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Abstract: Recent student knowledge modeling algorithms such as Deep Knowledge Tracing 
(DKT) and Dynamic Key-Value Memory Networks (DKVMN) have been shown to produce 
accurate predictions of problem correctness within the same learning system. However, these 
algorithms do not attempt to directly infer student knowledge. In this paper we present an 
extension to these algorithms to also infer knowledge. We apply this extension to DKT and 
DKVMN, resulting in knowledge estimates that correlate better with a posttest than 
knowledge estimates from Bayesian Knowledge Tracing (BKT), an algorithm designed to 
infer knowledge, and another classic algorithm, Performance Factors Analysis (PFA). We also 
apply our extension to correctness predictions from BKT and PFA, finding that knowledge 
estimates produced with it correlate better with the posttest than BKT and PFA’s standard 
knowledge estimates. These findings are significant since the primary aim of education is to 
prepare students for later experiences outside of the immediate learning activity. 
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1. Introduction 
 
In the last five years, a revolution has been underway in student knowledge modeling. For two 
decades, a dominant algorithm, Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1995) was 
the primary option. Other algorithms, both variants on BKT and – after 14 years – variants on logistic 
regression (e.g., Pavlik, Cen, & Koedinger’s [2009] Performance Factors Analysis [PFA]) and item 
response theory (Wauters, Desmet, & Van Den Noortgate, 2010) competed with BKT, but the 
differences in performance between algorithms were small (Gong, Beck, & Heffernan, 2010). 

Then, after two decades, Piech et al. (2015) published an exciting new algorithm, Deep 
Knowledge Tracing (DKT), based on recurrent neural networks, along with initial evidence that its 
performance at predicting immediate correctness was substantially higher than BKT. Though the 
difference appears to be somewhat smaller than initially reported, there nonetheless appeared to be a 
benefit to using DKT instead of BKT (Xiong, Zhao, Van Inwegen, & Beck, 2016; Khajah, Lindsey, & 
Mozer, 2016). Several papers quickly emerged, proposing extensions and improvements to DKT (e.g., 
Cheung & Yang, 2017; Yeung & Yeung, 2018; Zhang, Shi, King, & Yeung, 2017; Zhang, Xiong, 
Zhao, Botelho, & Heffernan, 2017), while other papers explored the utility of additional machine 
learning methods  in predicting problem correctness (e.g., Jiang, Ye, & Zhang, 2018; Lincke, Jansen, 
Milrad, & Berge, 2019). 

However, DKT and its successor algorithms seemed to have two significant limitations 
relative to earlier approaches. First, DKT as originally implemented produced unstable performance, 
with oscillating predictions that sometimes went down after producing a correct answer. Yeung and 
Yeung (2018) proposed a regularization procedure which addresses this limitation. Second, DKT 
produced only predictions of correctness rather than an estimate of student knowledge on specific 
human-interpretable skills (see discussion in Pelánek, 2017). The first half of this limitation was 
addressed by J. Zhang and colleagues (2017), who introduced a skill-item matrix in their approach, 
Dynamic Key-Value Memory Networks (DKVMN). DKVMN produces predictions of latent 
knowledge, but with reference to a machine-generated set of skills rather than a human-designed set 
of skills (the same interpretability limitation is seen in recent approaches that modify BKT to bring its 
performance into line with DKT – e.g., Khajah et al., 2016). 

Indeed, despite DKVMN’s stated goal of inferring external knowledge, the initial paper on 
this algorithm did not attempt to actually predict performance on external measures of knowledge, 
sticking to the now-dominant paradigm of predicting immediate correctness. What’s more, to the best 
of our knowledge, none of the dozens of papers of DKT and its successors have explicitly attempted 
to measure how well these approaches perform at inferring the knowledge that is carried outside the 



learning system, through a post-test or other methods, in strong contrast to the early work on BKT, 
where considerable attention was paid to this goal (e.g., Corbett & Anderson, 1995; Corbett & 
Bhatnagar, 1997. Also see Pardos, Gowda, Baker, & Heffernan, 2011, for an example including 
PFA). While other recent papers attempt to tie learning data to skill proficiency (e.g., Wong et al., 
2017; Yeung, 2019), their approaches focus on allowing algorithms to discover skills and skill 
relationships rather than linking back to known and interpretable external skills.  

To address this issue, in this paper we attempt to reconnect student knowledge modeling with 
its initial roots in predicting student knowledge that goes beyond the confines of the learning system. 
First, we propose a very simple extension that can be applied to DKT, DKVMN, and other algorithms 
in this family, to enable the algorithms to predict external performance on externally-defined and 
meaningful skills. This extension consists solely of taking the real-time predicted probability of 
correctness over all items that a student answered that have been tagged with each external skill, and 
then calculating the mean of those values for each student, within each skill. To some extent, this 
follows the “correct first attempt rate” used by Yu et al. (2010) in their KDD Cup winning entry, 
combining students’ performance on all the problems that they attempt. It also captures a student’s 
degree of difficulty in getting to mastery within the system as well as their final state; as Corbett and 
Bhatnagar (2017) note, final mastery estimates can be incomplete estimates of the knowledge a 
student carries out of a system when that system has enough practice for most students to reach high 
within-system proficiency. Although this paper applies this extension solely to predicting 
performance on an external test, this extension could also be used to report current skill levels to 
students and teachers in a meaningful fashion (in skill bars, perhaps, as seen in Cognitive Tutors and 
other platforms [Koedinger & Aleven, 2007]).  

Second, we apply this extension to the outputs of DKT and DKVMN, and compare their 
performance on an external post-test measure of student knowledge to the classic BKT and PFA 
algorithms. Since it is classic BKT that has extensive evidence for making latent knowledge 
predictions that are both interpretable and predict post-tests effectively, we use BKT’s original 
formulation rather than modern extensions (i.e., Khajah et al., 2016). Third, we apply this extension to 
BKT and PFA as well, finding that the same extension improves prediction of post-test performance 
for these algorithms as well. 

In the remainder of this paper, we present each algorithm in greater detail, present the data set 
that these algorithms will be compared within, discuss results, and then conclude with a discussion of 
implications and future extensions. 
 
 
2. Algorithms Studied 
 
2.1 Deep Knowledge Tracing 
 
Deep knowledge tracing (DKT) uses recurrent neural networks to model student performance learning 
(Piech et al., 2015). It does not provide estimates of latent student knowledge (unlike BKT), and does 
not provide estimates of performance for a skill in general (unlike PFA), only predictions of 
correctness for each actual problem in the data. We implemented DKT using code from Yeung and 
Yeung (2018), who added extensions to the original method (Piech et al., 2015). The extensions 
address irregular fluctuations in correctness probabilities as students complete the learning activities 
and eliminate occasional instances where estimated correctness probabilities either decreased after 
correct answers or increased after incorrect answers.  

In order to generate predictions of external knowledge, we took the probability of correctness 
over all items that a student answered from each skill, and then calculated the mean of those values 
for each student, within each skill.1 These resulting means were then used as knowledge estimates. We 
refer to these knowledge estimates as coming from mean-DKT. 

 
2.2 Dynamic Key-Value Memory Networks for Knowledge Tracing 
 
Dynamic Key-Value Memory Networks (DKVMN) represents states and the relationships within 
them with two matrices, one for storing internally-derived knowledge components and KC-item 
mappings and the other for storing the mastery associated with each knowledge component (J. Zhang 
et al., 2017). While DKVMN produces latent knowledge estimates like BKT, unlike BKT these 
estimates cannot be straightforwardly mapped back to externally-defined skills, as a new skill-item 
mapping is distilled bottom-up by DKVMN. Therefore, in order to map DKVMN’s estimates back to 
the posttest, we used the same approach as for DKT: we calculated the mean probability of 
correctness for each item associated with each skill for each student and used these means as 

                                                
1 Using DKT, we were unable to calculate valid correctness predictions for 22 problem attempts, out of a 

total of 70,552 attempts. Those invalid attempts were omitted. 



knowledge estimates, referring to those estimates as coming from mean-DKVMN. Code from J. 
Zhang and colleagues (2017) was used to implement DKVMN. 
 
2.3 Bayesian Knowledge Tracing  
 
Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1995) is an algorithm that infers the 
probability that students have mastered a skill and the probability they will correctly answer a 
question which demonstrates that skill. BKT is often thought to differ from other knowledge and 
performance modeling algorithms in that it explicitly models latent knowledge as well as predicting 
future correct performance (e.g., Baker, 2019), differentiating between the two with estimates of slip 
and guess that reflect how performance may not entirely match knowledge. In this study, BKT was 
implemented using code from Baker et al. (2010), which estimates guess, slip, initial knowledge, and 
learning transition probabilities for each skill. The parameters were bounded to avoid model 
degeneracy (Baker, Corbett, & Aleven, 2008), with a floor of 0.01 for all probabilities, a ceiling of 0.3 
for guess and slip, and all others having a ceiling of 0.99. 

The parameter estimates were applied to the problem data using Excel and the final 
probability of having learned each skill was recorded for each student. In addition to taking the final 
probability estimated for each skill, we also calculated knowledge estimates by computing the mean 
correctness probability for each skill for each student across all of that student’s attempted problems, 
for comparability to the approach used for DKT and DKVMN. We refer to this variation as 
mean-BKT. 
 
2.4 Performance Factors Analysis 
 
Performance Factors Analysis (PFA), pioneered by Pavlik, Cen, and Koedinger (2009), models and 
predicts student performance using a logistic regression equation that models changes in performance 
in terms of the number of student successes and failures that have occurred for each skill. PFA 
estimates the probability of correctness, which is considered as an estimation of learning (Pavlik et al., 
2009). In this study, the algorithm was implemented in Excel following the formulas in Pavlik et al. 
(2009), and using the Excel equation solver to determine optimal parameter estimates. The final 
learning probability was recorded for each skill for each student. 

As with the other algorithms, we also calculated knowledge estimates by computing the mean 
correctness probability for each skill for each student across all of that student’s attempted problems. 
We refer to this variation as mean-PFA. 
 
 
3. Participants and Data Collection 
 
Data from the present study were originally collected for a series of studies, conducted across three 
semesters, on the effectiveness of erroneous examples on student learning (Richey et al., 2019). The 
studies aimed to improve students’ understanding of decimal numbers and their operations, 
particularly relating to several common misconceptions held by students (Stacey, Helme, & Steinle, 
2001). Participants in the study were sixth-grade students at five urban and suburban schools in the 
northeast U.S. Data were collected over a six-day period in each study. The materials used in the three 
studies were the same except that the second and third semester versions of the study had twelve more 
practice problems than the first. The students received slightly different educational materials 
depending on whether they were assigned to an erroneous examples group or a more standard 
problem-solving group. Students in both groups received the same problem content, but erroneous 
examples problems began by describing a hypothetical student who had answered the problem 
incorrectly. In both groups, students were then asked to solve a problem (in the case of erroneous 
examples, this meant finding and correcting the error) and answer an explanatory multiple-choice 
question about their reasoning. If students responded correctly, they proceeded to the next problem; if 
they responded incorrectly, they were prompted to answer the incorrect sub-problem(s) with errors 
again until they got it correct. The materials used did not contain any hints. 
 A total of 598 students were included in the studies, with 287 students in the erroneous 
examples group and the remaining 311 in the problem-solving group. 
 All materials and posttests were delivered through the Tutorshop learning management 
system, which recorded students’ interactions (Aleven, McLaren, & Sewall, 2009). The materials 
were developed with the Cognitive Tutor Authoring Tools (Aleven et al., 2016). More information 
about the materials is available in Richey et al. (2019), McLaren, Adams, and Mayer (2015), and 
Adams et al. (2014). More information about the skills and their relationship to the misconceptions is 
available in Nguyen, Wang, Stamper, and McLaren (2019). 



 Students in the study were given 36 (208 students) or 48 (390 students) problems aimed to 
increase their understanding of decimal numbers. Each of the 36 or 48 problems comprised several 
subproblems. The problems covered four different skills:  

• Ordering decimal numbers by magnitude 
• Placing decimal numbers on a number line 
• Completing a sequence of decimal numbers 
• Adding two decimal numbers 

 In total, our data set contained 70,552 student attempts at subproblems: 28,908 for ordering 
decimals, 24,115 for placement on number line, 10,762 for completing the sequence, and 6,767 for 
decimal addition. 
 After students completed the problems, their understanding was checked with a 43-item 
posttest, which tested the four skills. Different numbers of items were used for different skills, in 
accordance with the number of common misconceptions which were presented for each skill (Richey 
et al., 2019): 22 items addressed ordering decimals (M = 0.71, S.D. = 0.26), six addressed placement 
on a number line (M = 0.53, S.D. = 0.31), four addressed completing the sequence (M = 0.59, S.D. = 
0.28), and eleven addressed decimal addition (M = 0.66, S.D. = 0.23). 
 
 
4. Algorithm Application 
 
First, we simplified the students’ interaction data, keeping only whether students answered correctly 
or incorrectly on their first attempt at each problem, in line with common practice in student latent 
knowledge estimation (Corbett & Anderson, 1995; Pavlik et al., 2009; Piech et al., 2015; J. Zhang et 
al., 2017). Interaction attempts were then labeled with their associated skill. Next, we trained the set 
of different student latent knowledge estimation algorithms listed above, using all of the 
first-interaction data as training data. The implementations of DKT and DKVMN that we used 
expected separate training and test data sets, however, in this case we used the same data for both sets, 
since our goal is to understand performance on entirely new external data (posttests) rather than 
predict future within-system performance. After the algorithms were trained, we derived knowledge 
estimates for each student using each algorithm. The basic process of training and gathering 
knowledge estimates was generally similar from algorithm to algorithm, but differed based on how 
the algorithms treat (or fail to treat) latent knowledge. 
 
 
5. Statistical Comparisons Between Algorithms 
 
After using the four algorithms to produce estimates of latent knowledge for each student and each 
skill, the estimates were compared. First, we calculated Pearson correlations between each algorithm’s 
knowledge estimates and the posttest scores. As all measurements came from the same population of 
students, we were able to use a statistical test of the difference in statistical significance between 
correlations for correlated samples to compare the various correlations to each other (Ferguson, 1976). 
This test tells us whether one correlation (i.e. one model’s ability to predict the post-test) is 
statistically significantly higher than another correlation (i.e. another model’s ability to predict the 
post-test). 

After comparing each combination of algorithms, we performed the Benjamini-Hochberg post 
hoc control procedure to control for the use of multiple comparisons (Benjamini & Hochberg, 1995; 
Benjamini & Yekutieli, 2001). This procedure reduces false positives by increasing stringency as 
more comparisons are performed, maintaining the same false discovery rate regardless of how many 
statistical tests are conducted. 
 
 
6. Results 
 
Table 1. Pearson correlations between knowledge estimates and posttest scores 

 
Ordering 
Decimals 

Placement on 
Number Line 

Complete the 
Sequence 

Decimal 
Addition 

mean-DKT 0.71 0.64 0.34 0.48 
mean-DKVMN 0.72 0.62 0.35 0.56 
PFA 0.28 0.33 0.10 0.26 
mean-PFA 0.69 0.64 0.36 0.49 



BKT 0.44 0.43 0.28 0.49 
mean-BKT 0.65 0.52 0.28 0.44 

 
 
Table 2. T-scores of correlations between comparisons. * indicates B-H significance at 0.05 level. 

Ordering Decimals mean-DKVMN PFA mean-PFA BKT mean-BKT 
mean-DKT 1.65 -14.35* -1.74 -10.59* -3.74* 
mean-DKVMN  -14.67* -3.22* -11.86* -4.26* 
PFA   14.17* 3.84* 9.89* 
mean-PFA    -10.77* -2.54* 
BKT     6.43* 
      
      
Placement on  
Number Line mean-DKVMN PFA mean-PFA BKT mean-BKT 
mean-DKT -1.35 -9.72* 0.08 -8.07* -6.95* 
mean-DKVMN  -8.85* 1.26 -7.72* -5.31* 
PFA   9.79* 2.53* 5.04* 
mean-PFA    -7.94* -7.14* 
BKT     2.93* 
      
      
Complete the Sequence mean-DKVMN PFA mean-PFA BKT mean-BKT 
mean-DKT 0.41 -5.07* 1.06 -1.79 -2.21* 
mean-DKVMN  -4.90* 0.23 -2.53* -2.28* 
PFA   5.49* 3.33* 3.38* 
mean-PFA    -2.25* -3.45* 
BKT     0.07 
      
      
Decimal Addition mean-DKVMN PFA mean-PFA BKT mean-BKT 
mean-DKT 3.16* -5.89* 0.76 0.32 -2.08 
mean-DKVMN  -7.46* -2.53* -3.13* -4.35* 
PFA   6.04* 5.50* 4.07* 
mean-PFA    -0.01 -3.67* 
BKT     -1.57 
 
 
Table 1 shows the correlation between each algorithm’s within-tutor knowledge estimates and posttest 
performance for each skill. Table 2 shows t-scores of the resulting comparisons, with an indication of 
which tests remained statistically significant after performing the Benjamini-Hochberg control, with 
FDR (false discovery rate) set to 0.05, equivalent to a p-value of 0.05 for a single test. Results for 
three skills were broadly similar, with mean-DKT, mean-DKVMN, and mean-PFA producing better 
estimates than traditional PFA and BKT. Mean-BKT produced estimates that outperformed traditional 
BKT and PFA in several cases, but generally performed lower than mean-DKT, mean-DKVMN, and 
mean-PFA.  

For Ordering Decimals, mean-DKT (r=0.71) and mean-DKVMN (r=0.72) produced the 
closest knowledge estimates to the posttest scores. Mean-PFA (r=0.69) produced estimates that were 
significantly worse than mean-DKVMN, but not significantly different from DKT. 

Mean-BKT’s (r=0.65) estimates, although close to mean-PFA, were significantly worse than 
that algorithm, as well as mean-DKVMN and mean-DKT. Estimates from BKT (r=0.44) and PFA 
(r=0.28) were significantly worse than the other algorithms, with BKT significantly better than PFA. 

All algorithms produced worse results on Placement on Number Line, although the order of 
the groups did not notably diverge from Ordering Decimals. Mean-DKT (r=0.64), mean-PFA 



(r=0.64), and mean-DKVMN (r=0.62) all produced estimates that did not differ significantly from 
each other, but beat mean-BKT (r=0.52), BKT (r=0.43), and mean-PFA (r=0.33). Mean-BKT 
(r=0.52), however, performed better than PFA and BKT.  

Complete the Sequence saw all algorithms struggle compared to the first two skills. 
Mean-PFA (r=0.36), mean-DKVMN (r=0.35), and mean-DKT (r=0.34) performed approximately 
equally. BKT (r=0.28) was able to produce estimates that were close to the top three and not 
significantly different from mean-DKT, although its prediction of the post-test was still statistically 
significantly worse than mean-PFA and mean-DKVMN. Mean-BKT’s (r=0.28) estimates did not 
significantly differ from BKT, but were worse than mean-PFA, mean-DKVMN, and mean-DKT. PFA 
(r=0.10) performed significantly worse than all other algorithms for this skill. 

For Decimal Addition, mean-DKVMN (r= 0.56) achieved significantly better prediction of 
the post-test than the other algorithms. In turn, mean-PFA (r=0.49), BKT (r=0.49), and mean-DKT 
(r=0.48) achieved significantly better prediction than PFA (r=0.26). Although BKT’s estimates 
correlated better with the posttest than mean-BKT (r=0.44), that difference was not statistically 
significant, but mean-PFA produced significantly better estimates than mean-BKT. This finding may 
seem non-intuitive, since BKT and mean-PFA achieved the same correlation; it is due to there being a 
higher correlation between mean-PFA and mean-BKT than between BKT and mean-BKT. 
 
 
7. Discussion and Conclusions 
 
Although Deep Knowledge Tracing and Dynamic Key-Value Memory Networks were not designed to 
produce estimates of latent knowledge for predefined skills, our approach was able to convert 
performance predictions made by these algorithms into knowledge estimates, which achieved 
reasonable correlation to student scores on an external posttest. These estimates were more accurate at 
predicting the external posttest than estimates from Bayesian Knowledge Tracing, which was 
designed with the aim of estimating the state of students’ knowledge. Mean-DKVMN and 
mean-DKT’s estimates were comparable to or perhaps a little better than estimates provided by the 
classic knowledge modeling algorithm Performance Factors Analysis. In other words, though deep 
learning-based models might have been thought to mainly capture performance within the system, 
with a simple adjustment they are also better at inferring the knowledge students carry out of the 
learning system. 

Curiously, PFA only performed comparably to mean-DKT and mean-DKVMN when the 
same adjustment was made to PFA as was necessary for DKT and DKVMN: averaging estimates 
across the actual problems, rather than simply taking the final estimate of knowledge for the skill. 
Explaining this finding may require going back to findings from some of the earliest work in this area. 
Corbett and Bhatnagar (1997) noted that if mastery learning is used – where a student continues to 
work within a learning system until the BKT estimate of their knowledge is very high (in that case 
0.975) – there is very little variance in the final estimates of student knowledge (as all estimates are 
above 0.975). However, performance is not always equally high in external post-tests; BKT estimates 
for students driven to mastery tend to over-estimate post-test performance (Corbett & Anderson, 
1995; Corbett & Bhatnagar, 1997). Notably, over-prediction appears to be more characteristic of cases 
where students had more remedial practice (Corbett & Anderson, 1995). Although the data set used in 
the current paper did not involve mastery learning, there was a sufficiently large amount of practice in 
that system (9 to 12 problems per skill for each student) to have caused similar phenomena. For three 
of the four skills, nearly all final knowledge estimates asymptotically approached either 0 or 1, 
although students rarely got all posttest items correct or all incorrect. By averaging estimates across 
problems, we capture student knowledge throughout the learning process rather than apparent 
knowledge at the end – capturing lower performance on the eventual path to mastery – which appears 
to be a better estimate of the knowledge students carry out of their learning experience. However, this 
does not completely explain our results: for Ordering Decimals, no students had final knowledge 
estimates greater than 0.95 or less than 0.05, but our adjustment still significantly improved the 
posttest correlations for that skill.  

The same adjustment of averaging estimates across actual problems rather than using final 
knowledge estimates led to better performance for BKT as well as PFA, although not to the same 
degree. In this paper, the original version of BKT was used. Recent work has suggested that BKT 
performs better at predicting within-system correctness if several adjustments are made (i.e., Khajah 
et al., 2016), though still not as well as DKT. It is possible that a version of BKT adjusted in this 
fashion may perform more comparably to mean-DKT, mean-DKVMN, and PFA for predicting the 
post-test. However, the very adjustments necessary in Khajah et al. (2016) eliminate some of the 
benefits – such as interpretable estimates of student knowledge on expert-defined skills – that have 
made BKT an attractive alternative for practical use.  

One of the major arguments in favor of Bayesian Knowledge Tracing has been its 
interpretable latent estimates – separate from performance. This paper’s findings suggest that BKT’s 



latent estimates may not be as useful as thought. BKT does more poorly at estimating an external 
post-test measure than a reasonable transformation of modern deep learning based algorithms, as well 
as a more traditional competitor, PFA. Combined with evidence that BKT does more poorly at 
forecasting time until mastery than PFA (e.g., Slater & Baker, in press), and evidence that classical 
BKT does more poorly at forecasting future performance within a learning system than DKT or 
DKVMN (Khajah et al., 2016; J. Zhang et al., 2017), it appears that BKT’s use as a primary 
knowledge modeling algorithm may be coming to an end. With the simple modification to DKT or 
DKVMN provided here, assessments of specific understandable skills can be provided to teachers and 
students, one of the core uses of BKT (Koedinger & Aleven, 2007), and these estimates are more 
predictive of post-test performance than BKT’s estimates.  

Our findings should not be interpreted as indicating that Bayesian Knowledge Tracing has no 
use, however. Bayesian Knowledge Tracing still offers the advantage of interpretable parameters, and 
there are cases – particularly when one wants to understand which skills have low learning rates or 
high slip rates (e.g., Agarwal, Babel, & Baker, 2018), where BKT may be very useful. In addition, 
distillations of Bayesian Knowledge Tracing, such as student-level contextual slip, remain useful 
predictors of long-term outcomes (e.g., San Pedro, Baker, Bowers, & Heffernan, 2013). At this point, 
however, its shortcomings in predictive accuracy make it harder to justify their use in cases where 
model structure does not need to be explained.  

Of course, no single result is definitive, and more research is needed to establish our findings 
here as conclusive. This study only investigated data from students’ experiences learning decimals in 
one tutoring system, comparing learning estimates with a single posttest. Our findings, particularly 
regarding BKT’s ability to predict external measures, should be replicated with different student 
populations and in different domains. However, the results should be encouraging to researchers 
interested in using DKT, DKVMN, and other cutting-edge knowledge tracing algorithms to infer 
knowledge, rather than just predicting performance within-system. 

There has been considerable work over the last several years to discover which student 
knowledge model is best at predicting future correctness within intelligent tutoring systems. In 
Corbett and Anderson’s (1995) original vision for student knowledge modeling, as much attention 
was given to prediction of performance outside the learning system as within it. This seems 
appropriate, given that the true goal of education is not what students can do during learning, but what 
they can do beyond and going forward. In this paper, we find that simple enhancements make it 
possible for recent emerging performance prediction algorithms to also effectively predict knowledge 
that extends outside the tutoring system. The simple solution provided here will almost certainly fall 
short of the best that can be done. We hope that in the years to come as much attention will be 
provided to the problem of predicting long-term and system-external performance as predicting 
immediate correctness has received recently. Ultimately, the goal of student knowledge modeling 
should be to infer knowledge, not just predict performance. Happily, it seems like the newest student 
knowledge algorithms can successfully do this, with only a modest adjustment.  
 
 
References 
 

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S., and van 
Velsen, M. (2014). Using erroneous examples to improve mathematics learning with a 
web-based tutoring system. Computers in Human Behavior, 36, 401–411. 
DOI=https://doi.org/10.1016/j.chb.2014.03.053 

Agarwal, D., Babel, N., Baker, R. (2018). Contextual derivation of stable BKT parameters for 
analysing content efficacy. Proceedings of the 11th International Conference on Educational 
Data Mining, 596-601. 

Aleven, Vincent, McLaren, B. M., and Sewall, J. (2009). Scaling up programming by demonstration 
for intelligent tutoring systems development: An open-access web site for middle school 
mathematics learning. IEEE Transactions on Learning Technologies, 2(2), 64–78. 
DOI=https://doi.org/10.1109/TLT.2009.22 

Aleven, Vincent, McLaren, B. M., Sewall, J., van Velsen, M., Popescu, O., Demi, S., … Koedinger, 
K. R. (2016). Example-tracing tutors: Intelligent tutor development for non-programmers. 
International Journal of Artificial Intelligence in Education, 26(1), 224–269. 
DOI=https://doi.org/10.1007/s40593-015-0088-2 

Baker, R.S. (2019). Big Data and Education. 5th Edition. Philadelphia, PA: University of 
Pennsylvania. 



Baker, R.S.J.d., Corbett, A.T., Aleven, V. (2008). More accurate student modeling through contextual 
estimation of slip and guess probabilities in Bayesian knowledge tracing. Proceedings of the 
9th International Conference on Intelligent Tutoring Systems, 406-415. 

Baker, R.S.J.d., Corbett, A.T., Gowda, S.M., Wagner, A.Z., MacLaren, B.M., Kauffman, L.R., 
Mitchell, A.P., Giguere, S. (2010). Contextual slip and prediction of student performance 
after use of an intelligent tutor. Proceedings of the 18th Annual Conference on User Modeling, 
Adaptation, and Personalization, 52-63. 

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and 
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B 
(Methodological), 57(1), 289–300. 

Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing 
under dependency. The Annals of Statistics, 29(4), 1165–1188. 
DOI=https://doi.org/10.1214/aos/1013699998 

Cheung, L. P., and Yang, H. (2017). Heterogeneous features integration in deep knowledge tracing. In 
D. Liu, S. Xie, Y. Li, D. Zhao, and E.-S. M. El-Alfy (Eds.), Neural Information Processing 
(Vol. 10635, pp. 653–662). DOI=https://doi.org/10.1007/978-3-319-70096-0_67 

Corbett, A. T., and Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of 
procedural knowledge. User Modeling and User-Adapted Interaction, 4(4), 253–278. 
DOI=https://doi.org/10.1007/BF01099821 

Corbett, A. T., and Bhatnagar, A. (1997). Student modeling in the ACT programming tutor: Adjusting 
a procedural learning model with declarative knowledge. In A. Jameson, C. Paris, and C. 
Tasso (Eds.), User Modeling (pp. 243–254). 
DOI=https://doi.org/10.1007/978-3-7091-2670-7_25 

Ferguson, G. A. (1976). Statistical analysis in psychology and education (4th ed). New York: 
McGraw-Hill. 

Gong, Y., Beck, J. E., and Heffernan, N. T. (2010). Comparing knowledge tracing and performance 
factor analysis by using multiple model fitting procedures. In V. Aleven, J. Kay, and J. 
Mostow (Eds.), Intelligent Tutoring Systems (Vol. 6094, pp. 35–44). 
DOI=https://doi.org/10.1007/978-3-642-13388-6_8 

Jiang, B., Ye, Y., Zhang, H. (2018). Knowledge tracing within single programming exercises using 
process data. In Proceedings of the 26th International Conference on Computers in Education 
(pp. 89-94). Asia-Pacific Society for Computers in Education.  

Khajah, M., Lindsey, R. V., and Mozer, M. C. (2016). How deep is knowledge tracing? Proc. Of 
International Conference on Educational Data Mining. 94-101. 

Koedinger, K. R., and Aleven, V. (2007). Exploring the assistance dilemma in experiments with 
cognitive tutors. Educational Psychology Review, 19(3), 239–264. 
DOI=https://doi.org/10.1007/s10648-007-9049-0 

Lincke, A., Jansen, M., Milrad, M., Berge, E. (2019). Using data mining techniques to assess 
students’ answer predictions. In M. Chang, H.-J. So, L.-H. Wong, F.-Y. Yu, & J.-L. Shih 
(Eds.) ICCE 2019 - 27th International Conference on Computers in Education, Proceedings 
(Volume 1 pp.42-50). Kenting, Taiwan: Asia-Pacific Society for Computers in Education 

McLaren, B. M., Adams, D. M., and Mayer, R. E. (2015). Delayed learning effects with erroneous 
examples: A study of learning decimals with a web-based tutor. International Journal of 
Artificial Intelligence in Education, 25(4), 520–542. 
DOI=https://doi.org/10.1007/s40593-015-0064-x 

Pardos, Z. A., Gowda, S. M., Baker, R.S.J.d., Heffernan, N. T. (2011). Ensembling predictions of 
student post-test scores for an intelligent tutoring system. Proceedings of the 4th International 
Conference on Educational Data Mining, 189-198. 

Pavlik, P. I., Cen, H., and Koedinger, K. R. (2009). Performance factors analysis – A new alternative 
to knowledge tracing. Proceedings of the 2009 Conference on Artificial Intelligence in 
Education: Building Learning Systems That Care: From Knowledge Representation to 



Affective Modelling, 531–538. Retrieved from 
http://dl.acm.org/citation.cfm?id=1659450.1659529 

Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and beyond: an overview of learner 
modeling techniques. User Modeling and User-Adapted Interaction, 27(3-5), 313-350. 

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., and Sohl-Dickstein, J. (2015). 
Deep knowledge tracing. Proceedings of the 28th International Conference on Neural 
Information Processing Systems-Volume 1, 505–513. MIT Press. 

Richey, J. E., Andres-Bray, J. M. L., Mogessie, M., Scruggs, R., Andres, J. M. A. L., Star, J. R., … 
McLaren, B. M. (2019). More confusion and frustration, better learning: The impact of 
erroneous examples. Computers and Education, 139, 173–190. 
DOI=https://doi.org/10.1016/j.compedu.2019.05.012 

San Pedro, M.O.Z., Baker, R.S.J.d., Bowers, A.J., Heffernan, N.T. (2013). Predicting college 
enrollment from student interaction with an intelligent tutoring system in middle 
school. Proceedings of the 6th International Conference on Educational Data Mining, 
177-184. 

Slater, S., Baker, R.S. In press. Forecasting Future Student Mastery. To appear in Distance Education. 
Stacey, K., Helme, S., and Steinle, V. (2001). Confusions between decimals, fractions and negative 

numbers: A consequence of the mirror as a conceptual metaphor in three different ways. In 
M. v. d. Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 4, pp. 217-224). Utrecht: PME. 

Nguyen, H., Wang, Y.,  Stamper, J., & McLaren, B.M. (2019). Using knowledge component 
modeling to increase domain understanding in a digital learning game. In Proceedings of the 
12th International Conference on Educational Data Mining (EDM 2019). (pp. 139-148).   

Wauters, K., Desmet, P., and Van Den Noortgate, W. (2010). Adaptive item-based learning 
environments based on the item response theory: possibilities and challenges. Journal of 
Computer Assisted Learning, 26(6), 549-562. 

Wong, T.-L., Yu, Y. T., Poon, C. K., Xie, H., Wang, F. L., & Tang, C. M. (2017). An artificial 
intelligence approach to identifying skill relationship. In Proceedings of the 25th International 
Conference on Computers in Education. (pp. 86–91). Asia-Pacific Society for Computers in 
Education. 

Xiong, X., Zhao, S., Van Inwegen, E. G., and Beck, J. E. (2016). Going deeper with deep knowledge 
tracing. In Proceedings of the 9th International Conference on Educational Data Mining 
(EDM 2016). 545–550. 

Yeung, C.-K. (2019). Deep-IRT: Make deep learning based knowledge tracing explainable using item 
response theory. ArXiv:1904.11738 [Cs, Stat]. Retrieved from 
http://arxiv.org/abs/1904.11738 

Yeung, C.-K., & Yeung, D.-Y. (2018). Addressing two problems in deep knowledge tracing via 
prediction-consistent regularization. Proceedings of the Fifth Annual ACM Conference on 
Learning at Scale, 1–10. https://doi.org/10.1145/3231644.3231647 

Yu, H., Lo, H., Hsieh, H., Lou, J., Mckenzie, T. G., Chou, J., … Weng, J. (2011). Feature engineering 
and classifier ensemble for KDD Cup 2010. In JMLR Workshop and Conference Proceedings. 

Zhang, J., Shi, X., King, I., and Yeung, D.-Y. (2017). Dynamic key-value memory networks for 
knowledge tracing. Proceedings of the 26th International Conference on World Wide Web, 
765–774. DOI=https://doi.org/10.1145/3038912.3052580 

Zhang, L., Xiong, X., Zhao, S., Botelho, A., and Heffernan, N. T. (2017). Incorporating rich features 
into deep knowledge tracing. Proceedings of the Fourth ACM Conference on Learning @ 
Scale, 169–172. DOI=https://doi.org/10.1145/3051457.3053976 

 


