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1.1 Theorem. All functions defined in this theorem are assumed to be infinitely differentiable real-valued
functions on (0,00). ¢ denotes the inclusion function defined by 1(t) := t for all t € (0,00). Then for all
n € N*,

D"((t—1)""log) = (n—1)! H_ 1/ (1)
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Proof

Lemma. Letn € N, then
(t—=1)" n!
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Proof Using the binomial theorem to expand the top part of the fraction and dividing through
by ¢ yields,
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By inspection, we observe that (3) is a polynomial in ¢ with degree n—1 plus an extra % term. It is clear from
the exponent rule for differentiation, that the nth derivative of a degree n — 1 polynomial is 0. Therefore,
the only term that matters for the derivative of the whole expression is the % term. By the exponent rule
applied n times, we get that the nth derivative of % = L,ﬂl. We observe that the right-hand side is always
positive by the following. If we differentiate % by itself, we observe that the coefficient is negative when the
denominator is a even power. However, when we factor in the (—1)" term, we see that this is negative if n
is odd. Therefore, if the nth derivative leaves an even power in the denominator(i.e. n is odd), it is made
positive by the extra —1 from the binomial expansion. Furthermore, if the nth derivative leaves an odd
power in the denominator (n is even), then the (—1)" = 1, therefore the sign stays positive. O

Now we prove the main theorem by induction on n.
Base Case: n =1. D(log) = 1/¢. This is true by the definition of log .

Inductive Step: Applying the product rule (Rudin 5.3(b)) yields,

D((v - 1)n71 log)=(n—1)(t— 1)"72 log + ﬂ

(4)
Now we need to take the (n — 1)th derivative of both sides of the addition to get the nth derivative of the
original function in the theorem. We apply the Lemma to the right-hand side, and the inductive hypothesis
to the left-hand side yielding,
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Simplifying the above expressions yields:
- 1!
D=1 og) = -1 Y 14 P ©)
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Finally by combining terms we get:
D™((t—=1)"tog) = (n=1)!( D 1/ (7)
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2.1 Theorem. Let the interval [a,b] and the differentiable function f : [a,b] = R be given and assume that
f! is Riemann-integrable. Then there exists isotone differentiable functions g, h : [a,b] = R such that ¢' and
h' are Riemann-integrable and f = h —g.

Proof Let P={a=2¢ <z < ... <z, = b} be a partition of [a,b] and define:

n

S(P, 1) = S 1 (@) - flena)] (8)
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Next define a function:
Vo (f) =sup S(P, f) (9)

where sup is taken over all partitions of [a, z].
Lemma 1. Suppose f' is bounded on [a,b]. Then V2(f) < ||f'||(b— a).

Proof For all partitions of [a,b], P, we write S(P, f) = > ,_, | f(zx) — f(zk-1)|- Now by the
mean-value theorem (Rudin 5.10), we know there exists a ¢y, € [zx—1, 2] 8.t S(P, f) = Y p_, | f'(ck)|Azg. By
the definition of supremum norm (Rudin 7.14) we have that > ,_, |f'(ck)|Azr < ||f'|| > p; Azk. However
this is just equal to ||f'||(b — a). (Lemma and Proof influenced from Calculus, an Introduction (Beng) pg.
137) O

Lemma 2. Let V;*(f) be bounded on [a,b] and let a < x <y < b be given. Then VY(f) = VI (f) +
V()

Proof We will first prove that VY(f) < VZ(f) + V¥(f). Let P be a partition of [a,y]. Let
P, = PU{z}. Then P, = P' U P" where P’ is a partition of [a,z] and P" is a partition of [z,y] (Clearly
either P’ or P" must contain ). Now we write S(P,, f) = S(P', f) + S(P", f) < VZ(f) + V¥(f). Taking
the supremum over all paritions P of [a,y] yields VY (f) < V2(f) + VI(f).

To show equality we now exhibit that VY(f) > VZ(f) + V¥(f). Let P’ be a partition of [a,z] and P"
be a partition of [z,y]. Now write S(P', f) + S(P", f) < V¥(f) for any partitions P’ and P". Again, we
take the supremum over all partitions of [a,y] and get VZ(f) + V¥(f) < V¥(f) which is what we wanted.
(Lemma and Proof influenced from Calculus, an Introduction (Beng) pg. 137 (Although the proof is all my
own, the equality tipped me off for the main theorem (selection of h))) O

Since f' is Riemann-integrable, we know that f’ is bounded, and by Lemma 1 can say that V’(f) is
bounded on [a,b]. Let h(z) = VZ(f) and g(z) = h(z) — f(z). Lemma 2 guarentees that h(z) is isotone. In
order to show that f can be fully broken down, we still need to show that g is isotone. Let z,y € [a, b] s.t.
z < y. In order for g to be isotone, it must be the case that

Va (f) = f=) <VI(f) = fly) (10)
since this is how we defined g. Rearranging terms yields:
fy) = (@) < V() = Vi (f) (11)

Applying Lemma 2 again to the right-hand side yields: f(y) — f(z) < V¥(f). Partitioning [z,y] via the
parition P = {z,y} yields the following. S(P, f) = |f(y) — f(z)| which is in turn less than or equal to V¥(f)
since V is defined to be the sup over all partitions. Therefore, f(y) — f(z) < V¥(f) which implies that g
is isotone. After all this, we have deduced two Riemann-integrable isotone functions such that f = h — g.
(This proof using the so-called bounded variation V' was inspired through the book I cite. The proofs are
done by myself however) O



3.1 Theorem. Let the three-times differentiable function f : [—1,1] — R be given and assume that f(—1) =
f(0) = f'(0) =0 and f(1) = 1. Then there exists t € (—1,1) such that f"'(t) > 3.

Proof The proof of this theorem will flow through Taylor’s theorem (Rudin 5.15). Let a = 0, n = 3,

and # = —1 in the Taylor formulation. Substituting these values into the theorem yields:
2
&0 3 e
= 0y 20 (12)
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Now since f(—1) = f(0) = f'(0) = 0 we can write:

" (3) c
Osz(O)_f 6() s)

Rearranging terms and simplifying yields:

F®(e) = 3£"(0) (14)

Therefore we have established that there exists a ¢ € (—1,0) such that the above holds. Now we do the same
procedure again, except this time we let § = 1.

2

(k) (3)
k=0 )

Substituting and rearranging terms yields:

FO) =6-3f"(0) (16)

Therefore we have established that there exists a t € (0,1) such that the above holds. Now in an attempt
to show that either f®)(¢) or f®(c) is greater than 3, we introduce this equation:

AW+ =6 (17)

Substituting yields:
3f"(0)+6—-3f"(0)=6 (18)

Since the above is clearly true, we have established that either f®)(t) > 3 or £ (c) > 3 (otherwise their
sum could not add to 6). Since we know we can get a ¢ € (—1,0) and a ¢t € (0,1), then there exists an
s € (=1,1) that makes f®)(s) > 3. O

4.1 Theorem. Let the continuous function f : [0,1] = R be given and assume that f(0) = 0. Then, for
every € > 0 there ezists a polynomial function p : R = R such that p(0) = 0 and |f(t) — p(t)| < € for all
t €[0,1].

Proof In the proof of Rudin 7.26, the claim is made (and proved of course) that |P,(z) — f(z)| < €
for sufficiently large values of n. Furthermore, the assumptions that the proof makes are identical to those
assumptions made about f and p in the statement of this theorem. Therefore if we let p(t) = limy,—, 0 Pn(t)
this implies that |p(t) — f(t)| < e. This clearly implies that |f(¢) — p(t)| < e. O



