
 first page 1

CASE: A Configurable Argumentation
Support Engine

Oliver Scheuer and Bruce M. McLaren

Abstract—One of the main challenges in tapping the full potential of modern educational software is to devise mechanisms to
automatically analyze and adaptively support students' problem solving and learning. A number of such approaches have been
developed to teach argumentation skills in domains as diverse as science, the Law, and ethics. Yet, imbuing educational
software with effective intelligent tutoring functions requires considerable time and effort. We present a highly configurable
software framework, CASE ("Configurable Argumentation Support Engine"), designed to reduce effort and development costs
considerably when building tutorial agents for graphical argumentation learning systems. CASE detects pedagogically relevant
patterns in argument diagrams and provides feedback and hints in response. A wide variety of patterns are supported, including
ones sensitive to students’ understanding of the domain, problem-solving processes, and collaboration processes. Teachers
and researchers can configure the behavior of tutorial agents on three levels: patterns, tutorial actions, and tutorial strategies.
The paper discusses design concerns, the architecture, and the configuration mechanisms of CASE. As a proof of concept, four
showcases are presented each showing different aspects of CASE and thus demonstrating the flexibility and breadth of
applicability of the CASE approach in supporting single-user and collaborative scenarios across different argumentation
domains.

Index Terms—N.3.II Collaborative Learning Tools, N.4.I Intelligent Tutoring Systems, N.5.V Authoring tools

—————————— u ——————————

1 INTRODUCTION
Argumentation skills are vitally important in many re-
spects but their teaching is not well established in our
educational system [1]. One method employed in teach-
ing and learning well-founded argumentation skills is
argument diagramming [2]. Argument diagrams are based
on a decomposition of arguments into their constituent
elements (e.g., claims, statement, evidence) and relations
(e.g., a claim is supported / opposed by a statement, a
piece of evidence provides backing for a statement), rep-
resented in the form of node-and-link graphs. Students
can acquire argumentation skills by creating or inspecting
such diagrams, individually as well as in groups. The
argument-diagramming paradigm has been adopted in a
wide range of computer-based argumentation systems, in
domains as diverse as the Law, science, and ethics [3], [4].
The computerization of the process brings important ben-
efits over paper-and-pencil approaches such as: easy
modification and revision of diagrams; adaptable visuali-
zations, orientation, and navigation support (e.g., resiza-
ble display, overview maps, search functions); digitaliza-
tion and persistent storage of created diagrams; remote
collaboration and sharing of diagrams; and automated,
system-generated support for students and teachers to
guide the process and evaluate the result, which is the
focus of this paper.

We present a software component, called CASE ("Con-
figurable Argumentation Support Engine"), which sup-

ports the definition of tutorial agents to be deployed to
argumentation systems. The tutorial agents analyze stu-
dent activities and generated artifacts and provide hints
and feedback in support of argumentation learning activi-
ties. CASE has been designed for usage in a wide variety
of argumentation domains and learning scenarios. There-
fore, a special focus has been placed on flexible configura-
tion mechanisms that allow support to be tailored to spe-
cific conditions and pedagogical approaches. CASE has
the potential to considerably reduce efforts in the devel-
opment of adaptive support mechanisms by providing a
reusable and easily extended framework. CASE works in
tandem with the LASAD argumentation system, which
itself is highly configurable across domains and settings
[5].

2 BACKGROUND
Although CASE can be used to support individual stu-
dent learning activities, its real focus is on analyzing and
supporting collaborative learning arrangements. An early
comprehensive overview of Computer-Supported Col-
laborative Learning (CSCL) systems is provided in [6].
Systems are classified into one of three categories depend-
ing on the "locus of processing" (student / teacher versus
system): Mirroring tools support students or teachers by
collecting, aggregating, and presenting interaction data
faithfully, e.g., in a visual display, yet without hinting at
how a good or ideal mode of collaboration would look
like. The mirrored data aims at raising students' or teach-
ers' awareness; interpretation and use of the data is left to
the student or teacher. Metacognitive tools provide, in ad-
dition, a normative model of ideal or desired collabora-
tion. The model serves as a point of reference for inter-
preting and assessing the quality of interactions. Yet, the

• O. Scheuer is with the Center for e-Learning Technology, Saarland
University, Campus, 66123 Saarbrücken, Germany. E-mail:
o.scheuer@mx.uni-saarland.de.

• B.M. McLaren is with Carnegie Mellon University, Human-
Computer Interaction Institute, 2617 Newell-Simon Hall, 5000
Forbes Avenue, Pittsburgh, PA, 15213-3891, and also with the
Center for e-Learning Technology, Saarland University, Campus,
66123 Saarbrücken, Germany. E-mail: bmclaren@cs.cmu.edu.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

© 200x IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

2 even page IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, MANUSCRIPT ID

diagnostic task itself remains under the control of stu-
dents and teachers rather than the system. Finally, guiding
systems also diagnose collaboration problems and suggest
remedial actions. That is, the locus of processing is shifted
in large parts from the users to the system. CASE is aimed
at supporting precisely such guiding systems.

Under the rubric of Adaptive and Intelligent Systems for
Collaborative Learning (AICLS), a recent review of such
guiding systems for CSCL is given in [7]. According to
their scheme, systems can be categorized (among other
dimensions) according to the target of intervention
(group formation, domain-specific support, peer-
interaction support), modeled aspects (user/group, do-
main, activity), and modeling techniques (ranging from
AI techniques, such as Bayesian Networks, to Non-AI
techniques, such as user-defined preferences). CASE sup-
ports the development of systems that provide domain-
specific and peer-interaction support, based on domain
and user activity models, realized through rule-based
pattern matching techniques. If needed, external analysis
modules of any kind (e.g., machine learned classifiers)
can be integrated with CASE through a well-defined ex-
tension API.

Automated analysis and feedback techniques to sup-
port argumentation learning are reviewed in [4]. Follow-
ing [8], a distinction is made between argument modeling
systems, which support the analysis and structural repre-
sentation of arguments, and discussion-oriented systems,
which provide a medium for argumentative exchange
between discussants. While discussion-oriented systems
often aim at a broad set of communication and collabora-
tion skills, such as balanced participation, topic focus, and
leadership, argument modeling systems focus on the log-
ic of arguments and domain-specific argument structures.
Accordingly, the two system classes employ different
analysis approaches.

The following analysis approaches are used in argu-
ment modeling systems: (1) Syntactic analyses check
whether the created argument representation complies
with a set of given syntactic constraints (e.g., data sup-
ports hypotheses and not vice versa). (2) Problem-specific
analyses check whether the created argument representa-
tion adequately models a given problem case (e.g., a tran-
script of an existing argument). (3) Simulations of reasoning
/ decision-making processes determine whether a claim is
believable / acceptable based on the created argument
representation. (4) Assessments of content quality determine
the quality of the textual content of individual argument
components. (5) Classifications of the current modeling phase
determine whether the student is, for instance, in an ori-
entation, modeling, or reflection phase (i.e., problem solv-
ing is conceived of as a multi-phase process).

The following analysis approaches are used in discus-
sion-oriented systems: (1) Analyses of process characteristics
identify the function of discussion moves and speaker
intentions, for instance, counterarguments and question-
answer interactions in dialogues. (2) Analyses of discussion
topics identify the current topic of a discussion. (3) Anal-
yses of interaction problems identify, for instance, unan-
swered questions and failed attempts to share knowledge.

(4) Assessments of collaboration quality of longer sequences of
time aggregate and summarize students' behaviors over
time, for instance, the level of group responsiveness and
agreement. (5) Classifications of the current discussion phase
determine whether the group is, for instance, in a con-
frontation, opening, argumentation, or conclusion phase
(i.e., a discussion is conceived of as a process that unfolds
into multiple phases).

Support mechanisms in these systems are classified ac-
cording to the following dimensions: (1) feedback mode
(e.g., text, highlighting, meters), (2) feedback content (e.g.,
self-reflection prompts versus explicit directives), (3) feed-
back control (student-driven, moderator-driven, system-
driven), (4) feedback timing (on-demand, immediate, sum-
mative), and (5) feedback selection and priority (e.g., select /
prefer messages that refer to recent events).

CASE can principally support all of the previous men-
tioned analysis approaches, either through CASE's rule-
based pattern matching mechanism or through connected
external analysis modules. Examples are discussed in sec-
tion 4. With respect to support mechanisms, CASE allows
the configuration of textual messages and highlighting of
diagram elements. Feedback is provided on-request; a
configuration option for proactive, system-triggered
feedback is currently under development. The configura-
tion of feedback selection and prioritization strategies is
supported as well.

3 LASAD ARGUMENTATION SYSTEM
CASE has been developed in context of the LASAD pro-
ject ("Learning to Argue – Generalized Support Across
Domains"), which aims at developing a software frame-
work and methodology to build argumentation-learning
systems for a range of domains. Most past argumentation
systems have been designed with specific domains and
learning scenarios in mind, resulting in systems that can-
not be ported to different application settings. Yet, on a
conceptual level, these systems share many features in
terms of the user interface and underlying functionality.
In principle, it should be possible to develop a more gen-
eral framework that can be used as a basis for building
specific argumentation systems in a more simplified fash-
ion, based on well-defined configuration and extension
mechanisms. Within the LASAD project, this is precisely
our objective and what has been developed. The generali-
ty of LASAD has been shown through its use in a wide
variety of differently targeted argumentation-learning
applications and empirical studies (e.g., [9], [10]).

The LASAD system [5] is based on the argument-
diagramming paradigm, an approach that has gained
considerable popularity during the last two decades for
reasons described in the introductory section. Fig. 1
shows a screenshot of the user interface. In this instance,
an Intelligent Tutoring System for legal argumentation,
LARGO [11], has been implemented using the LASAD
framework. In LARGO, students analyze a given tran-
script of a U. S. Supreme Court oral argument (Fig. 1, left
panel) by creating a diagrammatic representation of it
(Fig. 1, right panel). When students are stuck they can

SCHEUER & MCLAREN: CASE: A CONFIGURABLE ARGUMENTATION SUPPORT ENGINE odd page 3

request hints, which will be provided in the form of a text
message and highlighting of the portion of the diagram
the message refers to (Fig. 1, message window on top of
diagramming area). LARGO will be discussed in greater
detail in section 4.1.

 Many aspects of the LASAD user interface can be con-
figured through XML or an authoring tool, which facili-
tates the process considerably, especially for novice users.
The type and makeup of boxes and links can be set up.
For instance, the example in Fig. 1 uses "Test" and "Hypo-
thetical" box types. "Test" boxes comprise a number of
text fields such as "IF," "AND," "EVEN THOUGH," and
"THEN," some of which are predefined, while others can
be added and removed dynamically by the user. Besides
text fields, other widget types can be used, such as
dropdown menus, rating elements, and radio buttons.
The diagramming area can be enhanced with other tools
and displays. In Fig. 1, a transcript panel has been added.
Other options include displaying the list of active users,
adding a chat tool, possibly enhanced with "sentence
openers" [12], or adding tutorial agents that support stu-
dents while creating diagrams.

4 CASE APPLICATIONS
To illustrate the generality and breadth of applicability of
the CASE framework, the main objective and driving
force in the design of the system, we now discuss four
CASE applications (LARGO, Science-Intro, Metafora, and
ARGUNAUT). These applications support argumenta-
tion-learning activities in different domains (the Law,
science, group deliberation, and ethical discussion), focus
on different argumentation facets (analysis, planning, and
discourse), and use different features of the CASE frame-
work (structural patterns, process-based patterns, and
integration of external analysis modules).

In LARGO, students analyze and structurally represent
legal argumentation processes using argument diagrams.

In Science-Intro, students use diagrams as an outlining
tool to prepare the writing of research reports in the do-
main of psychology. Both applications are primarily de-
signed for single-user activities. Adaptive support is pro-
vided on request and based on structural patterns defined
by domain experts. In Metafora, students jointly work in
an inquiry environment for mathematics and science.
They use LASAD diagrams to discuss, in a structured
way, findings obtained in microworld simulations, with
the aim of arriving at a joint, agreed solution. In contrast
to LARGO and Science-Intro, in which the CASE frame-
work is used to detect domain-specific structures in dia-
grams, the focus is on interaction patterns to support stu-
dents in "learning to learn together." ARGUNAUT also
focuses on interaction patterns but uses a different analyt-
ical approach. Rather than relying on expert-defined pat-
terns, machine-learned classifiers are utilized to catego-
rize qualitative aspects of e-Discussions about controver-
sial ethical dilemmas.

4.1 Legal Argumentation: LARGO
The Intelligent Tutoring System LARGO [11] was devel-
oped to teach beginning law students a particular model
of legal argumentation based on hypothetical reasoning
[13]. The model semi-formally describes argumentative
processes as they can be observed in U. S. Supreme Court
oral trials. According to this model, lawyers propose
some test (i.e., if-then rules) how to decide certain legal
situations and argue that this test also applies to the case
under discussion. Proposed tests are based on an inter-
pretation of legal statutes and precedent cases and are
chosen in a way that leads to a favorable outcome for the
proposing party. To challenge a proposed test, the oppos-
ing party may cite hypothetical situations that put the
validity of the test into question (i.e., the test would lead
to some undesirable result). The first party might respond
to such challenges by withdrawing the proposed test or
modifying it in some reasonable way. Typical moves in-

Fig. 1: LASAD user interface

4 even page IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, MANUSCRIPT ID

clude analogizing or distinguishing between the current
facts and hypothetical situations.

To practice this model of legal argumentation students
are tasked with analyzing a given transcript of a U. S.
Supreme Court oral argument within the LARGO system.
They "translate" the given textual argument representa-
tion into an argument diagram based on the model of
hypothetical argument described above. The argument
ontology reifies important concepts of that model using
"Facts," "Test," and "Hypothetical" boxes and "leads-to,"
"modified-to," "analogized-with," and "distinguished-
from" links. While modeling arguments in LARGO, stu-
dents can use a "Hint" button in the user interface. The
system is capable of identifying more than 40 different
patterns in the argument diagrams, which are used as a
basis for hint generation.

The current LARGO version has been re-implemented
based on the LASAD framework to be deployable over
the web and to benefit from other LASAD assets (look-
and-feel, maintainability, configurability). The LARGO
help system, including all analysis rules, has been ported
to the CASE framework. A screenshot is shown in Fig. 1.
The following three patterns illustrate the kind of patterns
used in LASAD:

(1) a "Test" node with some content in the "if" text field
but none in the "then" text field: That is, the test has not
been completely specified. If an instance of this pattern
has been detected a feedback message can be triggered
that prompts the student to enter some text into the "then"
text field.

(2) a "Hypothetical" node that is distinguished from or
analogized with a "Facts" node, but is not related to any
"Test" node: Since hypotheticals are typically used to chal-
lenge proposed tests, the structure is incomplete, so a
student could be prompted to connect the "Hypothetical"
node to some "Test" node.

(3) a circular structure of nodes, in which each node
"leads-to" or is "modified-to" the next node: The semantics
of a "leads-to" or "modified-to" transition often involve a
temporal progression, which is counteracted by the pat-
tern's circularity. However, if interpreted as logical con-
sequence, a circular structure can make sense. This pat-
tern can be used to prompt students to rethink their dia-
gram model (temporal or logical relation?) to identify
possible mistakes.

Other rules not discussed here make use of expert an-
notations of the given transcripts, which mark passages in
the transcript as "test," "facts," or "hypothetical." Since
students create explicit references from diagram elements
to transcript passages (through a specific GUI widget), it
is possible to check whether they have misclassified cer-
tain passages (e.g., a student creates a "Test" box to model
a transcript passage annotated as "Hypothetical").

4.2 Scientific Argumentation: Science-Intro
The ArgumentPeer project ("Teaching Writing and Argu-
mentation with AI-Supported Diagramming and Peer
Review") [14] aims at developing an Intelligent Tutoring
System to teach students how to write argumentative
texts. One component of the system is the LASAD dia-

gramming environment, which students use to outline
arguments in a diagram in advance, as preparation for the
actual writing of the text.

Besides the legal domain, the project tackles the writ-
ing of scientific arguments in psychology. The students'
task is to write a report, which motivates and defines a
new research study based on a review of relevant litera-
ture and reports on the study results. The text should in-
dicate hypotheses and claims that the current study is
based upon and cite previous literature to either support
or oppose those claims and hypotheses. The current study
should be compared to previous studies to point out
analogies and distinctions. Citations that lead to contra-
dictory results (e.g., citation x supports a claim while cita-
tion y opposes the same claim) should be compared to
one another in terms of similarities and differences.

To prepare the writing of such research reports stu-
dents use LASAD to outline the basic structure of the text.
Equipped with a selection of relevant background litera-
ture provided as part of the assignment, students create a
LASAD diagram using an ontology specifically designed
to support the outlining of scientific arguments, including
boxes such as "current-study," "claim," "hypothesis," and
"citation" and links such as "support," "opposition," and
"comparison." Similar to LARGO, a "Hint" button is of-
fered in the user interface.

The ArgumentPeer project includes a help system used
to identify patterns in student activity and provide feed-
back accordingly. Since the ArgumentPeer project only
recently started, the help system is still under develop-
ment. The three patterns below have been defined and
implemented within the CASE framework in a first de-
sign iteration, along with other preliminary patterns. The
project team is currently investigating a first version of
the help system in pilot tests.

(1) a node of arbitrary type with an empty text field:
This pattern is a generalization of the first LARGO pat-
tern discussed in section 4.1. It can be used to check
whether students filled in every text field in their argu-
ment diagrams and, if not, prompt them to do so.

(2) a "Hypothesis" node with fewer supporting than
opposing inbound links: In general, it is good if students
also consider evidence that contradicts a hypothesis ra-
ther than only searching for confirmatory evidence, a
well-documented psychological phenomenon ("confirma-
tion bias"). However, sometimes students also neglect
supporting evidence, or might neither pay attention to
supporting nor to opposing evidence. This pattern identi-
fies such situations in order to prompt students to search
for positive evidence. Confirmation bias, i.e., neglecting
contradictory evidence, could be detected analogously.

(3) unconnected node clusters in the diagram ("argu-
mentation islands"): Since the goal of the outlined argu-
mentative text should be to present a current research
study in a coherent way, all discussed hypotheses, cita-
tions, claims, etc. should be related to one another in
some way, if not directly, then at least indirectly through
some other elements. In the end, all components must
integrate smoothly into one coherent line of argumenta-
tion in support of the overall aim of the research report.

SCHEUER & MCLAREN: CASE: A CONFIGURABLE ARGUMENTATION SUPPORT ENGINE odd page 5

This pattern is also potentially useful in other applications
that require a well-integrated representation of
knowledge, such as pre-writing activities in other do-
mains, or group deliberation and discussion, which will
be discussed next.

4.3 Group Deliberation and Discussion: Metafora
The Metafora project aims at developing a pedagogy and
technical platform to support students in "learning to
learn together" (L2L2; [15]). In the context of Metafora,
complex, challenge-based learning scenarios, involving a
variety of learning tools and stretching over a timespan of
two to three weeks, have been researched and developed.
The project tackles the domains of science and mathemat-
ics and targets students between ages twelve and 16.
While the effective teaching of conceptual domain
knowledge is certainly one goal of the project, the empha-
sis is put on L2L2 skills, such as distributed leadership,
mutual engagement, help seeking and giving, and reflec-
tion of group learning processes. A Metafora challenge is
defined in terms of an ill-defined problem that requires
students to gain a mutual understanding of the given
challenge, jointly plan and coordinate activities to address
this challenge, explore ideas in simulation environments,
discuss findings, and draw conclusions. Student activities
are mediated through the Metafora platform, which inte-
grates and provides access to a number of tools, such as a
graphical planning tool to jointly outline and monitor
learning activities, microworld simulations to experiment
with mathematical and scientific models, and discussion
tools, including LASAD, to coordinate collaboration ef-
forts and reflect on finding.

Through LASAD, students can share and discuss mod-
els they have individually created in a microworld. Stu-
dents "publish" their individual models to the group
through a "My-Microworld" box, which displays a
thumbnail image from the created model and grants fel-
low students access to this model in the original tool
through a hyperlink. Students can then compare and dis-
cuss their models to decide whether they are "correct" or
helpful to solve the given challenge, whether two models
are equivalent to one another or not, or in what respects
two models differ from one another. LASAD also serves
as a forum for help seeking and giving. When students
are facing problems in a microworld, they can seek help
through a "Help Request" box, which displays a thumb-
nail image of the model the student is struggling with,
together with a hyperlink to visit the model in the origi-
nal tool. Help requests can be answered through a "Mi-
croworld Action" box, in which the help-giver can sug-
gest, via two dropdown menus, specific microworld ac-
tions to address the problem.

In Metafora, CASE has been repurposed as a middle-
ware to integrate LASAD with the Metafora platform. A
CASE agent has been developed that exchanges messages
between LASAD and Metafora. One of the next steps will
be to use CASE for its original purpose, which is identify-
ing patterns in LASAD diagramming in the context of
Metafora.

The following three Metafora patterns are identified to

support important aspects of student collaboration. They
have been defined in CASE but not yet fed into the Meta-
fora platform, since the concrete design of remedial tuto-
rial actions and strategies is still under discussion:

(1) a "Help-Request" box not older than 10 minutes,
unattended for more than 3 minutes (3 minutes passed by
and no other box has been connected to the help request):
The patterns indicates a situation, in which a student re-
quests help regarding a problem encountered in a mi-
croworld. Yet, the help request went unnoticed, or is de-
liberately ignored, since three minutes have passed with-
out a response. Because the help request is still recent – it
has been published within the last ten minutes – it might
be worthwhile to draw the attention of other students to
this request in order to elicit help.

(2) one student has not contributed at all (no boxes)
while the rest of the group has already contributed con-
siderably (at least five boxes each other student): This is a
heuristic approximation to one of the central problems in
collaborative learning, imbalanced participation among
group members. There are several possible reasons for a
lack of participation [16]: Some students may know that
others, who are interested in a good group result, will
compensate for their lack of participation (free-rider effect;
[17]). A possible consequence is that these others, who
were mainly responsible for the group progress up to this
point, are becoming increasingly upset and reduce or stop
their participation as well (sucker effect; [17]). Overall,
productive activities in the group may come to a halt.
Also, low performers may refrain from participation be-
cause they feel less competent and thus miss opportuni-
ties to practice and develop, a vicious cycle (Matthew ef-
fect). The pattern could be further extended to focus on a
recent time window.

(3) a student did not interrelate any of her own contri-
butions with those of fellow students, even though she
had an opportunity to do so (own and others' contribu-
tions exist in the diagram): This pattern suggests a lack of
mutual engagement and transactivity (i.e., reasoning on
the reasoning of others [18]), which are important prereq-
uisites for collaborative meaning making. An appropriate
tutorial intervention may be to prompt students to check
how their contributions (e.g., their microworld model)
relate to contributions of others (e.g., microworld model
of fellow students).

4.4 Ethical Argumentation: ARGUNAUT
In the EU-funded ARGUNAUT project, an e-Moderation
environment for graphical e-Discussions was developed
[19]. The project tackled classroom-based scenarios in
which one teacher-moderator monitors and supports
multiple computer-mediated discussions (e.g., six groups
with four or five students each). In graphical discussions
students create and interrelate contributions (boxes) in a
shared workspace. Typically, the teacher prepares the
workspace with an initial box that presents the discussion
topic, usually in the form of some controversial or ethical
question (e.g., "Do you think it is ethical to perform exper-
iments on animals?"). Students choose, depending on the
kind of discussion move they want to make, a specific box

6 even page IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, MANUSCRIPT ID

type, such as "claim," "argument," "question," or "explana-
tion" and enter some text into this box. They connect box-
es through graphical links to indicate that contributions
"relate-to," "support," or "oppose" one another. Several
LASAD-like graphical discussion tools are supported,
including Digalo [20] and FreeStyler [21].

The process of monitoring and supporting multiple
synchronous discussions in parallel is inherently difficult.
The teacher-moderator must track and maintain a mental
model of multiple discussion threads at a time. Important
events in different discussions may occur in rapid succes-
sion, sometimes even in parallel. While monitoring or
supporting one discussion thread important events in
other discussions might pass unnoticed. The ARGUN-
AUT project investigated how the moderation process
could be facilitated by means of a computer-based "Mod-
erator's Interface," which provides awareness indicators
and alarms to highlight noteworthy situations, and feed-
back tools to intervene and remediate identified problem.

From a computational perspective, two different kinds
of awareness indicators are provided in ARGUNAUT.
"Shallow" indicators are computed in relatively straight-
forward ways, e.g., through keyword search or descrip-
tive statistics of box and link type usage. "Deep" indica-
tors are more complex to compute but also potentially
more meaningful to teachers. They are based on classifi-
ers built using Artificial Intelligence techniques, in partic-
ular, machine learning, case-based reasoning, and natural
language processing. The classifiers analyze structural,
temporal, and textual data to categorize e-Discussion con-
tents on three levels of granularity: single boxes, box
pairs, and arbitrary clusters of boxes. Examples are dis-
cussed below.

Shallow and deep indicators are analyzed through dif-
ferent components of the ARGUNAUT architecture. The
classifiers for deep indicators have been incorporated into
an independent component (Deep Loop), accessible
through a web service interface. As a proof-of-concept,
the Deep Loop classifiers have been integrated into the
CASE framework and can be applied in a LASAD setup
that emulates the ARGUNAUT e-Discussion environ-
ment. Patterns in e-Discussions that can be identified by
means of Deep Loop classifiers include:

(1) off-topic contributions: A few off-topic contribu-
tions may be acceptable but if an e-Discussion goes
astray, with a considerable number of contributions not
addressing the topic at hand, a human or artificial mod-
erator might want to intervene.

(2) question-answer pairs: Questions serve important
functions in discussions. For instance, they can challenge
ideas, disclosing weaknesses and misconceptions of oth-
ers, thus triggering processes of reflection and conceptual
change. Answering questions is important as well, not
only to satisfy a specific information need but also to
maintain a healthy working atmosphere in the group. In
sum, a fair amount of question-answer pairs indicates
well-functioning group dynamics.

(3) chains-of-opposition: The pattern consists of an ini-
tial claim, followed by an objection, followed by a rebuttal
of the objection, followed by a rebuttal of the rebuttal, and

so forth. The sequence has at least a length of three. A
chain-of-opposition indicates that student "negotiate" the
meaning of ideas and arguments. It "deepens the space of
debate" [22] through successive scrutiny and refinement
of proposed ideas and arguments, thus representing ex-
actly the kind of interaction valued in collaborative ar-
gumentation. Similar to "question-answer," "chain-of-
opposition" is an indicator of good discussion quality.

Machine-learned classifiers that have been induced
from a corpus of annotated examples can detect the first
two patterns. The third pattern can be detected by means
of a novel case-based graph matching technique, devel-
oped within the ARGUNAUT project, which searches
clusters that are similar to prototypical examples and
ranks these clusters according to their similarity scores.
Other patterns not discussed here include "building-on"
and "new-perspective," which is related to creative rea-
soning [23].

5. CASE SYSTEM ARCHITECTURE
In this section, we discuss the CASE system architecture,
in particular, software design concerns (section 5.2), com-
ponents and their interactions (section 5.3), and
knowledge representation and inference processes within
CASE (section 5.4). We start with the overall LASAD ar-
chitecture, which CASE is one component of (section 5.1).

Fig. 2. LASAD architecture.

5.1 Overall LASAD Architecture
Fig. 2 shows the overall LASAD architecture. The
LASAD-Server uses a database to maintain the history and
state of all LASAD sessions (a session essentially corre-
sponds to a LASAD diagram) and distributes messages
between connected LASAD clients (of which two sorts
exist: End-User-Clients and CASE) in order to synchronize
their states. For instance, when a user creates a new box,
the user interfaces of other connected End-User-Clients
must be updated as well. End-User-Clients are JavaScript-
based applications, built with the Google Web Toolkit
(GWT) and executed in a standard web browser. The
LASAD-Server cannot directly speak to the JavaScript-
based client-side; an intermediary GWT-Servlet mediates
the communication between LASAD-Server and End-User-
Clients. CASE is just another client of the LASAD-Server
that uses the same infrastructure and interfaces as End-
User-Clients. Yet, since CASE is implemented in Java ra-

SCHEUER & MCLAREN: CASE: A CONFIGURABLE ARGUMENTATION SUPPORT ENGINE odd page 7

ther than JavaScript, it can directly talk to the LASAD-
Server without the indirection of the GWT-Servlet.

To illustrate how LASAD operates let's have a look at a
processing iteration, starting with a user creating a box in
the LASAD user interface. The End-User-Client then sends
a "create box" message though the GWT-Servlet to the
LASAD-Server. The LASAD-Server updates its database
and forwards the message to all connected clients. End-
User-Clients display the new box on the screen; CASE up-
dates its internal data representation, searches for mean-
ingful patterns (examples are discussed in section 4), and
possibly generates feedback messages. These feedback
messages are sent through LASAD-Server and GWT-
Servlet to one or multiple End-User-Clients, depending on
the specific CASE configuration, to be displayed on the
screen. While CASE provides the textual content of feed-
back messages and control flags, e.g., to specify whether
diagram elements should be visually highlighted or not,
the actual realization of the feedback presentation is done
by the End-User-Clients.

5.2 Software Design Concerns
We turn now to the internals of CASE. The design of
CASE addresses a number of key software system attrib-
utes, in particular, portability, maintainability, extensibil-
ity, efficiency, stability, availability of service, and config-
urability. In the following we describe how these con-
cerns have been realized in the CASE architecture.

Portability
CASE is implemented in Java, which has been specifically
designed for portability. Java binary code is executed in
Java Virtual Machines (JVM), which encapsulate depend-
encies to the operating system, making platform specifics
largely transparent to the application program. JVMs are
available for virtually any platform, so CASE can be easi-
ly deployed in nearly any IT environment. A recompila-
tion of binary code for the specific platform is not needed.

Maintainability and Extensibility
CASE has been designed in a modular fashion. The sys-
tem unfolds into several components, each having well-
defined responsibilities and interfaces (for details, see
section 5.3). A loose coupling is achieved through event-
based communication. Commands and status updates are
encapsulated in message objects that are exchanged be-
tween components and processed asynchronously. The
modular design makes it easy to adapt the system to a
different environment. For instance, the communication
to the LASAD-Server is encapsulated in a DataService
component. If the communication protocol or message
format changes, only the DataService component will be
affected. The modular design also contributes to the at-
tainment of an open architecture that can be easily ex-
tended with new analysis and feedback functionality.
New functionality is encapsulated in software agents,
which can be easily hooked up with the CASE frame-
work. The CASE framework provides the basic infrastruc-
ture to handle generic tasks, such as the provision of
events from and to agents, so developers can focus on the
analysis and feedback logic when implementing new

agents. An example that showcases the integration of al-
ready existing, external analysis functionalities is the
ARGUNAUT Deep Loop, discussed in section 4.4. Deep
Loop has been integrated into CASE using the remote
proxy design pattern [24]: a DeepLoopAgent has been im-
plemented to provide a CASE-compliant interface to the
remote Deep Loop web service; the agent essentially
serves as an adapter, making data formats and interfaces
compliant with one another.

Efficiency
The most critical part in terms of runtime performance is
the computational analysis of argument diagrams. CASE
uses the Jess Rule Engine to continuously check for pat-
terns in diagrams. Jess has been shown to be highly effi-
cient. Used on an outdated machine (800 MHz Pentium
III, Sun HotSpot JVM) Jess could fire up to 80,000 rules,
match up to 600,000 patterns, and add up to 100,000 facts
to the Jess knowledge base within one second [25]. This
performance appears to be sufficient to support relevant
use cases, such as class-based scenarios and research
studies. A second performance-related aspect is the pos-
sibility to distribute system components on multiple ma-
chines to overcome the performance limitations of a sin-
gle physical unit. First, CASE can be physically separated
from other LASAD components (e.g., the LASAD-Server).
Second, if CASE makes use of additional, computational-
ly demanding analysis modules (e.g., involving natural
language processing and machine learned models) these
modules can be encapsulated in independent services,
deployed on other server machines, and integrated
through the remote proxy design pattern (similar to the
above described DeepLoopAgent).

Stability and Availability of Service
One CASE installation might support many learning ses-
sions. To avoid the situation where runtime errors or
time-consuming analyses in one session affect other ses-
sions, the processing of each session is isolated in an in-
dependent set of threads. Since CASE is only loosely cou-
pled with the LASAD-Server, an outage of CASE for
whatever reason would not affect the functioning of the
main LASAD service.

Generality and Configurability
A key objective in the design of CASE was to achieve a
high level of generality to support a wide range of learn-
ing scenarios and domains. Besides extensibility, which
has been discussed above, the provision of configuration
mechanisms that allow tailoring support to the specific
constraints and requirements of a given application sce-
nario is another important cornerstone in achieving gen-
erality. CASE allows configuring FeedbackAgents in terms
of patterns they can identify, tutorial actions they can take
in response to patterns, and tutorial strategies that govern
their overall behavior. Configuration settings can be spec-
ified in XML files or through an API that allows changes
to the configuration during runtime. A currently devel-
oped graphical configuration front-end, which allows
teachers and researchers to manage and author feedback
behavior in a simplified fashion, makes use of this API.

8 even page IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, MANUSCRIPT ID

Section 6 describes the available configuration options in
greater detail.

Fig. 3. CASE components and interactions.

5.3 System Components and Interactions
Based on Fig. 3, we discuss now the different CASE com-
ponents (section 5.3.1) and their interactions (section
5.3.2). For the sake of brevity we will not cover the CASE
configuration sub-system, which manages configuration
settings and allows changing them at runtime.

5.3.1 Components
The DataService encapsulates all communication with
the LASAD-Server, translating back and forth between the
message format used by the LASAD-Server and the one
used internally in the CASE framework. Messages in-
clude notifications (e.g., a diagram has been modified)
and commands (e.g., display a given feedback message to
a given user).

The SessionManager keeps a record of all sessions
(i.e., diagrams) that exist on the LASAD-Server and dis-
tributes incoming messages to the relevant Session.

Sessions comprise all information that is associated
with a specific LASAD diagram, including (1) a Session-
Configuration, which represents invariable aspects such as
the used ontology (e.g., available box and link types) and
available tools (e.g., chat tool), (2) a SessionModel, which
represents fluent aspects such as currently active users
and the current state of the diagram, and (3) Ses-
sionAgents, which are processing units employed to ana-
lyze and support session activities.

The SessionModel serves as a central data repository
for SessionAgents to access and exchange session-related
information. It uses the Jess rule engine to maintain and
continuously update a representation of the current ses-
sion state (e.g., active users; boxes and links in the current
version of the diagram) and of analysis results, i.e., pat-
terns and interpretations derived from the current session
state. Analysis results can be produced in three ways: (1)
Declarative Jess rules, which operate directly on the Jess
fact base, identify patterns of interest (e.g., a circular ar-
gument in the diagram). (2) An AggregationService, which
keeps track of the number of boxes, links and patterns
that follow given specifications, detects that a predefined

condition is fulfilled (e.g., more than x boxes of type t cre-
ated by user u within the last y minutes). (3) SessionAgents
conduct customized analyses (by e.g., applying machine
learned classifiers) that lead to the detection of meaning-
ful patterns.

SessionAgents are processing units that perform spe-
cific tasks related to the analysis of sessions and / or the
generation of feedback. They interact with the Ses-
sionModel by adding or removing analysis rules (at service
startup) and analysis results (during operation). Vice ver-
sa, the SessionModel informs SessionAgents about new or
invalidated analysis results. The SessionAgent interface
provides an extension point in the CASE framework to
add new analysis and feedback capabilities. Already ex-
isting agents include a configurable FeedbackAgent (sec-
tion 6), and the DeepLoopAgent, which integrates AI-based
classifiers to analyze e-Discussions (section 4.4).

5.3.2 Interactions
We illustrate now a typical processing iteration in CASE,
which is triggered by a student action in the end-user
environment (EUE; the graphical LASAD user interface),
such as creating a link, entering text into a box, sending a
chat message, or requesting feedback.

The user action is encapsulated in an EUE-Event, sent
through the LASAD-Server to the DataService component
of the CASE framework, and there converted to the data
format internally used in the CASE framework. From
there, the EUE-Event is transmitted, via the SessionManag-
er and the responsible Session, to the SessionModel.

The SessionModel distributes the EUE-Event to all lis-
tening analysis modules, including (1) the JessRuleEngine,
which updates its internal session representation (Jess
Fact Base) and performs pattern-matching operations ac-
cording to predefined rules (Jess Pattern Matcher), (b) the
AggregationService, which updates its internal tallies and
checks whether predefined conditions on these tallies are
fulfilled, and (c) SessionAgents, which update their inter-
nal models and perform their proprietary analyses, ac-
cording to their specific implementation. The processing
within the analysis modules may lead to the detection of
salient patterns, such as structures in argument diagrams
(e.g., a circular argument; two boxes connected by a link
of the "wrong" type), conditions on tally counts (e.g., no
box of type t in diagram), or text classifications (e.g., a box
is categorized as an off-topic contribution based on the
contained text). Detected patterns are encoded as Analy-
sisResults, packaged in Analysis-Events and re-distributed
between the analysis modules for a second processing
cycle. For instance, the AggregationService may check
whether the number of patterns of a given type exceeds a
threshold. The JessRuleEngine may check for logical com-
binations of patterns. The processing may involve further
cycles.

One specific SessionAgent instance, the FeedbackAgent,
responds to the presence of predefined AnalysisResults by
generating Feedback-Events, which specify feedback to be
displayed in the LASAD user interface. Generated Feed-
back-Events are delivered, through the DataService and
LASAD-Server, to all relevant End-User-Clients.

SCHEUER & MCLAREN: CASE: A CONFIGURABLE ARGUMENTATION SUPPORT ENGINE odd page 9

5.4 Knowledge Representation and Inference
A centerpiece in the CASE architecture is the SessionMod-
el, which employs the JessRuleEngine to model the current
state of LASAD sessions including AnalysisResults in-
ferred from the current session state. The SessionModel
provides a central place in the CASE infrastructure where
processing components, such as the AggregrationService
and SessionAgents, can retrieve session-related infor-
mation and exchange their interpretations of the current
session state. They can utilize the Jess pattern matching
mechanism, which is based on declarative production
rules, to identify salient structures and situations in order
to trigger tutorial support or to facilitate subsequent (me-
ta-level) analyses.

Fig. 4 depicts the knowledge representation scheme
used in the Jess fact base (blue shaded areas), conversion
procedures to translate between Java and Jess-based ob-
ject representations (orange arrows), and inference proce-
dures to derive new knowledge facts from existing ones
(blue arrows). We now describe the processing of an in-
coming EUE-Event (i.e., a user action) within the
JessRuleEngine: from its insertion, to the computation of
derived facts representing the current diagram state, to
the detection of patterns in the current diagram state, to
the notification of listening processing modules about
detected patterns.

EUE-Events arriving at the SessionModel are translated
into Jess action facts and added to the fact base. Jess action
facts structurally correspond to EUE-Events; they repre-
sent crucial information about user actions in the end user
environment including: an action ID, the action type (e.g.,
"create," "modify," "delete"), the actor, a timestamp, and a
description of the manipulated object in terms of its ID
and semantic type (e.g., "hypothesis," "data," "support,"
"oppose"). Depending on whether the manipulated object
is a box, a link, or a sub-element of a box / link (such as a

text field or a dropdown menu), three action subtypes
with additional information are defined: node-actions, link-
actions, and subelement-actions.

Jess action facts are analyzed through a set of Jess rules
to reconstruct the current state of the argument diagram
in terms of its constituent objects (i.e., nodes, links, sub-
elements). Besides state information, Jess object facts hold
relevant process information, such as the object creator,
modifiers, and corresponding timestamp information.
Thus, the chosen knowledge representation format per-
mits the definition of structural patterns (e.g., a node n1
of type t1 is connected to a node n2 of type t2 through a
link l of type t3) that are further constrained through pro-
cess-related properties (e.g., node n1 and n2 were created
by different users; node n1 was created before node n2).
The incorporation of process-related information enables
analyses that take into consideration temporal sequence
(e.g., recent patterns versus old patterns) and patterns of
group interaction (i.e., how diagram structures emerge
from a joint effort of a group).

The current diagram state is analyzed through applica-
tion-specific Jess rules to identify patterns of interest. The
specific rules are defined as part of the FeedbackAgent con-
figuration (for details, see section 6; for examples, see sec-
tion 4). If a pattern has been identified a corresponding
analysis-result fact is added to the fact base. Patterns might
refer to specific sets of objects (object-binary-result), specific
users (user-binary-result), or the session as a whole (ses-
sion-binary-result). CASE allows the definition of meta-
patterns, that is, patterns defined in terms of other pat-
terns (e.g., logical combinations of patterns).

Finally, through a two-way conversion procedure be-
tween Jess and Java object representations, external data
processors, such as the AggregationService and Ses-
sionAgents, read out and write AnalysisResult objects from
and to the fact base.

The described data model can be, and has already

Fig. 4: Knowledge representation and inference processes

10 even page IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, MANUSCRIPT ID

been, extended with additional data structures to allow
more complex analyses, for instance, by representing tal-
lies, paths, cycles, or predefined expert models within the
Jess fact base. Such data structures can be added either
globally, to extend the entire CASE framework, or locally,
as part of one SessionAgent and restricted in scope to a
specific LASAD application. Moreover, the framework
can be easily extended to represent user activities not re-
lated to argument diagrams, such as chat contributions.

6. CASE CONFIGURATION MECHANISM
The behavior of FeedbackAgents is defined on three levels:
Firstly, patterns describe salient structures or situations in
a session, which call for tutorial support. Secondly, tutori-
al actions describe the specific reactions of the Feed-
backAgent in response to detected patterns including tex-
tual statements and highlighting of relevant diagram con-
tents. Thirdly, tutorial strategies describe when exactly to
provide tutorial actions and which tutorial actions to
choose when multiple ones are possible. For instance, a
tutorial agent can provide feedback only when a student
explicitly requests help, or act proactively, checking in
predefined intervals whether relevant feedback is availa-
ble. It can prefer messages that refer to more recent struc-
tures in the diagram and refrain from sending the same
message a second time. Table 1 summarizes the specific
configuration settings of the four previously discussed

CASE applications. The following subsections describe
the available configuration options in greater detail.

6.1 Patterns
Three different ways of defining patterns are currently
supported:

(1) Jess-Patterns can be directly defined using the Jess
rule language. This option offers the full expressive pow-
er of the Jess production rule system but also requires
basic knowledge about Jess syntax and knowledge repre-
sentation and understanding of the functioning of rule-
based systems more generally. By modifying existing pro-
totypical patterns it should also be possible for non-
experts to define patterns of limited complexity without
much effort.

Table 2 shows an XML element that defines a pattern.
The pattern element specifies a pattern ID (id) and indi-
cates that the pattern is defined in the Jess rule language
(type="jess-rule"). In general, the type attribute determines
how the body of the pattern element is interpreted. Ac-
cordingly, the other pattern types described below specify
different values for the type attribute. CASE can be easily
extended to support further pattern types.

The actual Jess-Pattern definition is enclosed in anoth-
er XML element (jess). The pattern (LHS of the rule) com-
prises a node of type "hypothetical" and a second node of
type "fact." There is a link of type "general" pointing from
the "hypothetical" node to the "fact" node. When the pat-

Application Patterns Actions Strategy
LARGO
(analysis of
legal
argumentation
transcripts)

− Count-Patterns focusing on task
progress (e.g., no relations in
workspace but at least three nodes;
no "Test" nodes in workspace)

− Jess-Patterns focusing on domain
structures (e.g., a "Hypothetical"
node isolated from "Test" and "Fact"
nodes; a "Test" node without text in
the "Condition" text field) also
including problem-specific aspects
represented in an expert model (e.g.,
important text passages not yet
included in the diagram)

− Text message
(parameterized with
diagram references)
focusing on problem-
solving support

− Highlighting of
diagram elements

− Feedback-on-Request
− Delivered to the requestor
− Prioritize based on current

problem-solving phase (5
phases considered)

− Select top-5 hints
− Filter out all but one

message per type

Science-Intro
(preparation
for writing
argumentative
texts in science
classes)

− Jess-Patterns focusing on domain
structures (e.g., unconnected node
clusters ["argumentation islands"])

− Text message
(parameterized with
diagram references)
focusing on problem-
solving support

− Highlighting of
diagram elements

− Feedback-on-Request
− Delivered to the requestor
− Prioritize based on current

problem-solving phase (2
phases considered)

− Select top-5 hints
− Filter out all but one

message per type
Metafora
(group
deliberation
about science
and math
problems)

− Jess-Patterns focusing on process
characteristics (e.g., unattended help
requests)

− Text message
(parameterized with
diagram references)
focusing on
collaboration support

− Highlighting of
diagram elements

unattended help requests:
− Automated-Feedback
− Delivered to the entire

group
− No prioritization
− Select one message
− Filter out instance that have

already been pointed to
ARGUNAUT
(argumentation
about ethical
controversies)

− External-Patterns (analyzed by
machine learned classifiers) focusing
on process characteristics (e.g., off-
topic contributions; question-answer
pairs)

− Highlighting and
labeling of diagram
elements to support
the awareness of
moderators
regarding salient
events

− Feedback-on-Request
− Delivered to the requestor
− No prioritization
− Select all messages
− No filters

Table 1: Configuration settings used in the four example applications.!

SCHEUER & MCLAREN: CASE: A CONFIGURABLE ARGUMENTATION SUPPORT ENGINE odd page 11

tern on the rule's LHS is matched, the rule's RHS will be
executed. Here, an object-binary-result fact that holds im-
portant information regarding the detected pattern
(agent-id, pattern-id, matched objects) is added to the fact
base.

Additional pattern filters can be defined (pattern-
filters), for instance, to limit the scope to recent or old pat-
terns, or patterns the user under consideration has con-
tributed to. The example XML snippet in Table 2 does not
define additional filters.

<pattern	
 id="..."	
 type="jess-­‐rule">	

	
 	
 	
 <jess>	

	
 	
 	
 	
 	
 (defrule	
 R35	

	
 	
 	
 	
 	
 	
 	
 (logical	

	
 	
 	
 	
 	
 	
 	
 	
 	
 (node	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (id	
 ?hypo_id)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (type	
 "hypothetical"))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 (node	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (id	
 ?fact_id)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (type	
 "fact"))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 (link	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (id	
 ?link_id)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (type	
 "general")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (source_id	
 ?hypo_id)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (target_id	
 ?fact_id)))	

	
 	
 	
 	
 	
 	
 	
 	
 =>	

	
 	
 	
 	
 	
 	
 	
 (assert	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 (object-­‐binary-­‐result	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (agent-­‐id	
 "largo-­‐default")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (type	
 "hypo_facts_relation_general")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (object-­‐ids	
 ?hypo_id	
 ?fact_id	
 ?link_id))))	

	
 	
 	
 </jess>	

	
 	
 	
 <pattern-­‐filters	
 />	

</pattern>	

Table 2: Jess-Rule (simplified for illustration purposes)

 (2) Count-Patterns define conditions on the number of

boxes, links or other patterns in a session. They can be
specified directly in XML (not shown here) and are pro-
cessed by the AggregrationService, which adds new analy-
sis-results automatically to the Jess fact base when a coun-
ter condition is fulfilled. A counter pattern consists of a
counter definition (e.g., "count all links of type t") and a
counter condition (e.g., "count >= 3"). Counter definition
options include: (a) count all nodes or links; (b) count
specific node, link, or pattern types; (c) count only recent
or old instances; (d) maintain a counter for the entire
group or for each individual user; and (e) count only in-
stances the user under consideration has created, modi-
fied, or not modified. These options can be combined in a
variety of ways to specify counter definitions.

(3) External-Patterns are analyzed by external compo-
nents that connect with CASE over a well-defined API.
The CASE framework acts as a mere "consumer" of these
patterns, indifferent to how these patterns are defined or
computed, so there are also no restrictions in this respect
(e.g., machine-learned models can be used).

(4) XML-Patterns are based on a XML language that we
have developed to reduce the complexity inherent in the
original Jess rules. We are aiming at a tradeoff between
expressiveness and ease of use. XML-Patterns are auto-
matically translated into operational Jess code.

6.2 Tutorial Actions
Table 3 shows an XML element that defines a tutorial ac-
tion. Analogously to the pattern definition described in
section 6.1, the type attribute determines how the body of
the action element is interpreted. That is, CASE can be
easily extended with other types of tutorial actions that
support different parameterization options. Feedback
actions are activated by a specific pattern (trigger).

<action	
 id="..."	
 type="feedback">	

	
 	
 	
 <trigger	
 pattern-­‐id="..."	
 />	

	
 	
 	
 <message>	

	
 	
 	
 	
 	
 <short>...some	
 text...</short>	

	
 	
 	
 	
 	
 <long>...some	
 text	
 ...</long>	

	
 	
 	
 	
 	
 <highlighting	
 />	

	
 	
 	
 </message>	

	
 	
 	
 <priority>	

	
 	
 	
 	
 	
 <default	
 priority="1"	
 />	

	
 	
 	
 	
 	
 <phase	
 idref="3"	
 priority="10"	
 />	

	
 	
 	
 </priority>	

</action>	

Table 3: Tutorial Action Specification (simplified)

The feedback message itself (message) has three com-

ponents: (1) a short message, which provides feedback in
a concise way, (2) a long message, which provides a more
detailed explanation, only displayed when the user clicks
on the short message, and (3) a highlighting flag, which
indicates whether objects that are part of the pattern
should be visually highlighted in the user interface. The
message texts can be formatted through HTML tags (e.g.,
bold, italics). Moreover, messages themselves can be pa-
rameterized through a control flag "[##parameter-
name##]." When the message is delivered, this placehold-
er will be substituted by the actual value of the parame-
ter, for instance, the box number displayed in the LASAD
user interface to help students identifying diagram ele-
ments mentioned in the message text. In general, all in-
formation represented in the Jess fact base can be de-
clared as a parameter and used in text messages.

The FeedbackAgent supports the prioritization of tutori-
al actions. There might be many messages activated at the
same time. For instance, in some situations more than 100
messages were relevant and could have been provided in
LARGO. To not overwhelm students, an informed selec-
tion of the most critical message is required. This decision
should also consider the current problem-solving phases,
since in each phase some messages may be relevant (and
others not) and some tutorial actions may be preferable
over others. For instance, at the beginning of creating a
diagram, we might expect students to represent relevant
statements. Only in a later stage might we expect them to
interrelate these statements. A tutorial strategy might be
to prompt students in the early stage to create boxes
(statements; pattern: #boxes < X) and in the later stage to
create links (relations; pattern: #boxes ≥ X ∧ #links < Y).
The first part of this pattern ("#boxes ≥ X") defines a "rel-
evance condition," which ensures that the pattern will not
be activated in the earlier stage.

The phase-based prioritization procedure is governed
by corresponding annotations of each tutorial action (pri-

12 even page IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, MANUSCRIPT ID

ority). There is a default priority value (default) that can be
overwritten by phase-specific priority values (phase). The
assigned priority values serve essentially two purposes:
In a first step, probabilities are assigned to each phase,
based on all patterns (and associated priorities) that are
detected in the current diagram state. That is, if many
patterns that are strongly associated with a phase X are
detected, then there will be a high probability for phase
X. In a second step, all possible tutorial actions are priori-
tized according to their priority values for the most likely
phase (which is assumed to be the current phase). This
approach is based on the prioritization procedure devel-
oped in LARGO [11]. Whether the phase-based prioritiza-
tion is ultimately activated, maybe as one component of a
more comprehensive prioritization procedure, can be con-
figured as part of the tutorial strategy specification de-
scribed in section 6.3.

We are planning to enhance the available configura-
tion options in future CASE versions. For instance, alter-
native modes of displaying feedback messages can sup-
port different levels of obtrusiveness (e.g., a separate
feedback message panel, for which the user decides if and
when to pay attention to, versus popup windows, which
force the user to acknowledge that she has read the mes-
sage before proceeding). Such enhancements enable an
experimental investigation of different feedback realiza-
tions. A further step would be to adaptively decide wheth-
er to provide feedback obtrusively or not, depending on
the current situation and the urgency of the detected
problem. Corresponding decision heuristics could be con-
figured as part of tutorial strategies, discussed next.

6.3 Tutorial Strategies
Table 4 shows an XML element that defines a tutorial
strategy for tutorial actions. In this example, tutorial ac-
tions are triggered when the user explicitly requests feed-
back (provision-time="on-request"). To request feedback,
the user can select a menu item in the user interface, la-
beled "Get hint" (display-name). We are currently working
on a second option to deliver tutorial actions proactively,
in predefined intervals. Tutorial actions are targeted at
individual users (recipient type="individual"), as opposed
to broadcasting them to each member of a learner group
(recipient type="group").

<provision	
 id="..."	
 type="sort-­‐and-­‐filter">	

	
 	
 	
 <provision-­‐time	
 type="on-­‐request">	

	
 	
 	
 	
 	
 <display-­‐name>Get	
 hint</display-­‐name>	

	
 	
 	
 </provision-­‐time>	

	
 	
 	
 <recipient	
 type="individual"	
 />	

	
 	
 	
 <provided-­‐actions	
 all-­‐own-­‐actions="true"	
 />	

	
 	
 	
 <action-­‐filters>	

	
 	
 	
 	
 	
 <action-­‐filter	
 type="one-­‐instance-­‐per-­‐type"	
 />	

	
 	
 	
 	
 	
 <action-­‐filter	
 type="no-­‐instance-­‐twice"	
 />	

	
 	
 	
 </action-­‐filters>	

	
 	
 	
 <sort-­‐criteria>	

	
 	
 	
 	
 	
 <sort-­‐criterion	
 type="phase-­‐priority"	
 />	

	
 	
 	
 </sort-­‐criteria>	

	
 	
 	
 <number-­‐of-­‐actions>5</number-­‐of-­‐actions>	

</provision>	

Table 4: Tutorial Strategy Specification (simplified)

In general, all tutorial actions defined in this Feed-
backAgent are considered in this strategy (all-own-
actions="true"). Alternatively, a selection of tutorial ac-
tions that are relevant can be enumerated. The set of rele-
vant tutorial actions can be further reduced using a list of
filters (action-filters). Here, each tutorial action is provided
at most once at a time (one-instance-per-type). For instance,
if the same pattern matches multiple structures in a dia-
gram, only one feedback message is considered, rather
than messages for each pattern instance. Which message
this is depends on the given prioritization criteria, dis-
cussed below. The second filter (no-instance-twice) ensures
that the same feedback message is never provided twice,
based on the history of previous messages.

The resultant set of tutorial actions is then sorted ac-
cording to a list of predefined criteria (sort-criteria). In the
example, the phase-based prioritization procedure dis-
cussed in section 6.2 is activated (phase-priority). It is pos-
sible to combine different prioritization heuristics such as
phase-priority, prefer-recent-structures, or prefer-structures-
not-yet-pointed-to. The list of sort criteria is then processed
from the top to the bottom. Criteria lower in the list are
used as "tie-breakers." Only when preceding criteria can-
not decide which tutorial action is most important subse-
quent criteria will be applied [26]. Finally, a cut-off point
is defined (number-of-actions). In this specific example the
first five tutorial actions of the sorted action list are deliv-
ered. Through its modular design, CASE can be easily
enhanced with further filter and prioritization criteria.

7 KNOWLEDGE ENGINEERING MODEL
In this section we describe how to design, implement, and
evolve adaptive support for argumentation diagramming
activities in a systematic manner using the CASE frame-
work. We will hint at several relevant pedagogical con-
siderations; a more detailed treatment regarding the ped-
agogy of system-delivered feedback can be found else-
where [4], [27]. We propose a knowledge engineering
process that unfolds into inner cycles in which system con-
figurations are developed in a three-step process and out-
er cycles in which the resultant system configurations are
tested to inform improvements for the next design itera-
tion. Authors will typically not execute the steps of the
inner cycle in strict sequence, but rather move opportun-
istically back and forth between steps to fine-tune and
match the definitions of patterns, messages and strategies.

Step 1: Pattern Definition. The first step is to decide
what patterns are relevant and should be reacted to. A
basic decision is which processes to support: problem
solving, collaboration, or both. The definition of specific
patterns may be based on theoretical considerations /
previous research (e.g., typical problems in student-
student interactions), concrete problems observed in pre-
ceding sessions, or a combination of both approaches (for
instance, by checking whether problems reported in the
literature can actually be observed in the current setting).
An approach on how to operationalize the identified pat-
terns within the CASE framework must be chosen. If pat-
terns are well defined or can be heuristically approximat-

SCHEUER & MCLAREN: CASE: A CONFIGURABLE ARGUMENTATION SUPPORT ENGINE odd page 13

ed (e.g., diagram constellations that violate syntactic con-
straints), Jess rules (Jess-Patterns) or counter conditions
(Count-Patterns) can be used. If patterns cannot be easily
described in a declarative format, possibly because the
conceptual idea does not translate easily into a concrete
executable definition or the pattern is overly complex
(e.g., patterns in natural language expressions), a feasible
approach might be to automatically induce patterns using
machine learning. The development of machine-learned
classifiers is a separate knowledge engineering process
involving collecting, coding and preprocessing of data;
experimentation; and performance validation [19]. A
number of general-purpose machine-learning toolkits are
available to support that process, e.g., WEKA [28]. The
resulting classifiers can be integrated into CASE as exter-
nal services (External-Patterns) using a predefined API.

Step 2: Message Definition. The second step is to de-
cide how to respond to patterns. Typically, non-
authoritative message formulations are preferable since
patterns are often heuristic in nature and do not neces-
sarily, and without fail, identify errors on the part of the
student [26]. Other important decisions include feedback
/ advice specificity (e.g., conceptual versus procedural
hints), message length (e.g., students might be more in-
clined to read shorter messages), and message tone (polite
versus impersonal). If the message relates to some con-
crete structures in the diagram, highlighting of these
structures is often helpful to students in locating relevant
diagram contents quickly.

Step 3: Strategy Definition. The third step is to decide
if and when to respond to specific patterns. On the one
hand, feedback-on-request may not be used frequently,
even if students would benefit from it [11], [26]. On the
other hand, unsolicited feedback may interrupt the prob-
lem solving / collaboration process and be perceived as
annoying by the students. Mixed strategies might be con-
sidered, e.g., immediate, unrequested feedback to reme-
diate collaboration problems (e.g., one student does not
contribute to the solution at all), and feedback-on-request
to give students the option to request hints on how to
proceed with the task when they are stuck. If the number
of patterns that can occur at a time is high, strategies
should involve the informed prioritization and selection
of messages. Authors may develop an idealized problem-
solving model that subdivides the process into discrete,
consecutive phases, each associated with patterns and
messages that are particularly important in that phase.
This model might be built based on theory and expert
judgment or by inspecting prior learning sessions. Based
on such models, messages can be annotated with phase-
specific priority values, which are used by the system to
make an informed selection between messages. Pattern
definitions might also be adjusted to ensure that patterns
are not activated before they become relevant according
to the phase model ("relevance conditions").

8. CONCLUSION AND FUTURE WORK
In this paper, we presented the CASE framework, a high-
ly configurable software component to analyze and sup-

port educational argument diagramming activities. The
CASE architecture has been devised with important soft-
ware design concerns in mind. Maintainability and exten-
sibility have been achieved through a modular design
and predefined extensions points, which enable new
functionality to be easily added. In order to make CASE
highly configurable and thus usable across a wide range
of scenarios and domains we have created a comprehen-
sive configuration sub-system, parameterizable through
XML and a dedicated API, allowing configuration chang-
es at any time. The built-in mechanisms for parameteriz-
ing tutorial behavior enable researchers and practitioners
to create tutorial support across a wide range of applica-
tion. To illustrate this we presented and discussed four
applications that demonstrate the diversity of CASE in-
cluding application to different domains, student tasks
and types of tutorial support.

Despite the many aspects of CASE that have been de-
veloped, there is potential for pushing the envelope fur-
ther. An important contribution, distinguishing CASE
from other pattern-matching approaches to support ar-
gumentation (e.g., [26], [11]), is its capability to identify
and respond to patterns in student-student interactions.
Yet, student collaboration includes chat discussions, in
addition to actions taken in argument diagrams, so stu-
dents can coordinate diagramming activities and discuss
diagram contents. To assess the quality of collaboration in
a more precise and comprehensive way, we plan to extent
CASE so that diagram and chat activities can be jointly
analyzed (cross-modality analysis).

Another CASE asset, whose potential we intend to ex-
tend, is the integration of external analysis modules, as
exemplified by ARGUNAUT's Deep Loop [19]. Else-
where, we describe how individual Deep Loop classifica-
tions, which only refer to a relatively small portion of an
argument diagram (e.g., a single contribution or a pair of
contributions), can be aggregated to summarize a discus-
sion in a more holistic way [29]. CASE provides a frame-
work that can accomplish this. With a few technical en-
hancements CASE could aggregate and combine patterns
originating from external analysis modules in various
ways. Another interesting option is to include analysis
results that are not based on argument diagramming ac-
tivities at all. For instance, in Metafora, LASAD is only
one of several learning tools. Students also use micro-
word simulations, some of which include tool-specific
analysis modules. Integrating these analysis modules
with the CASE framework allows cross-tool analyses,
which correlate students' structural discussions in
LASAD with their activities in other tools. From a peda-
gogical perspective, existing diagnostic capabilities could
be improved – or new ones enabled – with the additional
accessible information. From a technical perspective,
well-established and tested analysis modules can be re-
used.

Finally, some lecturers use argument diagramming as
an integral part of their classes, that is, students use a dia-
gramming tool regularly, throughout an entire semester
(or even beyond) [30]. The current version of CASE has
been designed with a focus on a single session. Hence, a

14 even page IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, MANUSCRIPT ID

possible extension is a cross-session student model, which
continuously assesses students (argumentation) skills and
misconceptions, based on the quality of created diagrams.
On the basis of such a model, feedback could be better
tailored to individual students based on his or her learn-
ing history. Moreover, in the sense of a classical ITS outer
loop [31], problems could be selected appropriate to the
student's current skill level. For instance, a LARGO tran-
script could be chosen to match the transcript difficulty
with the student's level of expertise.

Acknowledgements. We would like to thank Kevin Ash-
ley, Toby Dragon, Collin Lynch, and Niels Pinkwart for
feedback regarding the descriptions of CASE applica-
tions. This work is supported by the German Research
Foundation (DFG) under the grant “Learning to Argue:
Generalized Support Across Domains” (LASAD).

REFERENCES

[1] R. Driver, P. Newton, and J. Osborne, "Establishing the norms of
scientific argumentation in classrooms," Science Education, vol. 84, no.
3, pp. 287–312, 2000.

[2] T. van Gelder, "Argument mapping with Reason!Able," The American
Philosophical Association Newsletter on Philosophy and Computers, vol. 2,
no. 1, pp. 85–90, 2002.

[3] O. Scheuer, F. Loll, N. Pinkwart, and B.M. McLaren, "Computer-
Supported Argumentation: A Review of the State of the Art," Intl. J.
Computer-Supported Collaborative Learning, vol. 5, no. 1, pp. 43–102,
2010.

[4] O. Scheuer, B.M. McLaren, F. Loll, and N. Pinkwart, "Automated
Analysis and Feedback Techniques to Support and Teach Argumen-
tation: A Survey," Educational Technologies for Teaching Argumentation
Skills, N. Pinkwart, and B.M. McLaren, eds., pp. 71-124, Bentham Sci-
ence, 2012.

[5] F. Loll, N. Pinkwart, O. Scheuer, and B.M. McLaren, "How Tough
Should It Be? Simplifying the Development of Argumentation
Systems using a Configurable Platform," Educational Technologies for
Teaching Argumentation Skills, N. Pinkwart and B.M. McLaren, eds.,
pp. 169–197, Bentham Science Publishers, 2012.

[6] A. Soller, A.M. Monés, P. Jermann, and M. Mühlenbrock, "From
Mirroring to Guiding: A Review of State of the Art Technology for
Supporting Collaborative Learning," Intl. J. Artificial Intelligence in Ed-
ucation, vol. 15, pp. 261–290, 2005.

[7] I. Magnisalis, S. Demetriadis, and A. Karakostas, "Adaptive and Intel-
ligent Systems for Collaborative Learning Support: A Review of the
Field," IEEE Trans. Learning Technologies, vol. 4, no. 1, pp. 5–20, 2011.

[8] P. Bell, "Using Argument Representations to Make Thinking Visible
for Individuals and Groups," Proc. 2nd Intl. Conf. Computer-Supported
Collaborative Learning (CSCL-97), R. Hall, N. Miyake, and N. Enyedy,
eds., pp. 10–19, Toronto: University of Toronto Press, 1997.

[9] O. Scheuer, B.M. McLaren, A. Weinberger, and S. Niebuhr, "Promot-
ing critical, elaborative discussions through a collaboration script and
argument diagrams," Instructional Science, 2013. doi:10.1007/s11251-
013-9274-5

[10] F. Loll and N. Pinkwart, "LASAD: Flexible representations for
computer-based collaborative argumentation," Intl. J. Human-
Computer Studies, vol. 71, no. 1, pp. 91–109, 2013.

[11] N. Pinkwart, K.D. Ashley, C. Lynch, and V. Aleven, "Evaluating an
Intelligent Tutoring System for Making Legal Arguments with Hy-
potheticals," Intl. J. Artificial Intelligence in Education, vol. 19, no. 4, pp.
401–424, 2009.

[12] A. Soller, "Supporting social interaction in an intelligent collaborative
learning system," Intl. J. Artificial Intelligence in Education, vol. 12, pp.
40–62, 2001.

[13] K. Ashley, Modeling Legal Argument: Reasoning with Cases and Hypo-
theticals, Cambridge MA: MIT Press/Bradford Books, 1990.

[14] C. Lynch and K.D. Ashley, "Modeling Student Arguments in Re-
search Reports," Proc. 4th AHFE Conf., V.G. Duffy, ed., pp. 191-201,
CRC Press, 2012.

[15] T. Dragon, B.M. McLaren, M. Mavrikis, A. Harrer, C. Kynigos, R.
Wegerif, and Y. Yang, "Metafora: A Web-based Platform for Learning

to Learn Together in Science and Mathematics," IEEE Trans. Learning
Technologies, in press.

[16] D.W. Johnson and R.T. Johnson, Learning together and alone:
Cooperation, competition, and individualization, p. 53, Englewood Cliffs,
NJ: Prentice Hall, 1991.

[17] N.L. Kerr, "Motivation losses in small groups. A social dilemma anal-
ysis," J. Personality and Social Psychology, vol. 45, pp. 819–828.

[18] M.W. Berkowitz and J.C. Gibbs, "Measuring the developmental
features of moral discussion," Merrill-Palmer Quarterly, vol. 29, pp.
399–410, 1983.

[19] B.M. McLaren, O. Scheuer, and J. Mikšátko, "Supporting collabora-
tive learning and e-Discussions using artificial intelligence tech-
niques," Intl. J. Artificial Intelligence in Education, vol. 20, no. 1, pp. 1–46,
2010.

[20] B.B. Schwarz and A. Glassner, "The role of floor control and of ontol-
ogy in argumentative activities with discussion-based tools," Intl. J.
Computer-Supported Collaborative Learning, vol. 2, no. 4, pp. 449–478,
2007.

[21] H.U. Hoppe and K. Gaßner, "Integrating collaborative concept map-
ping tools with group memory and retrieval functions," Proc. of the
Conf. Computer Supported Collaborative Learning 2002, G. Stahl, ed., pp.
716–725, 2002.

[22] M. Baker, J. Andriessen, K. Lund, M. van Amelsvoort, and M. Qui-
gnard, "Rainbow: A Framework for Analyzing Computer-Mediated
Pedagogical Debates," Intl. J. Computer-Supported Collaborative Learn-
ing, vol. 2, no. 2–3, pp. 247–272, 2007.

[23] R. Wegerif, B.M. McLaren, M. Chamrada, O. Scheuer, N. Mansour, J.
Mikšátko, and M. Williams, "Exploring creative thinking in graphical-
ly mediated synchronous dialogues," Computers & Education, vol. 54,
no. 3, pp. 613–621, 2009.

[24] A. Harrer, S. Ziebarth, A. Giemza, and U. Hoppe, "A framework to
support monitoring and moderation of e-discussions with heteroge-
neous discussion tools," Proc. 8th IEEE Intl. Conf. Advanced Learning
Technologies 2008, pp. 41–45, 2008.

[25] E. Friedman-Hill, Jess in Action: Java Rule-Based Systems, p. 38, Green-
wich CT: Manning Publications, 2003.

[26] D. Suthers, J. Connelly, A. Lesgold, M. Paolucci, E. Toth, J. Toth, and
A. Weiner, "Representational and Advisory Guidance for Students
Learning Scientific Inquiry," Smart machines in education: The coming
revolution in educational technology, K.D. Forbus and P.J. Feltovich, eds.,
pp. 7–35, Menlo Park: AAAI/MIT Press, 2001.

[27] V.J. Shute, "Focus on Formative Feedback," Review of Educational Re-
search, vol. 78, no. 1, pp. 153–189, 2008.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten, "The WEKA Data Mining Software: An Update," SIGKDD
Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[29] O. Scheuer and B.M. McLaren, "Helping teachers handle the flood of
data in online student discussions," Proc. 9th Intl. Conf. Intelligent Tu-
toring Systems, B. Woolf, E. Aimeur, R. Nkambou, and S. Lajoie, eds.,
pp. 323–332, Berlin: Springer, 2008.

[30] C.R. Twardy, "Argument Maps Improve Critical Thinking," Teaching
Philosophy, vol. 27, no. 2, pp. 95–116, 2004.

[31] K. VanLehn, "The behavior of tutoring systems," Intl. J. Artificial Intel-
ligence in Education, vol. 16, no. 3, pp. 227–265, 2006.

Oliver Scheuer is a researcher at the Center
for e-Learning Technology (CeLTech), at
Saarland University, Germany. His research
concerns adaptive technologies for computer-
supported collaborative learning, in particular,
argumentation learning. In this field, he has
published more than 30 papers in peer-
reviewed journals, conferences and work-
shops, focusing on topics such as the applica-
tion of educational data mining and intelligent
tutoring techniques, the design of software

architectures, and empirical studies of learning.

Bruce M. McLaren is a Senior Systems Sci-
entist in the Human-Computer Interaction
Institute at Carnegie Mellon University in
Pittsburgh, PA USA and an Adjunct Senior
Researcher with the Center for e-Learning
Technology (CeLTech), at Saarland Universi-
ty, Germany. Dr. McLaren has research inter-
ests in educational technology, collaborative
learning, intelligent tutoring, and artificial
intelligence. He has over 100 publications in

peer-reviewed journals, conferences, and workshops.

SCHEUER & MCLAREN: CASE: A CONFIGURABLE ARGUMENTATION SUPPORT ENGINE odd page 15

