21-355 Advanced Calculus I Exam #2.

Mike Maxim

November 25, 2002

1.1 Theorem. All functions defined in this theorem are assumed to be infinitely differentiable real-valued functions on $(0,\infty)$. ι denotes the inclusion function defined by $\iota(t) := t$ for all $t \in (0,\infty)$. Then for all $n \in \mathbb{N}^{\times}$,

$$D^{n}((\iota - 1)^{n-1}\log) = (n-1)! \sum_{k \in 1, \dots, n} 1/\iota^{k}$$
(1)

Proof

Lemma. Let $n \in \mathbb{N}$, then

$$D^{n}(\frac{(\iota-1)^{n}}{\iota}) = \frac{n!}{\iota^{n+1}}$$
 (2)

Proof Using the binomial theorem to expand the top part of the fraction and dividing through by ι yields,

$$\frac{(\iota - 1)^n}{\iota} = \sum_{k=0}^n \binom{n}{k} \iota^{k-1} (-1)^{n-k} \tag{3}$$

By inspection, we observe that (3) is a polynomial in ι with degree n-1 plus an extra $\frac{1}{\iota}$ term. It is clear from the exponent rule for differentiation, that the nth derivative of a degree n-1 polynomial is 0. Therefore, the only term that matters for the derivative of the whole expression is the $\frac{1}{\iota}$ term. By the exponent rule applied n times, we get that the nth derivative of $\frac{1}{\iota} = \frac{n!}{\iota^{n+1}}$. We observe that the right-hand side is always positive by the following. If we differentiate $\frac{1}{\iota}$ by itself, we observe that the coefficient is negative when the denominator is a even power. However, when we factor in the $(-1)^n$ term, we see that this is negative if n is odd. Therefore, if the nth derivative leaves an even power in the denominator (i.e. n is odd), it is made positive by the extra -1 from the binomial expansion. Furthermore, if the nth derivative leaves an odd power in the denominator (n is even), then the $(-1)^n = 1$, therefore the sign stays positive.

Now we prove the main theorem by induction on n.

Base Case: n=1. $D(\log)=1/\iota$. This is true by the definition of \log .

Inductive Step: Applying the product rule (Rudin 5.3(b)) yields,

$$D((\iota - 1)^{n-1}\log) = (n-1)(\iota - 1)^{n-2}\log + \frac{(\iota - 1)^{n-1}}{\iota}$$
(4)

Now we need to take the (n-1)th derivative of both sides of the addition to get the nth derivative of the original function in the theorem. We apply the Lemma to the right-hand side, and the inductive hypothesis to the left-hand side yielding,

$$D^{n}((\iota-1)^{n-1}\log) = (n-1)((n-2)! \sum_{k\in 1,\dots,n-1} 1/\iota^{k}) + \frac{(n-1)!}{\iota^{n}}$$
 (5)

Simplifying the above expressions yields:

$$D^{n}((\iota - 1)^{n-1}\log) = (n-1)!(\sum_{k \in 1, \dots, n-1} 1/\iota^{k}) + \frac{(n-1)!}{\iota^{n}}$$
(6)

Finally by combining terms we get:

$$D^{n}((\iota - 1)^{n-1}\log) = (n-1)!(\sum_{k \in 1, \dots, n} 1/\iota^{k})$$
(7)

2.1 Theorem. Let the interval [a,b] and the differentiable function $f:[a,b] \to \mathbb{R}$ be given and assume that f' is Riemann-integrable. Then there exists isotone differentiable functions $g, h:[a,b] \to \mathbb{R}$ such that g' and h' are Riemann-integrable and f=h-g.

Proof Let $P = \{a = x_0 < x_1 < ... < x_n = b\}$ be a partition of [a, b] and define:

$$S(P,f) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$$
(8)

Next define a function:

$$V_a^x(f) = \sup S(P, f) \tag{9}$$

where sup is taken over all partitions of [a, x].

Lemma 1. Suppose f' is bounded on [a, b]. Then $V_a^b(f) \leq ||f'||(b-a)$.

Proof For all partitions of [a,b], P, we write $S(P,f) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$. Now by the mean-value theorem (Rudin 5.10), we know there exists a $c_k \in [x_{k-1}, x_k]$ s.t $S(P,f) = \sum_{k=1}^{n} |f'(c_k)| \Delta x_k$. By the definition of supremum norm (Rudin 7.14) we have that $\sum_{k=1}^{n} |f'(c_k)| \Delta x_k \le ||f'|| \sum_{k=1}^{n} \Delta x_k$. However this is just equal to ||f'||(b-a). (Lemma and Proof influenced from Calculus, an Introduction (Beng) pg. 137)

Lemma 2. Let $V_b^a(f)$ be bounded on [a,b] and let a < x < y < b be given. Then $V_a^y(f) = V_a^x(f) + V_x^y(f)$.

Proof We will first prove that $V_a^y(f) \leq V_a^x(f) + V_x^y(f)$. Let P be a partition of [a,y]. Let $P_x = P \cup \{x\}$. Then $P_x = P' \cup P''$ where P' is a partition of [a,x] and P'' is a partition of [x,y] (Clearly either P' or P'' must contain x). Now we write $S(P_x,f) = S(P',f) + S(P'',f) \leq V_a^x(f) + V_x^y(f)$. Taking the supremum over all paritions P of [a,y] yields $V_a^y(f) \leq V_a^x(f) + V_x^y(f)$.

To show equality we now exhibit that $V_a^y(f) \geq V_a^x(f) + V_x^y(f)$. Let P' be a partition of [a,x] and P'' be a partition of [x,y]. Now write $S(P',f) + S(P'',f) \leq V_a^y(f)$ for any partitions P' and P''. Again, we take the supremum over all partitions of [a,y] and get $V_a^x(f) + V_x^y(f) \leq V_a^y(f)$ which is what we wanted. (Lemma and Proof influenced from *Calculus*, an *Introduction (Beng)* pg. 137 (Although the proof is all my own, the equality tipped me off for the main theorem (selection of h))

Since f' is Riemann-integrable, we know that f' is bounded, and by Lemma 1 can say that $V_a^b(f)$ is bounded on [a,b]. Let $h(x) = V_a^x(f)$ and g(x) = h(x) - f(x). Lemma 2 guarentees that h(x) is isotone. In order to show that f can be fully broken down, we still need to show that g is isotone. Let $x,y \in [a,b]$ s.t. x < y. In order for g to be isotone, it must be the case that

$$V_a^x(f) - f(x) \le V_a^y(f) - f(y) \tag{10}$$

since this is how we defined g. Rearranging terms yields:

$$f(y) - f(x) \le V_a^y(f) - V_a^x(f)$$
 (11)

Applying Lemma 2 again to the right-hand side yields: $f(y) - f(x) \le V_x^y(f)$. Partitioning [x,y] via the parition $P = \{x,y\}$ yields the following. S(P,f) = |f(y) - f(x)| which is in turn less than or equal to $V_x^y(f)$ since V is defined to be the sup over all partitions. Therefore, $f(y) - f(x) \le V_x^y(f)$ which implies that g is isotone. After all this, we have deduced two Riemann-integrable isotone functions such that f = h - g. (This proof using the so-called bounded variation V was inspired through the book I cite. The proofs are done by myself however)

3.1 Theorem. Let the three-times differentiable function $f:[-1,1] \to \mathbb{R}$ be given and assume that f(-1) = f(0) = f'(0) = 0 and f(1) = 1. Then there exists $t \in (-1,1)$ such that $f'''(t) \ge 3$.

Proof The proof of this theorem will flow through Taylor's theorem (Rudin 5.15). Let $\alpha = 0$, n = 3, and $\beta = -1$ in the Taylor formulation. Substituting these values into the theorem yields:

$$f(-1) = \sum_{k=0}^{2} \frac{f^{(k)}(0)}{k!} (-1)^k - \frac{f^{(3)}(c)}{6}$$
(12)

Now since f(-1) = f(0) = f'(0) = 0 we can write:

$$0 = \frac{f''(0)}{2} - \frac{f^{(3)}(c)}{6} \tag{13}$$

Rearranging terms and simplifying yields:

$$f^{(3)}(c) = 3f''(0) \tag{14}$$

Therefore we have established that there exists a $c \in (-1,0)$ such that the above holds. Now we do the same procedure again, except this time we let $\beta = 1$.

$$f(1) = \sum_{k=0}^{2} \frac{f^{(k)}(0)}{k!} + \frac{f^{(3)}(t)}{6}$$
 (15)

Substituting and rearranging terms yields:

$$f^{(3)}(t) = 6 - 3f''(0) \tag{16}$$

Therefore we have established that there exists a $t \in (0,1)$ such that the above holds. Now in an attempt to show that either $f^{(3)}(t)$ or $f^{(3)}(c)$ is greater than 3, we introduce this equation:

$$f^{(3)}(t) + f^{(3)}(c) = 6 (17)$$

Substituting yields:

$$3f''(0) + 6 - 3f''(0) = 6 (18)$$

Since the above is clearly true, we have established that either $f^{(3)}(t) \geq 3$ or $f^{(3)}(c) \geq 3$ (otherwise their sum could not add to 6). Since we know we can get a $c \in (-1,0)$ and a $t \in (0,1)$, then there exists an $s \in (-1,1)$ that makes $f^{(3)}(s) \geq 3$.

4.1 Theorem. Let the continuous function $f:[0,1] \to \mathbb{R}$ be given and assume that f(0)=0. Then, for every $\epsilon>0$ there exists a polynomial function $p:\mathbb{R}\to\mathbb{R}$ such that p(0)=0 and $|f(t)-p(t)|\leq\epsilon$ for all $t\in[0,1]$.

Proof In the proof of Rudin 7.26, the claim is made (and proved of course) that $|P_n(x) - f(x)| < \epsilon$ for sufficiently large values of n. Furthermore, the assumptions that the proof makes are identical to those assumptions made about f and p in the statement of this theorem. Therefore if we let $p(t) = \lim_{n \to \infty} P_n(t)$ this implies that $|p(t) - f(t)| < \epsilon$. This clearly implies that $|f(t) - p(t)| < \epsilon$.