001). Reif and Scott (1999) present
an interesting approach: The metacognitive tutoring system and the student repeatedly switch
roles: At times, the student is engaged in problem solving, while the ITS monitors her
performance. At other times, it is the student who monitors the ITS’s performance.

We believe that metacognition should be practiced within a learning context similar to
the one in which it should later be applied. Therefore, we chose to give metacognitive
feedback during the problem solving itself, directly applying Anderson’s principle #5 at the
metacognitive level. In addition, we added preparatory help-seeking sessions. In these
sessions, students are introduced to the (domain-level) skills to be practiced in the
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subsequent Cognitive Tutor unit, and self-assess their proficiency with respect to these
skills (see Fig. 3). They work in an environment, low on cognitive demand with respect to
domain-level skills, in which the focus is on help-seeking skills and their links to relevant
domain knowledge. Later, when students solve problems with the Cognitive Tutor, the
immediate feedback from the Help Tutor serves more as a reminder to what was learned
during these preparatory sessions than as novel instruction. An ideal solution should
probably balance all components: preparatory sessions with a strong metacognitive focus,
immediate tailored feedback on metacognition during problem solving, and reflection
exercises following it.

Principle 6: Minimize working memory load (Anderson #5)

Gama (2004) argues cogently that it is important not to unduly increase cognitive load
when adding metacognitive instruction to an environment for domain-level learning.
Increased load is especially likely to occur when metacognitive instruction is given during
domain problem solving, as is done by the Help Tutor.

A possible solution to that problem is to embed the metacognitive content within the
cognitive instruction in a manner that does not draw attention to another layer of
instruction. However, seamless integration of the cognitive and metacognitive content does
not stress the metacognitive goals. Students are likely to pay attention only to the cognitive
content, given that it is immediately useful with respect to their problem-solving goals.
They are likely to ignore the metacognitive content, the benefits of which may seem remote
and uncertain. For example, when asking for a hint within the Angles unit of the Geometry
Cognitive Tutor, one of the first hints on each step used to convey metacognitive content—
it recommended that students search the system’s glossary of geometry knowledge. Yet,
while students asked for a hint on 29% of their answer steps, they hardly ever followed the
tutor’s metacognitive recommendation: students used the glossary on only 2.7% of the
answer steps (Aleven and Koedinger 2000).

We chose to give the metacognitive tutor a “different voice” than the domain-level tutor,
by displaying its messages in a different font type and color. This simple distinction was
expected to help students extract the metacognitive content and link it to other similar
messages they receive. Anecdotally, it seems to work. Students refer to the help-seeking
feedback as the “blue messages,” named after their font color. They compare how often
they receive them and discuss their value (and occasionally, the degree to which they are
annoying). Giving a different voice to cognitive and metacognitive content can be done in

Fig. 3 During study 5, students first engage in preparatory self-assessment activities within an environment
focused on metacognition (in the context of solving relatively simple problems that involve skills that are
likely to be new to the students). Following these sessions, students are asked to apply, within the more
demanding Cognitive Tutor environment, the metacognitive skills initially acquired in the self-assessment
environment. The preparatory sessions help reduce the cognitive load during subsequent problem solving
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various ways, based on the interaction style. For example, different animated agents could
be used to show a metacognitive mentor side-by-side with a domain level tutor.

Principle 7: Communicate the goal structure underlying the problem solving (Anderson #2)

Cognitive Tutors often communicate a goal structure by using an interface that breaks up a
problem into smaller steps. By doing so the tutor helps students to set (and achieve)
appropriate subgoals. Also, more information about students’ thinking is made visible, so
that it becomes easier for the tutor to trace students’ reasoning (and perhaps for students to
reflect on their own reasoning). This principle can also be applied to metacognitive instruction.
In our work, the environment used for the preparatory self-assessment sessions (Fig. 3)
communicates a goal structure for desired help-seeking behavior. The interface makes
explicit four subgoals related to self-assessment: predicting one’s own ability, attempting to
solve the problem, reflecting on the experience, and planning future interaction. While we do
not communicate the goal structure of the help-seeking skills during domain-level problem
solving, Conati and VanLehn (1999) offer a metacognitive scaffold within the main tutoring
environment. Their SE-Coach scaffolds self-explanation of solved examples, so no domain
subgoaling is necessary. The self-explanation process is scaffolded in a way that makes the
process clear and apparent to the student. In another example, Gama (2004) requires students
to self-evaluate their ability, choose appropriate strategies to be applied, and reflect on their
experiences once the problem is solved. In that manner students go through the subgoals of a
metacognitively-correct problem-solving process.

Principle 8: Communicate the metacognitive learning goals (new principle)

Metacognitive tutoring should make students aware of their metacognitive learning goals.
The corresponding need usually does not occur with respect to domain-related learning goals,
since the skills to be learned tend to be quite apparent in the problem-solving process. For
instance, while attempting to solve a geometry problem, students consciously apply their
domain knowledge. They are less likely, however, to be aware of the learning strategies they
use. As Gama writes, metacognitive tutoring should “get students to recognize the importance
of the metacognitive activities to the learning process” (Gama 2004, p. 670).

During our work on the Help Tutor, we learned that students do not internalize the three
different aspects of the help-seeking knowledge merely by practicing it and receiving
feedback. For example, in study 4, students’ help-seeking declarative knowledge did not
improve as a result of their work with the Help Tutor, as evaluated using an assessment of
declarative knowledge of good help-seeking strategies (pretest score: 60%, posttest score:
64%, p=0.5). We therefore decided to incorporate help-seeking instruction in the form of a
video and a classroom discussion as part of a help-seeking support environment. The
instruction included examples of good vs. bad help seeking behavior, in addition to stating
the principles and dispositional values of productive help-seeking behavior. Results from
the recent study 5 suggest that this form of declarative instruction helps: Students who
received declarative instruction and worked with the Help Tutor scored 73% on a help-
seeking declarative knowledge assessment, compared to 48% of the control group who
worked with the conventional Cognitive Tutor and received no help-seeking instruction or
support (p<0.02; Roll et al. 2007). Another example of successful application of this
process is given in White and Frederiksen (1998), in which a scientific inquiry cycle is
taught explicitly to students, in addition to self-review and peer-review activities in the
classroom.
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Principle 9: Attach a price tag to metacognitive errors (new principle)

Unfortunately, students often do not see the value of productive metacognitive behavior. In
our studies, the distinctive voice of the metacognitive instruction (i.e., the “blue messages”
of the Help Tutor, mentioned above) often is seen by students as a signal that these
messages can be skipped, since they convey no domain knowledge of immediate benefit. In
order to reduce that kind of behavior, besides emphasizing the value of the metacognitive
messages, it may be helpful to “attach a price tag” to committing metacognitive errors. For
example, after we saw that students dismiss the Help Tutor messages rapidly, we added a
2-seconds delay during which messages cannot be dismissed. Another option is to add
mastery learning to metacognitive content.

The need for a price-tag does not necessarily exist at the domain level tutoring, since
progress in the curriculum (and classroom grade) depends on successful problem solving (and
thus a price tag for cognitive errors is embedded in the learning process). Currently, Cognitive
Tutors apply a mastery learning criterion to domain-level content only, with one exception:
recently, an experimental version of the Geometry Cognitive Tutor has been altered to apply its
mastery learning approach to the quality of students’ (tutored) self-explanations.

Other principles

Anderson et al. specify two more design principles. While these may well be applicable at
the metacognitive level, at the time of this writing we have not yet experimented with
them.

One of these principles suggests to facilitate successive approximations of the target skill
(Anderson #8). According to this principle, support that is given initially should be
removed as the student progresses. Anderson describes a division of labor between the tutor
and the student, in which the tutor’s role is reduced with practice. This principle can be
applied to the metacognitive level as well. For example, the student-system interaction could
be structured so that students first learn when to ask for hints, with the system controlling the
level of the hint. Once proficient in that regard, the student could take on the responsibility
of choosing the right level of help, or the right resource to use when seeking help.

The other principle we have not experimented with is to adjust the grain size of
instruction with learning (Anderson #7). According to this principle, students have control
over the grain size at which they seek feedback from the tutor, for example, by skipping
intermediate steps (once mastered the associated skills). In order to apply this principle at the
metacognitive level, a hierarchical structure of metacognitive skills should be used, which
we have yet to do. Our current attempt is to teach the building blocks of metacognitive
knowledge, such as help usage, self-explanation, etc. Once we know how to do so
effectively, we can proceed to scaffold their combination. For example, the Help Tutor could
give feedback on observed patterns of faulty help-seeking behavior—in order to respond to
a student’s observed tendencies rather than their second-by-second metacognitive behavior.

Evaluation

Principle 10: Assess metacognitive knowledge and application directly (new principle)

While not the focus of the current paper, it is important to note that progress toward
metacognitive learning goals should be evaluated directly (in addition to measuring the
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effect that metacognitive instruction has on domain-specific learning). With respect to
metacognitive knowledge, not only should students’ (declarative) understanding be
evaluated, but also its spontaneous application. When appropriate, the evaluation should be
done in a novel learning context: the litmus test of instruction on help-seeking surely should
be whether students have become better help seekers and therefore better learners of novel
subject matter and skills. Studies 4 and 5 included several direct help-seeking measures: Log
file analysis is used to evaluate students’ procedural help-seeking knowledge; embedded
hints in the paper test evaluate the way students transfer their help-seeking knowledge to a
paper-and-pencil environment; and hypothetical help-seeking dilemmas are used to evaluate
students’ declarative knowledge of good help-seeking strategies.

Summary

In this paper we investigate the applicability of the design principles put forward by
(Anderson et al. 1995) to metacognitive tutoring and more specifically, the tutoring of
effective help seeking. While most principles apply to metacognitive tutoring in a similar
fashion as they do to domain level tutoring, several additional challenges arise. These
challenges are due mainly to the need to combine tutoring at metacognitive and domain
levels, as well as from the nature of metacognitive knowledge. In our work on the Help
Tutor, we have made progress in addressing these challenges. As a result, we have extended
and modified some of Anderson’s principles.

The list of principles we considered in this paper is not complete, and there is much
room for evaluation and improvement. We studied them within the context of tutoring help
seeking with an intelligent computer tutor. We expect that these principles will vary
somewhat as they are applied to other metacognitive learning goals in other types of
learning environments. However, we believe that framing our experience as a set of
principles can make it easier for researchers and developers to apply the lessons learned in
our work to other metacognitive ITS. It would be of much interest to examine these
principles in other types of learning environments, such as environments focused on
inquiry, games, and collaboration, and then to compare how they hold up in these different
contexts. Evaluating these principles in a variety of ITS teaching different metacognitive
skills will help improve them and lead to a greater understanding of the requirements for
and characteristics of metacognitive tutoring systems.
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