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CASE: A Configurable Argumentation 
Support Engine 

Oliver Scheuer and Bruce M. McLaren 

Abstract—One of the main challenges in tapping the full potential of modern educational software is to devise mechanisms to 
automatically analyze and adaptively support students' problem solving and learning. A number of such approaches have been 
developed to teach argumentation skills in domains as diverse as science, the Law, and ethics. Yet, imbuing educational 
software with effective intelligent tutoring functions requires considerable time and effort. We present a highly configurable 
software framework, CASE ("Configurable Argumentation Support Engine"), designed to reduce effort and development costs 
considerably when building tutorial agents for graphical argumentation learning systems. CASE detects pedagogically relevant 
patterns in argument diagrams and provides feedback and hints in response. A wide variety of patterns are supported, including 
ones sensitive to students’ understanding of the domain, problem-solving processes, and collaboration processes. Teachers 
and researchers can configure the behavior of tutorial agents on three levels: patterns, tutorial actions, and tutorial strategies. 
The paper discusses design concerns, the architecture, and the configuration mechanisms of CASE. As a proof of concept, four 
showcases are presented each showing different aspects of CASE and thus demonstrating the flexibility and breadth of 
applicability of the CASE approach in supporting single-user and collaborative scenarios across different argumentation 
domains. 

Index Terms—N.3.II Collaborative Learning Tools, N.4.I Intelligent Tutoring Systems, N.5.V Authoring tools 

—————————— u ——————————

1 INTRODUCTION 
Argumentation skills are vitally important in many re-
spects but their teaching is not well established in our 
educational system [1]. One method employed in teach-
ing and learning well-founded argumentation skills is 
argument diagramming [2]. Argument diagrams are based 
on a decomposition of arguments into their constituent 
elements (e.g., claims, statement, evidence) and relations 
(e.g., a claim is supported / opposed by a statement, a 
piece of evidence provides backing for a statement), rep-
resented in the form of node-and-link graphs. Students 
can acquire argumentation skills by creating or inspecting 
such diagrams, individually as well as in groups. The 
argument-diagramming paradigm has been adopted in a 
wide range of computer-based argumentation systems, in 
domains as diverse as the Law, science, and ethics [3], [4]. 
The computerization of the process brings important ben-
efits over paper-and-pencil approaches such as: easy 
modification and revision of diagrams; adaptable visuali-
zations, orientation, and navigation support (e.g., resiza-
ble display, overview maps, search functions); digitaliza-
tion and persistent storage of created diagrams; remote 
collaboration and sharing of diagrams; and automated, 
system-generated support for students and teachers to 
guide the process and evaluate the result, which is the 
focus of this paper.  

We present a software component, called CASE ("Con-
figurable Argumentation Support Engine"), which sup-

ports the definition of tutorial agents to be deployed to 
argumentation systems. The tutorial agents analyze stu-
dent activities and generated artifacts and provide hints 
and feedback in support of argumentation learning activi-
ties. CASE has been designed for usage in a wide variety 
of argumentation domains and learning scenarios. There-
fore, a special focus has been placed on flexible configura-
tion mechanisms that allow support to be tailored to spe-
cific conditions and pedagogical approaches. CASE has 
the potential to considerably reduce efforts in the devel-
opment of adaptive support mechanisms by providing a 
reusable and easily extended framework. CASE works in 
tandem with the LASAD argumentation system, which 
itself is highly configurable across domains and settings 
[5].  

2 BACKGROUND  
Although CASE can be used to support individual stu-
dent learning activities, its real focus is on analyzing and 
supporting collaborative learning arrangements. An early 
comprehensive overview of Computer-Supported Col-
laborative Learning (CSCL) systems is provided in [6]. 
Systems are classified into one of three categories depend-
ing on the "locus of processing" (student / teacher versus 
system): Mirroring tools support students or teachers by 
collecting, aggregating, and presenting interaction data 
faithfully, e.g., in a visual display, yet without hinting at 
how a good or ideal mode of collaboration would look 
like. The mirrored data aims at raising students' or teach-
ers' awareness; interpretation and use of the data is left to 
the student or teacher. Metacognitive tools provide, in ad-
dition, a normative model of ideal or desired collabora-
tion. The model serves as a point of reference for inter-
preting and assessing the quality of interactions. Yet, the 
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diagnostic task itself remains under the control of stu-
dents and teachers rather than the system. Finally, guiding 
systems also diagnose collaboration problems and suggest 
remedial actions. That is, the locus of processing is shifted 
in large parts from the users to the system. CASE is aimed 
at supporting precisely such guiding systems.  

Under the rubric of Adaptive and Intelligent Systems for 
Collaborative Learning (AICLS), a recent review of such 
guiding systems for CSCL is given in [7]. According to 
their scheme, systems can be categorized (among other 
dimensions) according to the target of intervention 
(group formation, domain-specific support, peer-
interaction support), modeled aspects (user/group, do-
main, activity), and modeling techniques (ranging from 
AI techniques, such as Bayesian Networks, to Non-AI 
techniques, such as user-defined preferences). CASE sup-
ports the development of systems that provide domain-
specific and peer-interaction support, based on domain 
and user activity models, realized through rule-based 
pattern matching techniques. If needed, external analysis 
modules of any kind (e.g., machine learned classifiers) 
can be integrated with CASE through a well-defined ex-
tension API. 

Automated analysis and feedback techniques to sup-
port argumentation learning are reviewed in [4]. Follow-
ing [8], a distinction is made between argument modeling 
systems, which support the analysis and structural repre-
sentation of arguments, and discussion-oriented systems, 
which provide a medium for argumentative exchange 
between discussants. While discussion-oriented systems 
often aim at a broad set of communication and collabora-
tion skills, such as balanced participation, topic focus, and 
leadership, argument modeling systems focus on the log-
ic of arguments and domain-specific argument structures. 
Accordingly, the two system classes employ different 
analysis approaches. 

The following analysis approaches are used in argu-
ment modeling systems: (1) Syntactic analyses check 
whether the created argument representation complies 
with a set of given syntactic constraints (e.g., data sup-
ports hypotheses and not vice versa). (2) Problem-specific 
analyses check whether the created argument representa-
tion adequately models a given problem case (e.g., a tran-
script of an existing argument). (3) Simulations of reasoning 
/ decision-making processes determine whether a claim is 
believable / acceptable based on the created argument 
representation. (4) Assessments of content quality determine 
the quality of the textual content of individual argument 
components. (5) Classifications of the current modeling phase 
determine whether the student is, for instance, in an ori-
entation, modeling, or reflection phase (i.e., problem solv-
ing is conceived of as a multi-phase process).  

The following analysis approaches are used in discus-
sion-oriented systems: (1) Analyses of process characteristics 
identify the function of discussion moves and speaker 
intentions, for instance, counterarguments and question-
answer interactions in dialogues. (2) Analyses of discussion 
topics identify the current topic of a discussion. (3) Anal-
yses of interaction problems identify, for instance, unan-
swered questions and failed attempts to share knowledge. 

(4) Assessments of collaboration quality of longer sequences of 
time aggregate and summarize students' behaviors over 
time, for instance, the level of group responsiveness and 
agreement. (5) Classifications of the current discussion phase 
determine whether the group is, for instance, in a con-
frontation, opening, argumentation, or conclusion phase 
(i.e., a discussion is conceived of as a process that unfolds 
into multiple phases).  

Support mechanisms in these systems are classified ac-
cording to the following dimensions: (1) feedback mode 
(e.g., text, highlighting, meters), (2) feedback content (e.g., 
self-reflection prompts versus explicit directives), (3) feed-
back control (student-driven, moderator-driven, system-
driven), (4) feedback timing (on-demand, immediate, sum-
mative), and (5) feedback selection and priority (e.g., select / 
prefer messages that refer to recent events). 

CASE can principally support all of the previous men-
tioned analysis approaches, either through CASE's rule-
based pattern matching mechanism or through connected 
external analysis modules. Examples are discussed in sec-
tion 4. With respect to support mechanisms, CASE allows 
the configuration of textual messages and highlighting of 
diagram elements. Feedback is provided on-request; a 
configuration option for proactive, system-triggered 
feedback is currently under development. The configura-
tion of feedback selection and prioritization strategies is 
supported as well. 

3 LASAD ARGUMENTATION SYSTEM 
CASE has been developed in context of the LASAD pro-
ject ("Learning to Argue – Generalized Support Across 
Domains"), which aims at developing a software frame-
work and methodology to build argumentation-learning 
systems for a range of domains. Most past argumentation 
systems have been designed with specific domains and 
learning scenarios in mind, resulting in systems that can-
not be ported to different application settings. Yet, on a 
conceptual level, these systems share many features in 
terms of the user interface and underlying functionality. 
In principle, it should be possible to develop a more gen-
eral framework that can be used as a basis for building 
specific argumentation systems in a more simplified fash-
ion, based on well-defined configuration and extension 
mechanisms. Within the LASAD project, this is precisely 
our objective and what has been developed. The generali-
ty of LASAD has been shown through its use in a wide 
variety of differently targeted argumentation-learning 
applications and empirical studies (e.g., [9], [10]). 

The LASAD system [5] is based on the argument-
diagramming paradigm, an approach that has gained 
considerable popularity during the last two decades for 
reasons described in the introductory section. Fig. 1 
shows a screenshot of the user interface. In this instance, 
an Intelligent Tutoring System for legal argumentation, 
LARGO [11], has been implemented using the LASAD 
framework. In LARGO, students analyze a given tran-
script of a U. S. Supreme Court oral argument (Fig. 1, left 
panel) by creating a diagrammatic representation of it 
(Fig. 1, right panel). When students are stuck they can 
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request hints, which will be provided in the form of a text 
message and highlighting of the portion of the diagram 
the message refers to (Fig. 1, message window on top of 
diagramming area). LARGO will be discussed in greater 
detail in section 4.1. 

 Many aspects of the LASAD user interface can be con-
figured through XML or an authoring tool, which facili-
tates the process considerably, especially for novice users. 
The type and makeup of boxes and links can be set up. 
For instance, the example in Fig. 1 uses "Test" and "Hypo-
thetical" box types. "Test" boxes comprise a number of 
text fields such as "IF," "AND," "EVEN THOUGH," and 
"THEN," some of which are predefined, while others can 
be added and removed dynamically by the user. Besides 
text fields, other widget types can be used, such as 
dropdown menus, rating elements, and radio buttons. 
The diagramming area can be enhanced with other tools 
and displays. In Fig. 1, a transcript panel has been added. 
Other options include displaying the list of active users, 
adding a chat tool, possibly enhanced with "sentence 
openers" [12], or adding tutorial agents that support stu-
dents while creating diagrams. 

4 CASE APPLICATIONS 
To illustrate the generality and breadth of applicability of 
the CASE framework, the main objective and driving 
force in the design of the system, we now discuss four 
CASE applications (LARGO, Science-Intro, Metafora, and 
ARGUNAUT). These applications support argumenta-
tion-learning activities in different domains (the Law, 
science, group deliberation, and ethical discussion), focus 
on different argumentation facets (analysis, planning, and 
discourse), and use different features of the CASE frame-
work (structural patterns, process-based patterns, and 
integration of external analysis modules). 

In LARGO, students analyze and structurally represent 
legal argumentation processes using argument diagrams. 

In Science-Intro, students use diagrams as an outlining 
tool to prepare the writing of research reports in the do-
main of psychology. Both applications are primarily de-
signed for single-user activities. Adaptive support is pro-
vided on request and based on structural patterns defined 
by domain experts. In Metafora, students jointly work in 
an inquiry environment for mathematics and science. 
They use LASAD diagrams to discuss, in a structured 
way, findings obtained in microworld simulations, with 
the aim of arriving at a joint, agreed solution. In contrast 
to LARGO and Science-Intro, in which the CASE frame-
work is used to detect domain-specific structures in dia-
grams, the focus is on interaction patterns to support stu-
dents in "learning to learn together." ARGUNAUT also 
focuses on interaction patterns but uses a different analyt-
ical approach. Rather than relying on expert-defined pat-
terns, machine-learned classifiers are utilized to catego-
rize qualitative aspects of e-Discussions about controver-
sial ethical dilemmas. 

4.1 Legal Argumentation: LARGO 
The Intelligent Tutoring System LARGO [11] was devel-
oped to teach beginning law students a particular model 
of legal argumentation based on hypothetical reasoning 
[13]. The model semi-formally describes argumentative 
processes as they can be observed in U. S. Supreme Court 
oral trials. According to this model, lawyers propose 
some test (i.e., if-then rules) how to decide certain legal 
situations and argue that this test also applies to the case 
under discussion. Proposed tests are based on an inter-
pretation of legal statutes and precedent cases and are 
chosen in a way that leads to a favorable outcome for the 
proposing party. To challenge a proposed test, the oppos-
ing party may cite hypothetical situations that put the 
validity of the test into question (i.e., the test would lead 
to some undesirable result). The first party might respond 
to such challenges by withdrawing the proposed test or 
modifying it in some reasonable way. Typical moves in-

Fig. 1: LASAD user interface 
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clude analogizing or distinguishing between the current 
facts and hypothetical situations. 

To practice this model of legal argumentation students 
are tasked with analyzing a given transcript of a U. S. 
Supreme Court oral argument within the LARGO system. 
They "translate" the given textual argument representa-
tion into an argument diagram based on the model of 
hypothetical argument described above. The argument 
ontology reifies important concepts of that model using 
"Facts," "Test," and "Hypothetical" boxes and "leads-to," 
"modified-to," "analogized-with," and "distinguished-
from" links. While modeling arguments in LARGO, stu-
dents can use a "Hint" button in the user interface. The 
system is capable of identifying more than 40 different 
patterns in the argument diagrams, which are used as a 
basis for hint generation. 

The current LARGO version has been re-implemented 
based on the LASAD framework to be deployable over 
the web and to benefit from other LASAD assets (look-
and-feel, maintainability, configurability). The LARGO 
help system, including all analysis rules, has been ported 
to the CASE framework. A screenshot is shown in Fig. 1. 
The following three patterns illustrate the kind of patterns 
used in LASAD:  

(1) a "Test" node with some content in the "if" text field 
but none in the "then" text field: That is, the test has not 
been completely specified. If an instance of this pattern 
has been detected a feedback message can be triggered 
that prompts the student to enter some text into the "then" 
text field.  

(2) a "Hypothetical" node that is distinguished from or 
analogized with a "Facts" node, but is not related to any 
"Test" node: Since hypotheticals are typically used to chal-
lenge proposed tests, the structure is incomplete, so a 
student could be prompted to connect the "Hypothetical" 
node to some "Test" node.  

(3) a circular structure of nodes, in which each node 
"leads-to" or is "modified-to" the next node: The semantics 
of a "leads-to" or "modified-to" transition often involve a 
temporal progression, which is counteracted by the pat-
tern's circularity. However, if interpreted as logical con-
sequence, a circular structure can make sense. This pat-
tern can be used to prompt students to rethink their dia-
gram model (temporal or logical relation?) to identify 
possible mistakes.  

Other rules not discussed here make use of expert an-
notations of the given transcripts, which mark passages in 
the transcript as "test," "facts," or "hypothetical." Since 
students create explicit references from diagram elements 
to transcript passages (through a specific GUI widget), it 
is possible to check whether they have misclassified cer-
tain passages (e.g., a student creates a "Test" box to model 
a transcript passage annotated as "Hypothetical"). 

4.2 Scientific Argumentation: Science-Intro 
The ArgumentPeer project ("Teaching Writing and Argu-
mentation with AI-Supported Diagramming and Peer 
Review") [14] aims at developing an Intelligent Tutoring 
System to teach students how to write argumentative 
texts. One component of the system is the LASAD dia-

gramming environment, which students use to outline 
arguments in a diagram in advance, as preparation for the 
actual writing of the text. 

Besides the legal domain, the project tackles the writ-
ing of scientific arguments in psychology. The students' 
task is to write a report, which motivates and defines a 
new research study based on a review of relevant litera-
ture and reports on the study results. The text should in-
dicate hypotheses and claims that the current study is 
based upon and cite previous literature to either support 
or oppose those claims and hypotheses. The current study 
should be compared to previous studies to point out 
analogies and distinctions. Citations that lead to contra-
dictory results (e.g., citation x supports a claim while cita-
tion y opposes the same claim) should be compared to 
one another in terms of similarities and differences. 

To prepare the writing of such research reports stu-
dents use LASAD to outline the basic structure of the text. 
Equipped with a selection of relevant background litera-
ture provided as part of the assignment, students create a 
LASAD diagram using an ontology specifically designed 
to support the outlining of scientific arguments, including 
boxes such as "current-study," "claim," "hypothesis," and 
"citation" and links such as "support," "opposition," and 
"comparison." Similar to LARGO, a "Hint" button is of-
fered in the user interface. 

The ArgumentPeer project includes a help system used 
to identify patterns in student activity and provide feed-
back accordingly. Since the ArgumentPeer project only 
recently started, the help system is still under develop-
ment. The three patterns below have been defined and 
implemented within the CASE framework in a first de-
sign iteration, along with other preliminary patterns. The 
project team is currently investigating a first version of 
the help system in pilot tests. 

(1) a node of arbitrary type with an empty text field: 
This pattern is a generalization of the first LARGO pat-
tern discussed in section 4.1. It can be used to check 
whether students filled in every text field in their argu-
ment diagrams and, if not, prompt them to do so. 

(2) a "Hypothesis" node with fewer supporting than 
opposing inbound links: In general, it is good if students 
also consider evidence that contradicts a hypothesis ra-
ther than only searching for confirmatory evidence, a 
well-documented psychological phenomenon ("confirma-
tion bias"). However, sometimes students also neglect 
supporting evidence, or might neither pay attention to 
supporting nor to opposing evidence. This pattern identi-
fies such situations in order to prompt students to search 
for positive evidence. Confirmation bias, i.e., neglecting 
contradictory evidence, could be detected analogously. 

(3) unconnected node clusters in the diagram ("argu-
mentation islands"): Since the goal of the outlined argu-
mentative text should be to present a current research 
study in a coherent way, all discussed hypotheses, cita-
tions, claims, etc. should be related to one another in 
some way, if not directly, then at least indirectly through 
some other elements. In the end, all components must 
integrate smoothly into one coherent line of argumenta-
tion in support of the overall aim of the research report. 
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This pattern is also potentially useful in other applications 
that require a well-integrated representation of 
knowledge, such as pre-writing activities in other do-
mains, or group deliberation and discussion, which will 
be discussed next.  

4.3 Group Deliberation and Discussion: Metafora 
The Metafora project aims at developing a pedagogy and 
technical platform to support students in "learning to 
learn together" (L2L2; [15]). In the context of Metafora, 
complex, challenge-based learning scenarios, involving a 
variety of learning tools and stretching over a timespan of 
two to three weeks, have been researched and developed. 
The project tackles the domains of science and mathemat-
ics and targets students between ages twelve and 16. 
While the effective teaching of conceptual domain 
knowledge is certainly one goal of the project, the empha-
sis is put on L2L2 skills, such as distributed leadership, 
mutual engagement, help seeking and giving, and reflec-
tion of group learning processes. A Metafora challenge is 
defined in terms of an ill-defined problem that requires 
students to gain a mutual understanding of the given 
challenge, jointly plan and coordinate activities to address 
this challenge, explore ideas in simulation environments, 
discuss findings, and draw conclusions. Student activities 
are mediated through the Metafora platform, which inte-
grates and provides access to a number of tools, such as a 
graphical planning tool to jointly outline and monitor 
learning activities, microworld simulations to experiment 
with mathematical and scientific models, and discussion 
tools, including LASAD, to coordinate collaboration ef-
forts and reflect on finding.  

Through LASAD, students can share and discuss mod-
els they have individually created in a microworld. Stu-
dents "publish" their individual models to the group 
through a "My-Microworld" box, which displays a 
thumbnail image from the created model and grants fel-
low students access to this model in the original tool 
through a hyperlink. Students can then compare and dis-
cuss their models to decide whether they are "correct" or 
helpful to solve the given challenge, whether two models 
are equivalent to one another or not, or in what respects 
two models differ from one another. LASAD also serves 
as a forum for help seeking and giving. When students 
are facing problems in a microworld, they can seek help 
through a "Help Request" box, which displays a thumb-
nail image of the model the student is struggling with, 
together with a hyperlink to visit the model in the origi-
nal tool. Help requests can be answered through a "Mi-
croworld Action" box, in which the help-giver can sug-
gest, via two dropdown menus, specific microworld ac-
tions to address the problem. 

In Metafora, CASE has been repurposed as a middle-
ware to integrate LASAD with the Metafora platform. A 
CASE agent has been developed that exchanges messages 
between LASAD and Metafora. One of the next steps will 
be to use CASE for its original purpose, which is identify-
ing patterns in LASAD diagramming in the context of 
Metafora. 

The following three Metafora patterns are identified to 

support important aspects of student collaboration. They 
have been defined in CASE but not yet fed into the Meta-
fora platform, since the concrete design of remedial tuto-
rial actions and strategies is still under discussion: 

(1) a "Help-Request" box not older than 10 minutes, 
unattended for more than 3 minutes (3 minutes passed by 
and no other box has been connected to the help request): 
The patterns indicates a situation, in which a student re-
quests help regarding a problem encountered in a mi-
croworld. Yet, the help request went unnoticed, or is de-
liberately ignored, since three minutes have passed with-
out a response. Because the help request is still recent – it 
has been published within the last ten minutes – it might 
be worthwhile to draw the attention of other students to 
this request in order to elicit help. 

(2) one student has not contributed at all (no boxes) 
while the rest of the group has already contributed con-
siderably (at least five boxes each other student): This is a 
heuristic approximation to one of the central problems in 
collaborative learning, imbalanced participation among 
group members. There are several possible reasons for a 
lack of participation [16]: Some students may know that 
others, who are interested in a good group result, will 
compensate for their lack of participation (free-rider effect; 
[17]). A possible consequence is that these others, who 
were mainly responsible for the group progress up to this 
point, are becoming increasingly upset and reduce or stop 
their participation as well (sucker effect; [17]). Overall, 
productive activities in the group may come to a halt. 
Also, low performers may refrain from participation be-
cause they feel less competent and thus miss opportuni-
ties to practice and develop, a vicious cycle (Matthew ef-
fect). The pattern could be further extended to focus on a 
recent time window. 

(3) a student did not interrelate any of her own contri-
butions with those of fellow students, even though she 
had an opportunity to do so (own and others' contribu-
tions exist in the diagram): This pattern suggests a lack of 
mutual engagement and transactivity (i.e., reasoning on 
the reasoning of others [18]), which are important prereq-
uisites for collaborative meaning making. An appropriate 
tutorial intervention may be to prompt students to check 
how their contributions (e.g., their microworld model) 
relate to contributions of others (e.g., microworld model 
of fellow students). 

4.4 Ethical Argumentation: ARGUNAUT 
In the EU-funded ARGUNAUT project, an e-Moderation 
environment for graphical e-Discussions was developed 
[19]. The project tackled classroom-based scenarios in 
which one teacher-moderator monitors and supports 
multiple computer-mediated discussions (e.g., six groups 
with four or five students each). In graphical discussions 
students create and interrelate contributions (boxes) in a 
shared workspace. Typically, the teacher prepares the 
workspace with an initial box that presents the discussion 
topic, usually in the form of some controversial or ethical 
question (e.g., "Do you think it is ethical to perform exper-
iments on animals?"). Students choose, depending on the 
kind of discussion move they want to make, a specific box 
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type, such as "claim," "argument," "question," or "explana-
tion" and enter some text into this box. They connect box-
es through graphical links to indicate that contributions 
"relate-to," "support," or "oppose" one another. Several 
LASAD-like graphical discussion tools are supported, 
including Digalo [20] and FreeStyler [21]. 

The process of monitoring and supporting multiple 
synchronous discussions in parallel is inherently difficult. 
The teacher-moderator must track and maintain a mental 
model of multiple discussion threads at a time. Important 
events in different discussions may occur in rapid succes-
sion, sometimes even in parallel. While monitoring or 
supporting one discussion thread important events in 
other discussions might pass unnoticed. The ARGUN-
AUT project investigated how the moderation process 
could be facilitated by means of a computer-based "Mod-
erator's Interface," which provides awareness indicators 
and alarms to highlight noteworthy situations, and feed-
back tools to intervene and remediate identified problem.  

From a computational perspective, two different kinds 
of awareness indicators are provided in ARGUNAUT. 
"Shallow" indicators are computed in relatively straight-
forward ways, e.g., through keyword search or descrip-
tive statistics of box and link type usage. "Deep" indica-
tors are more complex to compute but also potentially 
more meaningful to teachers. They are based on classifi-
ers built using Artificial Intelligence techniques, in partic-
ular, machine learning, case-based reasoning, and natural 
language processing. The classifiers analyze structural, 
temporal, and textual data to categorize e-Discussion con-
tents on three levels of granularity: single boxes, box 
pairs, and arbitrary clusters of boxes. Examples are dis-
cussed below. 

Shallow and deep indicators are analyzed through dif-
ferent components of the ARGUNAUT architecture. The 
classifiers for deep indicators have been incorporated into 
an independent component (Deep Loop), accessible 
through a web service interface. As a proof-of-concept, 
the Deep Loop classifiers have been integrated into the 
CASE framework and can be applied in a LASAD setup 
that emulates the ARGUNAUT e-Discussion environ-
ment. Patterns in e-Discussions that can be identified by 
means of Deep Loop classifiers include: 

(1) off-topic contributions: A few off-topic contribu-
tions may be acceptable but if an e-Discussion goes 
astray, with a considerable number of contributions not 
addressing the topic at hand, a human or artificial mod-
erator might want to intervene. 

(2) question-answer pairs: Questions serve important 
functions in discussions. For instance, they can challenge 
ideas, disclosing weaknesses and misconceptions of oth-
ers, thus triggering processes of reflection and conceptual 
change. Answering questions is important as well, not 
only to satisfy a specific information need but also to 
maintain a healthy working atmosphere in the group. In 
sum, a fair amount of question-answer pairs indicates 
well-functioning group dynamics. 

(3) chains-of-opposition: The pattern consists of an ini-
tial claim, followed by an objection, followed by a rebuttal 
of the objection, followed by a rebuttal of the rebuttal, and 

so forth. The sequence has at least a length of three. A 
chain-of-opposition indicates that student "negotiate" the 
meaning of ideas and arguments. It "deepens the space of 
debate" [22] through successive scrutiny and refinement 
of proposed ideas and arguments, thus representing ex-
actly the kind of interaction valued in collaborative ar-
gumentation. Similar to "question-answer," "chain-of-
opposition" is an indicator of good discussion quality. 

Machine-learned classifiers that have been induced 
from a corpus of annotated examples can detect the first 
two patterns. The third pattern can be detected by means 
of a novel case-based graph matching technique, devel-
oped within the ARGUNAUT project, which searches 
clusters that are similar to prototypical examples and 
ranks these clusters according to their similarity scores. 
Other patterns not discussed here include "building-on" 
and "new-perspective," which is related to creative rea-
soning [23]. 

5. CASE SYSTEM ARCHITECTURE 
In this section, we discuss the CASE system architecture, 
in particular, software design concerns (section 5.2), com-
ponents and their interactions (section 5.3), and 
knowledge representation and inference processes within 
CASE (section 5.4). We start with the overall LASAD ar-
chitecture, which CASE is one component of (section 5.1). 

Fig. 2. LASAD architecture. 

5.1 Overall LASAD Architecture 
Fig. 2 shows the overall LASAD architecture. The 
LASAD-Server uses a database to maintain the history and 
state of all LASAD sessions (a session essentially corre-
sponds to a LASAD diagram) and distributes messages 
between connected LASAD clients (of which two sorts 
exist: End-User-Clients and CASE) in order to synchronize 
their states. For instance, when a user creates a new box, 
the user interfaces of other connected End-User-Clients 
must be updated as well. End-User-Clients are JavaScript-
based applications, built with the Google Web Toolkit 
(GWT) and executed in a standard web browser. The 
LASAD-Server cannot directly speak to the JavaScript-
based client-side; an intermediary GWT-Servlet mediates 
the communication between LASAD-Server and End-User-
Clients. CASE is just another client of the LASAD-Server 
that uses the same infrastructure and interfaces as End-
User-Clients. Yet, since CASE is implemented in Java ra-
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ther than JavaScript, it can directly talk to the LASAD-
Server without the indirection of the GWT-Servlet. 

To illustrate how LASAD operates let's have a look at a 
processing iteration, starting with a user creating a box in 
the LASAD user interface. The End-User-Client then sends 
a "create box" message though the GWT-Servlet to the 
LASAD-Server. The LASAD-Server updates its database 
and forwards the message to all connected clients. End-
User-Clients display the new box on the screen; CASE up-
dates its internal data representation, searches for mean-
ingful patterns (examples are discussed in section 4), and 
possibly generates feedback messages. These feedback 
messages are sent through LASAD-Server and GWT-
Servlet to one or multiple End-User-Clients, depending on 
the specific CASE configuration, to be displayed on the 
screen. While CASE provides the textual content of feed-
back messages and control flags, e.g., to specify whether 
diagram elements should be visually highlighted or not, 
the actual realization of the feedback presentation is done 
by the End-User-Clients. 

5.2 Software Design Concerns 
We turn now to the internals of CASE. The design of 
CASE addresses a number of key software system attrib-
utes, in particular, portability, maintainability, extensibil-
ity, efficiency, stability, availability of service, and config-
urability. In the following we describe how these con-
cerns have been realized in the CASE architecture. 

Portability 
CASE is implemented in Java, which has been specifically 
designed for portability. Java binary code is executed in 
Java Virtual Machines (JVM), which encapsulate depend-
encies to the operating system, making platform specifics 
largely transparent to the application program. JVMs are 
available for virtually any platform, so CASE can be easi-
ly deployed in nearly any IT environment. A recompila-
tion of binary code for the specific platform is not needed. 

Maintainability and Extensibility  
CASE has been designed in a modular fashion. The sys-
tem unfolds into several components, each having well-
defined responsibilities and interfaces (for details, see 
section 5.3). A loose coupling is achieved through event-
based communication. Commands and status updates are 
encapsulated in message objects that are exchanged be-
tween components and processed asynchronously. The 
modular design makes it easy to adapt the system to a 
different environment. For instance, the communication 
to the LASAD-Server is encapsulated in a DataService 
component. If the communication protocol or message 
format changes, only the DataService component will be 
affected. The modular design also contributes to the at-
tainment of an open architecture that can be easily ex-
tended with new analysis and feedback functionality. 
New functionality is encapsulated in software agents, 
which can be easily hooked up with the CASE frame-
work. The CASE framework provides the basic infrastruc-
ture to handle generic tasks, such as the provision of 
events from and to agents, so developers can focus on the 
analysis and feedback logic when implementing new 

agents. An example that showcases the integration of al-
ready existing, external analysis functionalities is the 
ARGUNAUT Deep Loop, discussed in section 4.4. Deep 
Loop has been integrated into CASE using the remote 
proxy design pattern [24]: a DeepLoopAgent has been im-
plemented to provide a CASE-compliant interface to the 
remote Deep Loop web service; the agent essentially 
serves as an adapter, making data formats and interfaces 
compliant with one another. 

Efficiency 
The most critical part in terms of runtime performance is 
the computational analysis of argument diagrams. CASE 
uses the Jess Rule Engine to continuously check for pat-
terns in diagrams. Jess has been shown to be highly effi-
cient. Used on an outdated machine (800 MHz Pentium 
III, Sun HotSpot JVM) Jess could fire up to 80,000 rules, 
match up to 600,000 patterns, and add up to 100,000 facts 
to the Jess knowledge base within one second [25]. This 
performance appears to be sufficient to support relevant 
use cases, such as class-based scenarios and research 
studies. A second performance-related aspect is the pos-
sibility to distribute system components on multiple ma-
chines to overcome the performance limitations of a sin-
gle physical unit. First, CASE can be physically separated 
from other LASAD components (e.g., the LASAD-Server). 
Second, if CASE makes use of additional, computational-
ly demanding analysis modules (e.g., involving natural 
language processing and machine learned models) these 
modules can be encapsulated in independent services, 
deployed on other server machines, and integrated 
through the remote proxy design pattern (similar to the 
above described DeepLoopAgent). 

Stability and Availability of Service 
One CASE installation might support many learning ses-
sions. To avoid the situation where runtime errors or 
time-consuming analyses in one session affect other ses-
sions, the processing of each session is isolated in an in-
dependent set of threads. Since CASE is only loosely cou-
pled with the LASAD-Server, an outage of CASE for 
whatever reason would not affect the functioning of the 
main LASAD service. 

Generality and Configurability 
A key objective in the design of CASE was to achieve a 
high level of generality to support a wide range of learn-
ing scenarios and domains. Besides extensibility, which 
has been discussed above, the provision of configuration 
mechanisms that allow tailoring support to the specific 
constraints and requirements of a given application sce-
nario is another important cornerstone in achieving gen-
erality. CASE allows configuring FeedbackAgents in terms 
of patterns they can identify, tutorial actions they can take 
in response to patterns, and tutorial strategies that govern 
their overall behavior. Configuration settings can be spec-
ified in XML files or through an API that allows changes 
to the configuration during runtime. A currently devel-
oped graphical configuration front-end, which allows 
teachers and researchers to manage and author feedback 
behavior in a simplified fashion, makes use of this API. 
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Section 6 describes the available configuration options in 
greater detail. 

Fig. 3. CASE components and interactions. 

5.3 System Components and Interactions 
Based on Fig. 3, we discuss now the different CASE com-
ponents (section 5.3.1) and their interactions (section 
5.3.2). For the sake of brevity we will not cover the CASE 
configuration sub-system, which manages configuration 
settings and allows changing them at runtime. 

5.3.1 Components 
The DataService encapsulates all communication with 
the LASAD-Server, translating back and forth between the 
message format used by the LASAD-Server and the one 
used internally in the CASE framework. Messages in-
clude notifications (e.g., a diagram has been modified) 
and commands (e.g., display a given feedback message to 
a given user). 

The SessionManager keeps a record of all sessions 
(i.e., diagrams) that exist on the LASAD-Server and dis-
tributes incoming messages to the relevant Session. 

Sessions comprise all information that is associated 
with a specific LASAD diagram, including (1) a Session-
Configuration, which represents invariable aspects such as 
the used ontology (e.g., available box and link types) and 
available tools (e.g., chat tool), (2) a SessionModel, which 
represents fluent aspects such as currently active users 
and the current state of the diagram, and (3) Ses-
sionAgents, which are processing units employed to ana-
lyze and support session activities. 

The SessionModel serves as a central data repository 
for SessionAgents to access and exchange session-related 
information. It uses the Jess rule engine to maintain and 
continuously update a representation of the current ses-
sion state (e.g., active users; boxes and links in the current 
version of the diagram) and of analysis results, i.e., pat-
terns and interpretations derived from the current session 
state. Analysis results can be produced in three ways: (1) 
Declarative Jess rules, which operate directly on the Jess 
fact base, identify patterns of interest (e.g., a circular ar-
gument in the diagram). (2) An AggregationService, which 
keeps track of the number of boxes, links and patterns 
that follow given specifications, detects that a predefined 

condition is fulfilled (e.g., more than x boxes of type t cre-
ated by user u within the last y minutes). (3) SessionAgents 
conduct customized analyses (by e.g., applying machine 
learned classifiers) that lead to the detection of meaning-
ful patterns. 

SessionAgents are processing units that perform spe-
cific tasks related to the analysis of sessions and / or the 
generation of feedback. They interact with the Ses-
sionModel by adding or removing analysis rules (at service 
startup) and analysis results (during operation). Vice ver-
sa, the SessionModel informs SessionAgents about new or 
invalidated analysis results. The SessionAgent interface 
provides an extension point in the CASE framework to 
add new analysis and feedback capabilities. Already ex-
isting agents include a configurable FeedbackAgent (sec-
tion 6), and the DeepLoopAgent, which integrates AI-based 
classifiers to analyze e-Discussions (section 4.4). 

5.3.2 Interactions 
We illustrate now a typical processing iteration in CASE, 
which is triggered by a student action in the end-user 
environment (EUE; the graphical LASAD user interface), 
such as creating a link, entering text into a box, sending a 
chat message, or requesting feedback.  

The user action is encapsulated in an EUE-Event, sent 
through the LASAD-Server to the DataService component 
of the CASE framework, and there converted to the data 
format internally used in the CASE framework. From 
there, the EUE-Event is transmitted, via the SessionManag-
er and the responsible Session, to the SessionModel.  

The SessionModel distributes the EUE-Event to all lis-
tening analysis modules, including (1) the JessRuleEngine, 
which updates its internal session representation (Jess 
Fact Base) and performs pattern-matching operations ac-
cording to predefined rules (Jess Pattern Matcher), (b) the 
AggregationService, which updates its internal tallies and 
checks whether predefined conditions on these tallies are 
fulfilled, and (c) SessionAgents, which update their inter-
nal models and perform their proprietary analyses, ac-
cording to their specific implementation. The processing 
within the analysis modules may lead to the detection of 
salient patterns, such as structures in argument diagrams 
(e.g., a circular argument; two boxes connected by a link 
of the "wrong" type), conditions on tally counts (e.g., no 
box of type t in diagram), or text classifications (e.g., a box 
is categorized as an off-topic contribution based on the 
contained text). Detected patterns are encoded as Analy-
sisResults, packaged in Analysis-Events and re-distributed 
between the analysis modules for a second processing 
cycle. For instance, the AggregationService may check 
whether the number of patterns of a given type exceeds a 
threshold. The JessRuleEngine may check for logical com-
binations of patterns. The processing may involve further 
cycles. 

One specific SessionAgent instance, the FeedbackAgent, 
responds to the presence of predefined AnalysisResults by 
generating Feedback-Events, which specify feedback to be 
displayed in the LASAD user interface. Generated Feed-
back-Events are delivered, through the DataService and 
LASAD-Server, to all relevant End-User-Clients. 
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5.4 Knowledge Representation and Inference 
A centerpiece in the CASE architecture is the SessionMod-
el, which employs the JessRuleEngine to model the current 
state of LASAD sessions including AnalysisResults in-
ferred from the current session state. The SessionModel 
provides a central place in the CASE infrastructure where 
processing components, such as the AggregrationService 
and SessionAgents, can retrieve session-related infor-
mation and exchange their interpretations of the current 
session state. They can utilize the Jess pattern matching 
mechanism, which is based on declarative production 
rules, to identify salient structures and situations in order 
to trigger tutorial support or to facilitate subsequent (me-
ta-level) analyses. 

Fig. 4 depicts the knowledge representation scheme 
used in the Jess fact base (blue shaded areas), conversion 
procedures to translate between Java and Jess-based ob-
ject representations (orange arrows), and inference proce-
dures to derive new knowledge facts from existing ones 
(blue arrows). We now describe the processing of an in-
coming EUE-Event (i.e., a user action) within the 
JessRuleEngine: from its insertion, to the computation of 
derived facts representing the current diagram state, to 
the detection of patterns in the current diagram state, to 
the notification of listening processing modules about 
detected patterns. 

EUE-Events arriving at the SessionModel are translated 
into Jess action facts and added to the fact base. Jess action 
facts structurally correspond to EUE-Events; they repre-
sent crucial information about user actions in the end user 
environment including: an action ID, the action type (e.g., 
"create," "modify," "delete"), the actor, a timestamp, and a 
description of the manipulated object in terms of its ID 
and semantic type (e.g., "hypothesis," "data," "support," 
"oppose"). Depending on whether the manipulated object 
is a box, a link, or a sub-element of a box / link (such as a 

text field or a dropdown menu), three action subtypes 
with additional information are defined: node-actions, link-
actions, and subelement-actions. 

Jess action facts are analyzed through a set of Jess rules 
to reconstruct the current state of the argument diagram 
in terms of its constituent objects (i.e., nodes, links, sub-
elements). Besides state information, Jess object facts hold 
relevant process information, such as the object creator, 
modifiers, and corresponding timestamp information. 
Thus, the chosen knowledge representation format per-
mits the definition of structural patterns (e.g., a node n1 
of type t1 is connected to a node n2 of type t2 through a 
link l of type t3) that are further constrained through pro-
cess-related properties (e.g., node n1 and n2 were created 
by different users; node n1 was created before node n2). 
The incorporation of process-related information enables 
analyses that take into consideration temporal sequence 
(e.g., recent patterns versus old patterns) and patterns of 
group interaction (i.e., how diagram structures emerge 
from a joint effort of a group). 

The current diagram state is analyzed through applica-
tion-specific Jess rules to identify patterns of interest. The 
specific rules are defined as part of the FeedbackAgent con-
figuration (for details, see section 6; for examples, see sec-
tion 4). If a pattern has been identified a corresponding 
analysis-result fact is added to the fact base. Patterns might 
refer to specific sets of objects (object-binary-result), specific 
users (user-binary-result), or the session as a whole (ses-
sion-binary-result). CASE allows the definition of meta-
patterns, that is, patterns defined in terms of other pat-
terns (e.g., logical combinations of patterns). 

Finally, through a two-way conversion procedure be-
tween Jess and Java object representations, external data 
processors, such as the AggregationService and Ses-
sionAgents, read out and write AnalysisResult objects from 
and to the fact base. 

The described data model can be, and has already 

Fig. 4: Knowledge representation and inference processes 
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been, extended with additional data structures to allow 
more complex analyses, for instance, by representing tal-
lies, paths, cycles, or predefined expert models within the 
Jess fact base. Such data structures can be added either 
globally, to extend the entire CASE framework, or locally, 
as part of one SessionAgent and restricted in scope to a 
specific LASAD application. Moreover, the framework 
can be easily extended to represent user activities not re-
lated to argument diagrams, such as chat contributions. 

6. CASE CONFIGURATION MECHANISM 
The behavior of FeedbackAgents is defined on three levels: 
Firstly, patterns describe salient structures or situations in 
a session, which call for tutorial support. Secondly, tutori-
al actions describe the specific reactions of the Feed-
backAgent in response to detected patterns including tex-
tual statements and highlighting of relevant diagram con-
tents. Thirdly, tutorial strategies describe when exactly to 
provide tutorial actions and which tutorial actions to 
choose when multiple ones are possible. For instance, a 
tutorial agent can provide feedback only when a student 
explicitly requests help, or act proactively, checking in 
predefined intervals whether relevant feedback is availa-
ble. It can prefer messages that refer to more recent struc-
tures in the diagram and refrain from sending the same 
message a second time. Table 1 summarizes the specific 
configuration settings of the four previously discussed 

CASE applications. The following subsections describe 
the available configuration options in greater detail. 

6.1 Patterns 
Three different ways of defining patterns are currently 
supported: 

(1) Jess-Patterns can be directly defined using the Jess 
rule language. This option offers the full expressive pow-
er of the Jess production rule system but also requires 
basic knowledge about Jess syntax and knowledge repre-
sentation and understanding of the functioning of rule-
based systems more generally. By modifying existing pro-
totypical patterns it should also be possible for non-
experts to define patterns of limited complexity without 
much effort. 

Table 2 shows an XML element that defines a pattern. 
The pattern element specifies a pattern ID (id) and indi-
cates that the pattern is defined in the Jess rule language 
(type="jess-rule"). In general, the type attribute determines 
how the body of the pattern element is interpreted. Ac-
cordingly, the other pattern types described below specify 
different values for the type attribute. CASE can be easily 
extended to support further pattern types.  

The actual Jess-Pattern definition is enclosed in anoth-
er XML element (jess). The pattern (LHS of the rule) com-
prises a node of type "hypothetical" and a second node of 
type "fact." There is a link of type "general" pointing from 
the "hypothetical" node to the "fact" node. When the pat-

Application Patterns Actions Strategy 
LARGO 
(analysis of 
legal 
argumentation 
transcripts) 

− Count-Patterns focusing on task 
progress (e.g., no relations in 
workspace but at least three nodes; 
no "Test" nodes in workspace) 

− Jess-Patterns focusing on domain 
structures (e.g., a "Hypothetical" 
node isolated from "Test" and "Fact" 
nodes; a "Test" node without text in 
the "Condition" text field) also 
including problem-specific aspects 
represented in an expert model (e.g., 
important text passages not yet 
included in the diagram) 

− Text message 
(parameterized with 
diagram references) 
focusing on problem-
solving support 

− Highlighting of 
diagram elements 

− Feedback-on-Request 
− Delivered to the requestor 
− Prioritize based on current 

problem-solving phase (5 
phases considered) 

− Select top-5 hints 
− Filter out all but one 

message per type 

Science-Intro 
(preparation 
for writing 
argumentative 
texts in science 
classes)  

− Jess-Patterns focusing on domain 
structures (e.g., unconnected node 
clusters ["argumentation islands"]) 

− Text message 
(parameterized with 
diagram references) 
focusing on problem-
solving support 

− Highlighting of 
diagram elements 

− Feedback-on-Request 
− Delivered to the requestor 
− Prioritize based on current 

problem-solving phase (2 
phases considered) 

− Select top-5 hints 
− Filter out all but one 

message per type 
Metafora 
(group 
deliberation 
about science 
and math 
problems) 

− Jess-Patterns focusing on process 
characteristics (e.g., unattended help 
requests) 

− Text message 
(parameterized with 
diagram references) 
focusing on 
collaboration support 

− Highlighting of 
diagram elements 

unattended help requests: 
− Automated-Feedback 
− Delivered to the entire 

group 
− No prioritization 
− Select one message 
− Filter out instance that have 

already been pointed to 
ARGUNAUT 
(argumentation 
about ethical 
controversies) 

− External-Patterns (analyzed by 
machine learned classifiers) focusing 
on process characteristics (e.g., off-
topic contributions; question-answer 
pairs) 

− Highlighting and 
labeling of diagram 
elements to support 
the awareness of 
moderators 
regarding salient 
events 

− Feedback-on-Request 
− Delivered to the requestor 
− No prioritization 
− Select all messages 
− No filters 

Table 1: Configuration settings used in the four example applications.!
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tern on the rule's LHS is matched, the rule's RHS will be 
executed. Here, an object-binary-result fact that holds im-
portant information regarding the detected pattern 
(agent-id, pattern-id, matched objects) is added to the fact 
base.  

Additional pattern filters can be defined (pattern-
filters), for instance, to limit the scope to recent or old pat-
terns, or patterns the user under consideration has con-
tributed to. The example XML snippet in Table 2 does not 
define additional filters. 

 
<pattern	
  id="..."	
  type="jess-­‐rule">	
  
	
  	
  	
  <jess>	
  
	
  	
  	
  	
  	
  (defrule	
  R35	
  
	
  	
  	
  	
  	
  	
  	
  (logical	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  (node	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (id	
  ?hypo_id)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (type	
  "hypothetical"))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  (node	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (id	
  ?fact_id)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (type	
  "fact"))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  (link	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (id	
  ?link_id)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (type	
  "general")	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (source_id	
  ?hypo_id)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (target_id	
  ?fact_id)))	
  
	
  	
  	
  	
  	
  	
  	
  	
  =>	
  
	
  	
  	
  	
  	
  	
  	
  (assert	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  (object-­‐binary-­‐result	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (agent-­‐id	
  "largo-­‐default")	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (type	
  "hypo_facts_relation_general")	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (object-­‐ids	
  ?hypo_id	
  ?fact_id	
  ?link_id))))	
  
	
  	
  	
  </jess>	
  
	
  	
  	
  <pattern-­‐filters	
  />	
  
</pattern>	
  

Table 2: Jess-Rule (simplified for illustration purposes) 
 
 (2) Count-Patterns define conditions on the number of 

boxes, links or other patterns in a session. They can be 
specified directly in XML (not shown here) and are pro-
cessed by the AggregrationService, which adds new analy-
sis-results automatically to the Jess fact base when a coun-
ter condition is fulfilled. A counter pattern consists of a 
counter definition (e.g., "count all links of type t") and a 
counter condition (e.g., "count >= 3"). Counter definition 
options include: (a) count all nodes or links; (b) count 
specific node, link, or pattern types; (c) count only recent 
or old instances; (d) maintain a counter for the entire 
group or for each individual user; and (e) count only in-
stances the user under consideration has created, modi-
fied, or not modified. These options can be combined in a 
variety of ways to specify counter definitions. 

(3) External-Patterns are analyzed by external compo-
nents that connect with CASE over a well-defined API. 
The CASE framework acts as a mere "consumer" of these 
patterns, indifferent to how these patterns are defined or 
computed, so there are also no restrictions in this respect 
(e.g., machine-learned models can be used). 

(4) XML-Patterns are based on a XML language that we 
have developed to reduce the complexity inherent in the 
original Jess rules. We are aiming at a tradeoff between 
expressiveness and ease of use. XML-Patterns are auto-
matically translated into operational Jess code. 

6.2 Tutorial Actions 
Table 3 shows an XML element that defines a tutorial ac-
tion. Analogously to the pattern definition described in 
section 6.1, the type attribute determines how the body of 
the action element is interpreted. That is, CASE can be 
easily extended with other types of tutorial actions that 
support different parameterization options. Feedback 
actions are activated by a specific pattern (trigger). 

 
<action	
  id="..."	
  type="feedback">	
  
	
  	
  	
  <trigger	
  pattern-­‐id="..."	
  />	
  
	
  	
  	
  <message>	
  
	
  	
  	
  	
  	
  <short>...some	
  text...</short>	
  
	
  	
  	
  	
  	
  <long>...some	
  text	
  ...</long>	
  
	
  	
  	
  	
  	
  <highlighting	
  />	
  
	
  	
  	
  </message>	
  
	
  	
  	
  <priority>	
  
	
  	
  	
  	
  	
  <default	
  priority="1"	
  />	
  
	
  	
  	
  	
  	
  <phase	
  idref="3"	
  priority="10"	
  />	
  
	
  	
  	
  </priority>	
  
</action>	
  

Table 3: Tutorial Action Specification (simplified) 
 
The feedback message itself (message) has three com-

ponents: (1) a short message, which provides feedback in 
a concise way, (2) a long message, which provides a more 
detailed explanation, only displayed when the user clicks 
on the short message, and (3) a highlighting flag, which 
indicates whether objects that are part of the pattern 
should be visually highlighted in the user interface. The 
message texts can be formatted through HTML tags (e.g., 
bold, italics). Moreover, messages themselves can be pa-
rameterized through a control flag "[##parameter-
name##]." When the message is delivered, this placehold-
er will be substituted by the actual value of the parame-
ter, for instance, the box number displayed in the LASAD 
user interface to help students identifying diagram ele-
ments mentioned in the message text. In general, all in-
formation represented in the Jess fact base can be de-
clared as a parameter and used in text messages. 

The FeedbackAgent supports the prioritization of tutori-
al actions. There might be many messages activated at the 
same time. For instance, in some situations more than 100 
messages were relevant and could have been provided in 
LARGO. To not overwhelm students, an informed selec-
tion of the most critical message is required. This decision 
should also consider the current problem-solving phases, 
since in each phase some messages may be relevant (and 
others not) and some tutorial actions may be preferable 
over others. For instance, at the beginning of creating a 
diagram, we might expect students to represent relevant 
statements. Only in a later stage might we expect them to 
interrelate these statements. A tutorial strategy might be 
to prompt students in the early stage to create boxes 
(statements; pattern: #boxes < X) and in the later stage to 
create links (relations; pattern: #boxes ≥ X ∧ #links < Y). 
The first part of this pattern ("#boxes ≥ X") defines a "rel-
evance condition," which ensures that the pattern will not 
be activated in the earlier stage. 

The phase-based prioritization procedure is governed 
by corresponding annotations of each tutorial action (pri-
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ority). There is a default priority value (default) that can be 
overwritten by phase-specific priority values (phase). The 
assigned priority values serve essentially two purposes: 
In a first step, probabilities are assigned to each phase, 
based on all patterns (and associated priorities) that are 
detected in the current diagram state. That is, if many 
patterns that are strongly associated with a phase X are 
detected, then there will be a high probability for phase 
X. In a second step, all possible tutorial actions are priori-
tized according to their priority values for the most likely 
phase (which is assumed to be the current phase). This 
approach is based on the prioritization procedure devel-
oped in LARGO [11]. Whether the phase-based prioritiza-
tion is ultimately activated, maybe as one component of a 
more comprehensive prioritization procedure, can be con-
figured as part of the tutorial strategy specification de-
scribed in section 6.3. 

We are planning to enhance the available configura-
tion options in future CASE versions. For instance, alter-
native modes of displaying feedback messages can sup-
port different levels of obtrusiveness (e.g., a separate 
feedback message panel, for which the user decides if and 
when to pay attention to, versus popup windows, which 
force the user to acknowledge that she has read the mes-
sage before proceeding). Such enhancements enable an 
experimental investigation of different feedback realiza-
tions. A further step would be to adaptively decide wheth-
er to provide feedback obtrusively or not, depending on 
the current situation and the urgency of the detected 
problem. Corresponding decision heuristics could be con-
figured as part of tutorial strategies, discussed next. 

6.3 Tutorial Strategies 
Table 4 shows an XML element that defines a tutorial 
strategy for tutorial actions. In this example, tutorial ac-
tions are triggered when the user explicitly requests feed-
back (provision-time="on-request"). To request feedback, 
the user can select a menu item in the user interface, la-
beled "Get hint" (display-name). We are currently working 
on a second option to deliver tutorial actions proactively, 
in predefined intervals. Tutorial actions are targeted at 
individual users (recipient type="individual"), as opposed 
to broadcasting them to each member of a learner group 
(recipient type="group").  

 
<provision	
  id="..."	
  type="sort-­‐and-­‐filter">	
  
	
  	
  	
  <provision-­‐time	
  type="on-­‐request">	
  
	
  	
  	
  	
  	
  <display-­‐name>Get	
  hint</display-­‐name>	
  
	
  	
  	
  </provision-­‐time>	
  
	
  	
  	
  <recipient	
  type="individual"	
  />	
  
	
  	
  	
  <provided-­‐actions	
  all-­‐own-­‐actions="true"	
  />	
  
	
  	
  	
  <action-­‐filters>	
  
	
  	
  	
  	
  	
  <action-­‐filter	
  type="one-­‐instance-­‐per-­‐type"	
  />	
  
	
  	
  	
  	
  	
  <action-­‐filter	
  type="no-­‐instance-­‐twice"	
  />	
  
	
  	
  	
  </action-­‐filters>	
  
	
  	
  	
  <sort-­‐criteria>	
  
	
  	
  	
  	
  	
  <sort-­‐criterion	
  type="phase-­‐priority"	
  />	
  
	
  	
  	
  </sort-­‐criteria>	
  
	
  	
  	
  <number-­‐of-­‐actions>5</number-­‐of-­‐actions>	
  
</provision>	
  

Table 4: Tutorial Strategy Specification (simplified) 
 

In general, all tutorial actions defined in this Feed-
backAgent are considered in this strategy (all-own-
actions="true"). Alternatively, a selection of tutorial ac-
tions that are relevant can be enumerated. The set of rele-
vant tutorial actions can be further reduced using a list of 
filters (action-filters). Here, each tutorial action is provided 
at most once at a time (one-instance-per-type). For instance, 
if the same pattern matches multiple structures in a dia-
gram, only one feedback message is considered, rather 
than messages for each pattern instance. Which message 
this is depends on the given prioritization criteria, dis-
cussed below. The second filter (no-instance-twice) ensures 
that the same feedback message is never provided twice, 
based on the history of previous messages. 

The resultant set of tutorial actions is then sorted ac-
cording to a list of predefined criteria (sort-criteria). In the 
example, the phase-based prioritization procedure dis-
cussed in section 6.2 is activated (phase-priority). It is pos-
sible to combine different prioritization heuristics such as 
phase-priority, prefer-recent-structures, or prefer-structures-
not-yet-pointed-to. The list of sort criteria is then processed 
from the top to the bottom. Criteria lower in the list are 
used as "tie-breakers." Only when preceding criteria can-
not decide which tutorial action is most important subse-
quent criteria will be applied [26]. Finally, a cut-off point 
is defined (number-of-actions). In this specific example the 
first five tutorial actions of the sorted action list are deliv-
ered. Through its modular design, CASE can be easily 
enhanced with further filter and prioritization criteria. 

7 KNOWLEDGE ENGINEERING MODEL 
In this section we describe how to design, implement, and 
evolve adaptive support for argumentation diagramming 
activities in a systematic manner using the CASE frame-
work. We will hint at several relevant pedagogical con-
siderations; a more detailed treatment regarding the ped-
agogy of system-delivered feedback can be found else-
where [4], [27]. We propose a knowledge engineering 
process that unfolds into inner cycles in which system con-
figurations are developed in a three-step process and out-
er cycles in which the resultant system configurations are 
tested to inform improvements for the next design itera-
tion. Authors will typically not execute the steps of the 
inner cycle in strict sequence, but rather move opportun-
istically back and forth between steps to fine-tune and 
match the definitions of patterns, messages and strategies. 

Step 1: Pattern Definition. The first step is to decide 
what patterns are relevant and should be reacted to. A 
basic decision is which processes to support: problem 
solving, collaboration, or both. The definition of specific 
patterns may be based on theoretical considerations / 
previous research (e.g., typical problems in student-
student interactions), concrete problems observed in pre-
ceding sessions, or a combination of both approaches (for 
instance, by checking whether problems reported in the 
literature can actually be observed in the current setting). 
An approach on how to operationalize the identified pat-
terns within the CASE framework must be chosen. If pat-
terns are well defined or can be heuristically approximat-
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ed (e.g., diagram constellations that violate syntactic con-
straints), Jess rules (Jess-Patterns) or counter conditions 
(Count-Patterns) can be used. If patterns cannot be easily 
described in a declarative format, possibly because the 
conceptual idea does not translate easily into a concrete 
executable definition or the pattern is overly complex 
(e.g., patterns in natural language expressions), a feasible 
approach might be to automatically induce patterns using 
machine learning. The development of machine-learned 
classifiers is a separate knowledge engineering process 
involving collecting, coding and preprocessing of data; 
experimentation; and performance validation [19]. A 
number of general-purpose machine-learning toolkits are 
available to support that process, e.g., WEKA [28]. The 
resulting classifiers can be integrated into CASE as exter-
nal services (External-Patterns) using a predefined API. 

Step 2: Message Definition. The second step is to de-
cide how to respond to patterns. Typically, non-
authoritative message formulations are preferable since 
patterns are often heuristic in nature and do not neces-
sarily, and without fail, identify errors on the part of the 
student [26]. Other important decisions include feedback 
/ advice specificity (e.g., conceptual versus procedural 
hints), message length (e.g., students might be more in-
clined to read shorter messages), and message tone (polite 
versus impersonal). If the message relates to some con-
crete structures in the diagram, highlighting of these 
structures is often helpful to students in locating relevant 
diagram contents quickly. 

Step 3: Strategy Definition. The third step is to decide 
if and when to respond to specific patterns. On the one 
hand, feedback-on-request may not be used frequently, 
even if students would benefit from it [11], [26]. On the 
other hand, unsolicited feedback may interrupt the prob-
lem solving / collaboration process and be perceived as 
annoying by the students. Mixed strategies might be con-
sidered, e.g., immediate, unrequested feedback to reme-
diate collaboration problems (e.g., one student does not 
contribute to the solution at all), and feedback-on-request 
to give students the option to request hints on how to 
proceed with the task when they are stuck. If the number 
of patterns that can occur at a time is high, strategies 
should involve the informed prioritization and selection 
of messages. Authors may develop an idealized problem-
solving model that subdivides the process into discrete, 
consecutive phases, each associated with patterns and 
messages that are particularly important in that phase. 
This model might be built based on theory and expert 
judgment or by inspecting prior learning sessions. Based 
on such models, messages can be annotated with phase-
specific priority values, which are used by the system to 
make an informed selection between messages. Pattern 
definitions might also be adjusted to ensure that patterns 
are not activated before they become relevant according 
to the phase model ("relevance conditions"). 

8.  CONCLUSION AND FUTURE WORK 
In this paper, we presented the CASE framework, a high-
ly configurable software component to analyze and sup-

port educational argument diagramming activities. The 
CASE architecture has been devised with important soft-
ware design concerns in mind. Maintainability and exten-
sibility have been achieved through a modular design 
and predefined extensions points, which enable new 
functionality to be easily added. In order to make CASE 
highly configurable and thus usable across a wide range 
of scenarios and domains we have created a comprehen-
sive configuration sub-system, parameterizable through 
XML and a dedicated API, allowing configuration chang-
es at any time. The built-in mechanisms for parameteriz-
ing tutorial behavior enable researchers and practitioners 
to create tutorial support across a wide range of applica-
tion. To illustrate this we presented and discussed four 
applications that demonstrate the diversity of CASE in-
cluding application to different domains, student tasks 
and types of tutorial support.  

Despite the many aspects of CASE that have been de-
veloped, there is potential for pushing the envelope fur-
ther. An important contribution, distinguishing CASE 
from other pattern-matching approaches to support ar-
gumentation (e.g., [26], [11]), is its capability to identify 
and respond to patterns in student-student interactions. 
Yet, student collaboration includes chat discussions, in 
addition to actions taken in argument diagrams, so stu-
dents can coordinate diagramming activities and discuss 
diagram contents. To assess the quality of collaboration in 
a more precise and comprehensive way, we plan to extent 
CASE so that diagram and chat activities can be jointly 
analyzed (cross-modality analysis).  

Another CASE asset, whose potential we intend to ex-
tend, is the integration of external analysis modules, as 
exemplified by ARGUNAUT's Deep Loop [19]. Else-
where, we describe how individual Deep Loop classifica-
tions, which only refer to a relatively small portion of an 
argument diagram (e.g., a single contribution or a pair of 
contributions), can be aggregated to summarize a discus-
sion in a more holistic way [29]. CASE provides a frame-
work that can accomplish this. With a few technical en-
hancements CASE could aggregate and combine patterns 
originating from external analysis modules in various 
ways. Another interesting option is to include analysis 
results that are not based on argument diagramming ac-
tivities at all. For instance, in Metafora, LASAD is only 
one of several learning tools. Students also use micro-
word simulations, some of which include tool-specific 
analysis modules. Integrating these analysis modules 
with the CASE framework allows cross-tool analyses, 
which correlate students' structural discussions in 
LASAD with their activities in other tools. From a peda-
gogical perspective, existing diagnostic capabilities could 
be improved – or new ones enabled – with the additional 
accessible information. From a technical perspective, 
well-established and tested analysis modules can be re-
used. 

Finally, some lecturers use argument diagramming as 
an integral part of their classes, that is, students use a dia-
gramming tool regularly, throughout an entire semester 
(or even beyond) [30]. The current version of CASE has 
been designed with a focus on a single session. Hence, a 
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possible extension is a cross-session student model, which 
continuously assesses students (argumentation) skills and 
misconceptions, based on the quality of created diagrams. 
On the basis of such a model, feedback could be better 
tailored to individual students based on his or her learn-
ing history. Moreover, in the sense of a classical ITS outer 
loop [31], problems could be selected appropriate to the 
student's current skill level. For instance, a LARGO tran-
script could be chosen to match the transcript difficulty 
with the student's level of expertise. 
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