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ABSTRACT:  Modeling complex doctrinal behaviors to support military simulations has recently been extended to
graphical interfaces, giving military subject matter experts the ability to create behaviors that can be automatically
encoded.  For example, the Composable Behavior Technology (CBT) system supports this modeling paradigm.  We
discuss how to extend CBT to capitalize on previously stored and validated behavior models, and how to apply case-
based reasoning to this design problem.  We propose an approach that incorporates text and graphical retrieval
strategies and multiple levels of similarity analysis.  Finally, we outline future research and development directions.

1. Introduction

Experts who design models of composite behaviors for
simulations of computer-generated forces (CGF) appear to
rely on their previous experiences; they often adapt
existing behaviors to generate new ones.  This suggests
that case-based reasoning (CBR), a general problem-
solving methodology for reusing previously stored
solutions [1], may be suitable for managing this activity.
While, traditional CBR approaches have been used to
retrieve and manipulate structured representations using a
pre-determined vocabulary and methods for reasoning
about implicit relationships among the vocabulary items,
the application of CBR to this problem, including the
representations for CBR sub-processes, is not obvious.
This requires analyzing several challenging design
decisions, including those concerning:  

(1) desired functionality,

(2) choice of case content,

(3) case representation,

(4) case retrieval,

(5) solution reuse,

(6) solution revision, and

(7) case base maintenance.

Challenges (1) and (2) define our system specification and
focus, while challenges (3)-(7) define some primary foci
of the CBR problem-solving cycle [1].  We briefly
discuss each below in the context of developing an
assistant for helping users to generate models of CGF
behaviors.  This paper begins by introducing computer-
generated forces and relevant background, followed by a
discussion on each of the challenges including potential
solutions and directions.  We conclude with a discussion
of potential similarity metrics (instance, structural,
relational, and attribute).

The work presented in this paper is a result of joint
collaboration with SAIC in the investigation and
development of CGF authoring tools.  We were charged
with investigating the research issues associated with
CBR and with development of possible design solutions.
In a companion paper [2], SAIC discusses the
implementation of a prototype authoring system building
on the theoretical work discussed in this paper.

2. Background

This section provides a brief background on three topics
of interest in this paper and investigation:  computer-
generated forces, composable behavior technology, and
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case based reasoning.  This is intended as an introductory,
non-exhaustive overview of these topics.

2.1 Computer-Generated Forces

Computer-generated forces support simulation of a
complex battlefield environment without requiring many
human operators.  A basic goal of a CGF system is to
support behavior modeling that is indistinguishable from
human behavior specified by military doctrine.  Modeling
human behavior in the form of CGF has traditionally
been a formidable knowledge engineering task involving
the transformation of military doctrine into software.
Knowledge acquisition for developing CGF tools is
facilitated through subject matter experts (SMEs) using
text documents and spreadsheets. SMEs create
descriptions of situations, scenarios, behaviors, and
actions, typically guided by a structure such as a finite
state machine.  Software developers then convert these
descriptions into behavior programs.

CGF simulations developed in this way with traditional
programming languages become difficult to maintain and
expand as the number and complexity of behaviors grows.
Many behaviors may have common elements, but it is
difficult to reuse them when they are embedded in a
complex behavior.  Different SMEs and software
engineers may use different styles and conventions,
making it difficult to identify similar elements.  

2.2 Composable Behavior Technology

CGF projects have begun to use a composable behavior
approach that addresses the scalability problem.  In this
approach, simple primitive behaviors are identified early
in development and are coded as reusable behavior
components.  A primitive behavior is an action that is not
decomposable into sub-actions and that is used, combined
with other primitive behaviors, to develop composite
behaviors.  The Composable Behavioral Technologies
(CBT) project sought to extend this concept in several
ways to simplify the creation of complex behaviors from
military doctrine (e.g., using an abstraction hierarchy of
behaviors) [3, 4].  In CBT, users compose behaviors
from primitives or (other) composite behaviors, and store
them to encourage reuse.  CBT represents the behaviors as
objects, representing them graphically, thereby allowing a
user to compose behaviors by “dragging and dropping” in
the interface.  CBT supports several basic elements, as
shown in Table 1.  

Composite behaviors are instances where attribute
(parameter) values are fully specified; there are no
defaulted or derived values.  These are not currently
templates.  Thus, the full potential for reuse is not

currently realized in this format, such as through frames
from the AI community [5].  

Table 1:  CBT Primitive Elements

Iconic Representation Description

 Primitive 
Behavior 

Attributes 

Primitive Behavior:  Lowest
level of behavior instruction.

 

Decision Ans 2 

Ans 1 

Predicates:  Decision point with
alternative paths depending on
the current situation of the
simulation.

 

Comm 
Communications:  Orders,
either received or sent from/to
Superior, Subordinate, or to a
specific Role Block.

Arcs with head/tails
depending on timing
intent (Proposed – in
development)

Temporal Constraints:
Connections between the
different element nodes.

(NOT REPRESENTED)

Role Blocks:  Not explicitly
illustrated in the current form,
they are used to distinguish
specific behavior actions for
different levels or groups.

 Composite 

Attributes 

Composite Behaviors:  Black
box representations of
previously defined behaviors
for reuse.

 Terminators:  These indicate
the initial and final nodes in the
behavior network.

Logic checkers have been implemented to ensure syntactic
validity of the behavior networks.  These validity checks
include: node, edge, branch, conditional constraint,
timing, attribute, adjacency, and network checking.
Semantic validity is not performed; this is a challenging
and open research problem.  The SMEs, who will be the
primary users of CBT, are expected to create semantically
correct behavior models.  

An example of a composite behavior is illustrated in
textual form in Figure 1.  This behavior represents an
“attack by fire” action.  The textual description of this
behavior includes an annotation option for the author (or
editor).  For example, an annotation appears at the bottom
of Figure 1.  

This model is composed of seven numbered elements.
The second number in each element points to the next
element, defining the temporal sequence of events.  The
first element listed is “BEGIN”, a terminator; it is
followed by the seventh element, “OccupyOWPos”,
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which has five attributes associated with it and is related
to the sixth element, a composite behavior.

52 jackie 26 AttackByFire Thu May 18 14:42:22 2000
EDT 1524 0
( -1 -1 (CONSTRAINT-PAIR (CONSTRAINT-NULL)

(CONSTRAINT-NULL) ) COMPOSITE AttackByFire
( ATTRIBUTES

(Attribute: TOP_LEVEL_ROLE true Attack)
(Attribute: ROLE true ( )) )

( SYSTEM-ATTRIBUTES ) \
( STATEMENTS \

(1 7 (CON-PAIR(0)(0)) BEGIN ( ATTRIBUTES )))\
(2 -1 (CON-PAIR (0) (0) ) COMPLETE ( ATTRIBUTES

))\
(3 -1 (CON-PAIR (0) (0) ) PREDICATE Target? (

ATTRIBUTES ) \ ((no 4) (yes 5)  ) )
(4 2 (CONST-PAIR (0) (0) ) COMPOSITE

PltMachineGunFireAtLoc ( ATTRIBUTES
(Attribute: Saved-ID true 96) )  NOT-
ELABORATED )\

(5 2 (CONST-PAIR (0) (0) ) COMPOSITE
PltFireAtTarget ( ATTRIBUTES (Attribute: Saved-
ID true 117) )  NOT-ELABORATED )\

( 6 3 (CONSTRAINT-PAIR (NULL) (NULL) )
COMPOSITE PltScanForThreat ( ATTRIBUTES
(Attribute: Saved-ID true 83) ) NOT-
ELABORATED )\

( 7 6 (CONSTRAINT-PAIR (NULL) (NULL) )
PRIMITIVE OccupyOWPos ( ATTRIBUTES
(Attribute: DismountedSpeed true Specific 1.5
MIN: 0.0 MAX: 3.4028235E38) (Attribute: Route
false MissionAttribute Route) (Attribute: Speed
true Specific 30.0 MIN: 0.0 MAX:
3.4028235E38) (Attribute: SpeedLimit true
Specific 0.0 MIN: 0.0 MAX: 3.4028235E38)
(Attribute: Formation true Specific Formation
Line)) )\

( ROLE-STATEMENTS  ) )
Mon Jan 08 12:55:25 2001 EST
act2 312
Platoon level attack by fire.  The platoon will determine

the enemy type and deliver the appropriate fire with
the appropriate weapons accordingly.

Figure 1:  Adapted Text of the “Attack By Fire” Composite

Some elements do not have succeeding events, such as
the second (“COMPLETE”) and the third (“PREDICATE
Target?”).  These elements have a number designation of
(-1) to indicate that there are no subsequent events.  The
heading of the behavior model includes database entry,
author, behavior name, and creation date.  Other
information is included to encode the behavior model.

A graphical representation of this behavior is shown in
Figure 2.  This representation, using the iconic
vocabulary described in Table 1, includes five types of
elements: terminators (BEGIN and COMPLETE),
primitive behaviors (“PltScanForThreat”,
“PltFireAtTarget”, and “PltMachineGunFireAtLoc”), a
decision node (“Target?”), and a composite behavior

(“OccupyOWPos”).  The relationships, represented by
arrows between the nodes, are not specified with respect
to temporal intent.  

 

PltScanForThreat 

Saved-ID 

Target? 
Yes 

No 

PltMachGunFireLoc 

Saved-ID 

PltFireTarget 

Saved-ID 

OccupyOWPos 

DismountedSpeed 
Route 
Speed 
SpeedLimit 
Foumation 

Figure 2:  Graphic of the “Attack By Fire” Composite.

Several composite behaviors have been developed (e.g.,
one is labeled Alpha Main Gun Fire and is described as
“alpha tanks fire their main guns at the recommended
target”, while another is labeled Shoot 4-25 Location A
and is described as “shoot bursts of 25 rounds at each of
the enemy locations”).  Additional behaviors are being
developed by USMC SMEs.

2.3 Case-Based Design

CBR systems can help designers in various design stages
by (1) providing them access to a library of valid designs
that satisfy, or nearly satisfy, the defined requirements,
functions, or characteristics and (2) modifying the
retrieved design cases to satisfy these requirements.
Example CBR systems include KRITIK [6], HICAP [7],
SIROCCO [8], and FABEL [9].  The CBR process
typically involves four tasks. First, retrieval finds past
design cases that may be appropriate in the new design
scenario and validates them with respect to the new
design requirements.  Second, reuse adapts and combines
the cases to fully satisfy the new problem’s design
requirements.  Third, revision involves evaluating, and
possibly repairing, the new composite. Finally,
maintenance/retention updates the case base (e.g.,
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integrating this new composite).  CBR systems often
have four elements:  a case base (which stores previous
designs for retrieval), a case retrieval engine (which allows
designers to express retrieval queries), an adaptation
module (which encapsulates design knowledge to
partition or combine retrieved cases), and a validation
module (which is used to help evaluate and ensure the
validity of combining previous designs when generating a
new design).

Our goal is to develop, evaluate, and provide an
interactive authoring tool for composite behavior
modelers that will use case retrieval, adaptation, and
management (e.g., retention/learning) algorithms.  For
example, we anticipate that users will (incrementally)
specify the desired functionality of a new composite
behavior, the system will respond with stored behaviors
that have some relevance to it, and the user will adapt a
retrieved behavior and/or compose multiple behaviors to
construct the new behavior.  Thus, authoring can be
viewed as a case-based design (CBD) task [10]; the
objective is to synthesize a new behavior by composing
existing primitive behaviors using available composition
operators supported by the CBT tool [4].  CBD is
generally an iterative process that combines deductive,
inductive, and abductive reasoning, possibly switching
between different representations and abstraction levels.
Design problems, whose tasks include synthesis,
analysis, evaluation, and representation mapping, consist
of the desired goals and target values, known constraints
and relations, and user controlled independent variable
values, while the design artifact represents the final
solution that satisfies the specified design problem at
some level of satisfaction (i.e., feasible, satisficing,
robust, or optimal) [11]. From this perspective, the
design problem is the creation of a desired behavior to
model while the design artifact is a final composite
behavior.  Typically, designers start from a previous
solution, possibly using the past design’s rationale, to
design a new artifact.  Design can be classified as
generative or variant.  In generative design, the designer
creates from scratch the solution.  In variant design, the
designer modifies existing solutions to satisfy the new
problem.

Maher et al. [12] identify three major issues associated
with case representation for CBD:  design case content,
representation paradigms for case memory organization,
and user view of the cases.  Design case content is the
design data and documents constituting the case.  It can
include strings of parameters and values, collections of
design tasks undertaken to achieve the design solution,
collections of all design documents generated in the
process, etc.  The content of design cases must be
processed (manually or automatically) to capture their
characteristics and properties.  Traditionally, this

processing is done a priori.  These characteristics and
properties are added to cases through annotations.
Storage and performance issues in memory organization
are addressed by providing the best organization of design
cases, usually with respect to their similarities.  Finally,
users view and access the cases based upon their own
understanding of the domain and the specifications of
their design problem.  Some tools exist for authoring
cases interactively, such as CASCADE [13], CBR Works
[14], or k-Commerce [15].  

One of the primary goals of indexing cases in a case base
is to achieve good performance without sacrificing quality
of retrieval.  The indexing problem poses some inherent
trade-offs between the desire to provide a flexible problem
definition approach and the desire for using an efficient
retrieval algorithm.  As the size and complexity of the
case base grows, an indexing scheme is required to
provide quick access to the cases.  However, the scheme
might provide only a limited view of each of the design
cases, a view that is not always entirely compatible with
new problems.  The view of the cases is limited by the
characteristics that were selected in the development of the
index.  Indices should be chosen such that they aid in
predicting the solution, that they be sufficiently abstract
to span several different cases, and that they be
sufficiently concrete to be applicable in future problems
[16].  Much of the effort in developing indices for case
bases focuses on domain specific classification and
organization.  Most of the CBD approaches rely on
indexing design data with respect to annotations capturing
their attributes.  Selecting the properties and
characteristics to represent design data has significant
consequences.  Indeed, in existing systems selected
attributes constrain the level of expression in the retrieval
phase.  Different techniques and approaches are used to
perform indexing [17].  These approaches enable the
indexing of the entire case base, yet do not offer
additional granularity (flexible levels of abstraction).  

Some examples of query interfaces that rely heavily on
indexed systems include expert driven questionnaires,
tabular, frame based, textual, or function structures [18].
Retrieval queries usually are Boolean expressions of terms
consisting of valued attributes as represented through the
indices (or pre-computed annotations).  Generally, it is
unlikely to find an exact match for the design [19].
Portions of the knowledge base set of designs are needed
to generate a design that will satisfy the design problem.
Therefore, a system should be capable of retrieving
portions of designs based on matching pieces of the
higher-level signatures.  The dependencies may include:
intersecting features, tolerances of one feature based on
data of a second feature, features in close proximity, same
tool used in two features, or same approach direction used
in two features.  This approach is used to index slices,
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which may be retrieved by the system if the slice
signatures can be found in the original design signature.

3. Research Issues

This section revisits the issues identified earlier that are of
specific interest to designing a CBR system to support
CBT behavioral modeling.  These issues include:  desired
functionality, choice of case content, case representation,
case retrieval, solution reuse, solution revision, and case
base maintenance.  Each issue is explored with respect to
required research.

3.1 Desired Functionality

The existing tool, CBT, is a generative design tool,
providing the behavior modeler with the ability to define
new composite behaviors.  We propose to use CBD to
extend CBT to support variant design.  In particular, we
view the CBD task as incrementally acquiring a problem
description (i.e., a query) from the user, and providing
insight on the existing behaviors and methods for
composing them that could be used to satisfy the user’s
needs.  Commercialized interactive tools have been
deployed to support diagnosis tasks (e.g., help-desk
assistants), but not for design tasks.  Furthermore, we
anticipate that some mixed-initiative interaction
capabilities (i.e., where the system learns to take and
share the initiative in helping the human) should be
supported in this system; this is an ongoing area of
interest to the CBR community [20, 21].  Thus, our
challenge is to investigate mixed-initiative approaches
for CBD.

3.2 Choice of Case Content

CBT composite behaviors are modeled in different
modes: graphical (diagrams of the behavior flow), textual
(short descriptions of the behavior), and mixed (attributes
of the elements).  We anticipate that cases will be in the
form of <problem, solution> pairs, where problems are in
a mixed relational format derived from the text
descriptions, and solutions are in graphical format (i.e.,
each element is linked to other elements (arcs) through
relations (edges), creating a directed graph, where each arc
and edge is annotated with appropriate information).
This diversity of content is an issue that must be
addressed in an integrated manner, and reasoning
with such diversity poses a challenge for an integrated
CBR strategy.  

3.3 Case Representation

This concerns the representation of the queries and cases
to the user, and this choice will impact our system’s
interaction functionality.  Several CBR systems have
been developed that work with structured representations

of case solutions that can be used to capture graph-
represented content (e.g., [8, 22, 23]), and commercial
tools exist that implement algorithms to support object-
oriented representations (e.g., empolis’ e:kbs system and
orenge architecture).  In our situation, we will also need
to work with text descriptions for summarizing these
behaviors.  Several advances in Textual CBR [24] have
described methods for reasoning with cases whose
contents are in text form.  Likewise, the composite
modeling problem requires reasoning with this text (i.e.,
associating it with specific aspects of the stored
behavior’s functionality).  This requires semantic
interpretation of text data, which has been the focus of an
ongoing Naval Research Laboratory (NRL) project [25].
NRL has developed expressive representations for text in
linguistic ontologies using an extension of Generative
Lexicon (GL) theory [26], and we believe that this
approach for generating these simple ontologies could be
used for our objective.  Integration of graphical case
solutions with our GL-inspired text interpretation
process poses a technical challenge.

3.4 Case Retrieval

Traditional approaches to incremental query formation
include using concise natural language text strings, feature
identification and attribute value assignment (e.g., thru a
conversational CBR interface), and/or partial case
modeling (e.g., using modes in which users can identify
query components by interacting with diagrams, scripts,
or interfaces (e.g., [10]).  After parsing, cases are returned
to the user, typically in a ranked order based on a
predefined set of metrics.  Similarity metrics for
supporting the retrieval of composite behaviors will
operate primarily on the case problem (i.e., interpreted
text descriptions in a relational format).  Retrieval of
cases should include syntactic and semantic similarity
(reusability) measures.  Semantic similarity measures are
typically domain specific and driven by the defined
ontology [9].  While many authors have described how to
learn similarity knowledge (e.g., using feature weights
[27]), we expect that our focus on retrieval will be on
using ontologies to assist with computing semantic
similarity.  Our challenge is to develop such ontologies
and machine learning algorithms for revising them
through explicit and implicit user feedback.  Few
previous efforts have focused on the automatic
updating of ontologies.  

3.5 Solution Reuse

Solution reuse in CBR includes automated adaptation of
the retrieved and selected cases to satisfy the specified
problem query.  Although some work exists on inducing
adaptation knowledge in a domain-independent manner
(e.g., [28, 29]), previous efforts have not addressed issues
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concerning graph-structured solutions. In the case of
composite behavior modeling, adaptation rules may be
required for air, land, or sea operations.  Acquiring the
necessary domain-specific case adaptation knowledge
and maintaining this knowledge independent of the
reasoning system is an open issue.  

3.6 Solution Revision

This includes the interactive revision of the retrieved and
selected cases by the human user, which permits user
control of adaptation.  Flemming et al. [30] discuss an
initial approach to case adaptation that allows the user to
interactively refine the retrieved case or to automatically
adapt the case based on the “static” adaptation domain
specific knowledge.  This approach to refinement is
limited to a predefined structure of the solutions and is
limited to value modification.  A more robust revision
approach is needed in the composite behavior-modeling
problem that provides users with the flexibility to
modify, delete, or add information to the retrieved cases
at multiple abstraction levels.  

3.7 Case Base Maintenance

As new cases (i.e., behavior models) are created, they
need to be integrated with the case base for future retrieval
and adaptation.  Case maintenance must address indexing
(dynamic vs. static), redundancy elimination (storing only
unique cases vs. storing all cases), and consistency
checking.  The nature of this domain of behavior
modeling dictates that a rigid vocabulary known a priori
is not feasible.  For this reason, strict structuring of the
cases and the knowledge within the cases is difficult at
best.  These are still open research issues for
unstructured and mixed representation cases such as
those found in CBT’s composite behavior models.  

4. Proposed Directions and Rationale

Our proposed architecture for CBD enhanced composable
behavior modeling is roughly split into two sub-systems:
lexical and graph retrieval.  These two sub-systems are
combined with a set of similarity agents and case bases of
primitive and composite behaviors.  The user interacts
with the system via lexical or graphical “conversation”.
Should the user decide to proceed in a lexical manner, the
traditional conversational CBR (CCBR) approach [10]
will be used and a conversation with the lexical CCBR
(LCCBR) agent proceeds.  The LCCBR agent coordinates
between the lexical indexing agent and the similarity
agents.  Refinements to the user query are proposed to the
user while potential cases are presented through the
similarity agents.  The graphical retrieval module is
similar to the lexical module, where the distinction is in
the type of representation used:  graphical rather than

lexical.  As the similarity agents compile lists of
potential retrieval cases, the list of cases is reconfigured
into two views: lexical and graphical.  As the user
develops a new composite, it is entered into the case base
through the respective indexing agents.  Architecture
extensions can be added to include adaptation agents.
Currently, user interaction is the mode for adaptation.

We identified many research challenges above.  Here, we
expand on and illustrate a core aspect of research on
similarity analysis.  This is not intended to be a final
solution, but rather an initial guideline for directing
development.  Similarity measures have been widely
recognized as key to case retrieval [31, 32].  For the
problem domain of composable behavior modeling, we
suggest four similarity metrics, namely object, structural,
relational, and attribute similarity, some of which may be
used in combination.

4.1 Object Similarity

The graphical CCBR agent needs to generate queries as
users begin to build behavior models.  After a threshold
has been exceeded (to be determined in future research,
but likely greater than two behaviors), a retrieval session
will be initiated.  First, a filter on all available composite
behaviors will be applied that eliminates those
composites that do not include at least one instance of
each of the behaviors/composites that have been specified
by the user.  This includes searching hierarchical
descendants found through expanding composite
behaviors to the base level.  The object similarity measure
will initially be defined as the number of elements that
are shared between the query and the case.  Figure 3
illustrates a sample query and three cases.  

Elements of type A, B, and C are found in Case 1.
Therefore, this case has a similarity of 3/4 (75% match).
Likewise, Case 2 has 3 out of 4 elements in common
with the query (A, C, and D).  Some ambiguity remains
with respect to Case 3, where there are two instances of
the element A.  This ambiguity requires domain specific
knowledge that can be derived from experimentation and
interrogation of SMEs.  To differentiate between the
similarity of Cases 1 and 2, weightings could be used
depending on the preference of the user or query author.  

 
A 

C 

B 

D 

Query
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B 
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F G 

Case 1 (3/4)

 
A 

C 

D 

E 

F 

H 

Case 2 (3/4)

 
A 

C 

A 

E 

F G 

Case 3 (?)

Figure 3:  Object Similarity Examples

The object similarity measure may also include matching
for inherited graph nodes.  Currently, primitive behaviors
in CBT are not represented in inheritable form, as each
instance of a primitive behavior must be fully defined
with respect to the attribute values.  An object similarity
approach could also be used as an initial “filter” for a
more expensive structural similarity method [8].  Using
two phases, a retrieval mechanism might first apply
relatively inexpensive, but somewhat imprecise, object
similarity and then focus on the top candidates from this
phase in a more expensive structural evaluation, discussed
next.

4.2 Structural Similarity

Structural similarity measures can be developed to
evaluate and compare composites and initial queries based
on their sub-graph isomorphism.  The sub-graph
isomorphism problem is known to be NP-Complete [33].
Thus, the complexity of the case graphs will increase the
complexity of the similarity measurements.  A trade-off
between efficiency and accuracy is found when
introducing this measure to the proposed behavior
retrieval tool.  Narrowing the set of cases that are
structurally analyzed (e.g., using an initial object
similarity filter) helps address the complexity problem, at
least in terms of the reducing the cases that are considered
and analyzed [7].  However, addressing the isomorphic
problem per case is still a challenge.

To illustrate the isomorphic problem recast as a similarity
problem, consider the graph in Figure 4, which illustrates
five potential behaviors as defined in a graphical query.
These behaviors are all found in the subsequent two
graphs representing two cases (Figure 5 and Figure 6).  If
these behavior models have been properly developed (an
important assumption in CBR is that the cases are all
acceptable), then the similarity between the first (query
graph) and the other graphs can be derived.  

 
A 

C 

B 

D 

E 

Figure 4:  Query

 
A 

C 

B 

D 

E 

Figure 5:  Case 1 (C1)

 
B 

D 

E 

A 

C 

Figure 6:  Case 2 (C2)

An initial similarity approach compares the distances
between elements in the graph.  Table 2 illustrates the
distances between each element for the three graphs.
Based on this simple approach, Case 1 is found to be
more similar than Case 2.  The complexity of this
approach is O(n!) per case, where n is the number of
elements to be matched.

Table 2:  Structural Similarity Computations

Query C1 Dist C1 Diff C2 Dist C2 Diff
AB 1 1 0 1 0
AC 2 2 0 2 0
AD 3 3 0 1 2
AE 4 2 2 3 1
BC 1 1 0 1 0
BD 2 2 0 2 0
BE 3 1 2 2 1
CD 1 1 0 3 2
CE 2 2 0 1 1
DE 1 3 2 4 3

Total 6 10

One possible heuristic that might reduce the complexity
of examining the entire structure of the composite
behavior case would be to recognize that decision points
indicate a potential break for sub-graph division.
Behaviors found before a decision point are separated
from those found after a decision point as the flow
depends on the result of the decision.  Therefore, pre-
processing each case into sub-graphs divided at the
decision point nodes could significantly reduce the overall
complexity of the structural similarity measure.
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This metric considers only that a relationship between
elements is present, not whether the relationship is
directed.  In this manner, a directed case graph, as in the
case of behavior models (especially those that include
temporal relations), requires more specialized similarity
measures.  This metric may be augmented with
consideration paid to the types of relationships used in
the models.  

4.3 Relational Similarity

In addition to structural similarity, these graph nodes are
connected through multiple types of relationships that
imply precedence order.  For this reason, structural
similarity can be augmented with additional information.
The direction (precedence order) of the relationships
between behaviors may be important in some situations
(e.g., it is important to first load a gun and then fire it).
However, the precedence between finding a target and then
loading a weapon may be irrelevant (depending on the
weapon).  Additionally, temporal constraints may be used
to refine the similarity measure.  McLaren’s SIROCCO
model, for instance, leveraged relational similarity such as
domain-specific actions (e.g., an engineering firm hires an
engineer, an engineer writes a report) and temporal order
to render structural similarity more tractable [8].

4.4 Attribute Similarity

In addition to the features (entities) and structure
(relations), similarities measures can be derived that are
based on comparisons between the values assigned to the
attributes of the matched instances.  These attribute values
may include speed of movement, altitude, etc.  It is not
clear how to weight the attribute similarities (i.e., is
being within 10% of the altitude the same as being within
10% of the distance?).  Several aggregate functions have
been proposed in the literature for synthesizing a global
similarity measure [23] (i.e., weighted average,
Minkowski, maximum, minimum, k-maximum, or k-
minimum).  Weighting is used to compare attributes of
different significance, as defined by the user or defined
within the domain.  These similarity metrics must be
explored through the guidance of a SME and completed
system assessment.

5. Hypothetical Session

To illustrate the envisioned system, we describe a
hypothetical session in this section.  Two CCBR
approaches are illustrated: textual (Figure 7) and graphical
(Figure 8).  Each approach provides different levels of
detail, different types of information, and therefore

different value to the user.  Our goal is to integrate both
of the approaches with CBT to support variant design of
the composable behavior models.  

The textual approach is predicated on the availability of
suitable descriptions for the composite behaviors.  The
retrieval interface is divided into question and case
solution sections.  The questions are generated from the
indexed set of cases as a filtering mechanism to refine
case selection.  Cases are ranked according to a set of
similarity measures.  Likewise, two sections are
illustrated for the graphical approach:  the “question”
section and the “case” section.  The former presents sub-
graphs of the behavior models that may be used to refine
the search in the indexed set of behavior models.  In
presenting information in this format, we hypothesize that
designers will be able to quickly assess whether the sub-
patterns match the given problem.

6. Conclusion and Future Work

We identified several research issues at the intersection of
CBR with composite behavior modeling, including:

(1) investigate mixed-initiative approaches for CBD;

(2) integrate and reason with a diversity of content;

(3) supplement generative lexicons with graphical
representations;

(4) automate ontology updating;

(5) derive and apply adaptation (semantic similarity)
knowledge;

(6) support true interactive revision (user driven) and
reuse (system driven) approaches; and

(7) investigate dynamic vs. non-indexing approaches
for mixed representations.  
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These issues form the foundation for on-going research in
supporting composite behavior design through CBD
retrieval strategies.  This paper highlights areas of research
that have been identified in our investigation of the
potential application of CBR to composable behavior
modeling.  

We presented an approach for augmenting CBT behavior
modeling using a CBR method.  To fully realize the
potential of this integration, an initial step is to
canonically derive a vocabulary of primitive behaviors,
decision nodes, and commands.  The current vocabulary
appears to be sufficient for specific domain applications,
but requires significant effort to extend as new domains
are introduced.  While logical checking has been
incorporated into CBT, semantic validation might also be
included as a finite vocabulary is developed.  One
example of semantic validation could be to determine if
necessary resources are available for a given behavior.
Consider the sequence of behaviors: “aim weapon”, “load
weapon”, and “fire weapon”.  The ordering of these
behaviors is important because a weapon must be loaded
before it can be fired.  This precedence between behaviors
is implicitly found within properly constructed cases.
However, explicit constraints might be used to validate
the semantics of the behavior models.  These issues, and
others, must be addressed in the development of the
proposed system.

Acknowledgements:  Many thanks to Doug Reece,
Jenifer McCormack, and Jackie Zhang, who introduced us
to this topic, collaborated with us earlier on it, and have a
companion paper in this conference that includes
discussion of SAIC’s ongoing implementation efforts.
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