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Abstract— We present a method for reducing the effort re-
quired to compute policies for tasks based on solutions to previ-
ously solved tasks. The key idea is to use a learned intermediate
policy based on local features to create an initial policy for the
new task. In order to further improve this initial policy, we
developed a form of generalized policy iteration. We achieve a
substantial reduction in computation needed to find policies when
previous experience is available.

I. INTRODUCTION

Finding policies, a function mapping states to actions, is
computationally expensive, especially in continuous domains.
The alternative of computing a single path, although compu-
tationally much faster, does not suffice in real world domains
where sensing is noisy and perturbations from the intended
paths are expected. When solving a new task in the same
domain, planning algorithms typically start from scratch. This
paper presents an algorithm which decreases the computation
needed to find policies for new tasks based on solutions to
previous tasks in the same domain. This is accomplished by
initializing a policy for the new task based on policies for
previous tasks.

As policies are often expressed using state representations
that do not generalize across tasks, policies cannot be copied
directly. Instead, we propose the use of local features as an
intermediate representation which generalizes across tasks. By
way of this local state representation, policies can be translated
across tasks and used to seed planning algorithms with a good
initial policy.

Fig. 1. Example navigation domain, left: original terrain, middle: feature-
based policy, right: new terrain

For example, in a navigation domain, a policy is usually
defined in terms of (x, y) coordinates. If the terrain or goal
changes, the same (x, y) position will often require a different
action. For instance, on the left terrain in figure 1, the policy of

the upper left corner is to go down, whereas in the right terrain
the policy of the same position is to go right. However, one
can represent the policy in terms of local features that take into
account the position of the agent with respect to the goal and
obstacles. A new policy is initialized by looking up what the
local features are for each state and setting the action of that
state to the action that is associated with the local features. By
reverting back to the global (x, y)-type state representation, the
policy can be refined for the new task without being limited
by the local state representation.

II. RELATED WORK

The transfer of knowledge across tasks is an important
and recurring aspect of artificial intelligence. Previous work
can be classified according to the type of description of the
agent’s environment as well as the variety of environments the
knowledge can be transferred across. For symbolic planners
and problem solvers, the high level relational description of
the environment allows for transfer of plans or macro operators
across very different tasks, as long as it is still within the same
domain. Work on this goes back to STRIPS [1], SOAR [2],
Maclearn [3] and analogical reasoning with PRODIGY [4].
More recent relevant work in discrete planning can be found
in [5], [6].

In controls, work has been done on modeling actions using
local state representations [7], [8]. Other work has been done
to optimize low-level controllers, such as walking gaits, which
can then be used in different tasks [9], [10], [11], [12]. Some
work has been done in automatically creating macro-actions
in reinforcement learning [13], [14], [15], [16], however those
macro actions could only transfer knowledge between tasks
where only the goal was moved. If the environment was
changed, the learned macro actions would no longer apply
as they are expressed in global coordinates, a problem we
are explicitly addressing using the local state representation.
Another method for reusing macro actions in different states
using homomorphisms can be found in [17].

[18] explores learning from observation using local features,
and learning from practice using global features on the marble
maze task. Our work focuses on the use of local features in
model-based planning.



Fig. 2. Original (left) and simulation (right)

III. CASE STUDY: MARBLE MAZE

The domain used for gauging the effectiveness of our
knowledge transfer approach is the Marble Maze domain
(figure 2). It consists of a plane with walls and holes. A ball
(marble) is placed on a specified starting position and has to be
guided to a specified goal zone by tilting the plane. Falling into
holes is to be avoided and the walls both restrict the marble
and can help it in avoiding the holes. The simulation used
in this project uses a four-dimensional state representation
(x, y, dx, dy) where x and y specify the 2d position on the
plane and dx, dy specify the 2d velocity. Actions are also two
dimensional (fx, fy) and are force vectors to be applied to the
marble. This is not identical but similar to tilting the board.
Other simplifications are made in the simulator: the marble
is only a point and has no physical extent, the physics are
simulated as a sliding block (simplifies friction and inertia)
and the simulator adds no artificial noise. Hence, all actions
are deterministic. A more realistic but also higher dimensional
marble maze simulator was used by Bentivegna [19].

The reward structure used for reinforcement learning in this
domain is very simple. Reaching the goal results in a large
positive reward. Falling into a hole terminates the trial and
results in a large negative reward. Additionally, each action
incurs a small negative reward. The agent tries to maximize
the reward received, resulting in policies that roughly minimize
the time to reach the goal while avoiding holes.

Solving the maze from scratch was done using value itera-
tion. In value iteration, dynamic programming sweeps across
all states and performs the following update to the value
function estimate V for each state s:

V t+1(s) = max
a
{r(s, a) + V t(s(a))} (1)

where a ranges over all possible actions, r(s, a) is the reward
received for executing a in state s and s(a) is the next state
reached after a is executed in state s.

The simulator served as the model for value iteration.
The state space was uniformly discretized and multi-linear
interpolation was used for the value function [20].

The positional resolution of the state space was 3mm and
the velocity resolution was 12.5mm/s. The mazes were of size
289mm by 184mm and speeds between -50mm/s to +50mm/s
in both dimensions were allowed, resulting in a state space of
about 380,000 states. Variable resolution methods such as [21]
could be used to limit high-resolution representation to parts
of the space where it is strictly necessary. The maximum force

on the marble in each dimension was limited to 0.0014751N
and discretized into -.001475N, 0 and +.001475N in each
dimension, resulting in 9 possible actions for each state.
With a simulated mass of the marble of .0084kg, maximal
acceleration was about 176mm/s2 in each dimension. Time
was discretized to 1/60th of a second.

A. Local State Representation

Fig. 3. Local state representation

The local state representation, chosen from the many pos-
sible local representations, depicts the world as seen from the
point of view of the marble, looking in the direction it is
rolling. Vectors pointing towards the closest hole, the closest
wall as well as along a path towards the goal (dashed line in
figure 3) are computed. These vectors are normalized to be at
most length 1 by applying the logistic function to them. The
path towards the goal is computed using A* on a discretized
grid of the configuration space (position only). A* is very
fast but does not take into account velocities and does not
tell us what actions to use. Two examples of this local state
representation can be seen in figure 3. In the circle representing
the relative state of the marble, the forward velocity is towards
the right. In the first example, the marble is rolling towards
a hole, so the hole vector is pointing ahead, slightly to the
right of the marble, while the wall is further to the left. The
direction to the goal is to the left and slightly aft. This results
in a state vector of (.037; -.25, -.97; .72, -.38; .66, .34), where
.037 is the scalar speed of the marble (not shown in figure),
followed by the relative direction to the goal, relative direction
to the closest wall and relative direction to the closest hole.
The second example has the closest hole behind the marble,
the closest wall to the left and the direction to the goal to the
right of the direction of the marble, resulting in a state vector
of (.064; .062, .998; -.087, -.47; -.70, .58). As all vectors are
relative to the forward velocity, the velocity becomes a scalar
speed only. Actions can likewise be relativized by projecting
them onto the same forward velocity vector.

B. Knowledge Transfer

The next step is to transfer knowledge from one maze
to the next. For the intermediate policy, expressed using the
local state representation, we used a nearest neighbor classifier
with a kd-tree as the underlying data structure for efficient
querying. After a policy has been found for a maze, we iterate
over the states and add the local state representation with



their local actions to the classifier. It is possible to use this
intermediate policy directly on a new maze. For any state
in the new maze, the local representation is computed and
the intermediate policy is queried for an action. However,
in practice this does not allow the marble to complete the
maze because it gets stuck. Furthermore, performance would
be expected to be suboptimal as the local representation alone
does not necessarily determine the optimal action and previous
policies might not have encountered certain states that now
appear on the new task.

Instead, an initial policy based on global coordinates is
created using the classifier by iterating over the states of the
new maze and querying the classifier for the appropriate action
based on the local features of that state. This policy is then
refined.

C. Improving the Initial Policy
Originally, we wanted to use policy evaluation to create a

value function from the initial policy which could then be
further optimized using value iteration. In policy evaluation,
the following update is performed for every state to update the
value function estimate:

V t+1
π (s) = r(s, a) + V t

π(s(a)) (2)

where a = π(s), the action chosen in state s by the policy π.
Compared to value iteration (equation 1), policy evaluation

requires fewer computations per state because only one action
is evaluated as opposed to every possible action. We hoped
that the initial value function could be computed using little
computation and that the subsequent value iterations would
terminate after a few iterations.

However, some regions of the state space had a poor initial
policy so that values were not properly propagated through
these regions. In goal directed tasks such as the marble maze,
the propagation of a high value frontier starting from the goal
is essential to finding a good policy as the agent will use high
valued states in its policy. If high values cannot propagate
back through these bad regions, the values behind these bad
regions will be incorrect and value iteration will not be sped
up. Similarly, if a policy improvement step was used to correct
the policy in these states, the policy of states behind these bad
regions would be updated based on an incorrect value function.

We overcame these two problems by creating a form of
generalized policy iteration [22]. The objective in creating
this dynamic programming algorithm was to efficiently use
the initial policy to create a value function while selectively
improving the policy where the value function estimates are
valid. Our algorithm performs sweeps over the state space to
update the value of states based on a fixed policy. In a small
number of randomly selected states, the policy is updated
by checking all actions (a full value iteration update using
equation 1). As this is done in only a small number of states
(on the order of a few percent), the additional computation
required is small.

In order to avoid changing the policy for states using
invalid values, the randomly selected states are filtered. Only
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Fig. 4. Results for one test maze

those states are updated where the updated action results in
a transition to a state which has been updated with a value
coming from the goal. This way we ensure that the change in
policy is warranted and a result of information leading to the
goal. This can easily be implemented by a flag for each state
that is propagated back with the values. Note that as a result,
we do not compute the value of states that cannot reach the
goal.

IV. EXPERIMENTAL RESULTS

In order to gauge the efficiency of the algorithm, a series
of experiments was run. First, pools of 30 training mazes and
10 test mazes where created using a random maze generator
(mazes available from [23]). We trained the intermediate
classifier with an increasing number of training mazes to gauge
the improvement achieved as the initial policy becomes more
informed. The base case for the computation required to solve
the test mazes was the computation required when using value
iteration.

Computational effort was measured by counting the
number of times that a value backup was computed
before a policy was found that successfully solved the maze.
The procedure for measuring the computational effort was
to first perform 200 dynamic programming sweeps and then
performing a trial in the maze based on the resulting policy.
Following that, we alternated between computing 50 more
sweeps and trying out the policy until a total of 1000 dynamic
programming sweeps were performed.

When performing a trial, the policy was to pick the best
action with respect to the expected reward based on the current
estimate of the value function. Figure 4 shows the quality of
the policy obtained in relation to the number of value backups.
The right most curve represents value iteration from scratch
and the other curves represent starting with an initial policy
based on an increasing number of training mazes. The first
data points show a reward of -2100 because policy execution
was limited to 2100 time steps, at which point the trial was
aborted if the goal was not yet reached.

Clearly, an initial policy based on the intermediate policy re-
duces the computation required to find a good policy. However,
final convergence to the optimal policy is slow because only a
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sequences of training mazes
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Fig. 6. Relative computation required for one test maze for two different
local state representation

small number of states are considered for policy updates. This
results in a slightly lower solution quality in our experiments.

In order to ensure that the savings are not specific to this test
maze, we computed the relative computation required to find a
policy that successfully performs the maze for ten different test
mazes and plotted the mean in figure 5 (solid). Additionally,
in order to exclude the peculiarities of the training mazes as
a factor in the results, we reran the experiments with other
training mazes. The results can be seen in figure 5 (dashed).
Clearly, the individual training mazes and their ordering do
not influence the results very much.

V. DISCUSSION

State Representation: The local features that we are
proposing as a solution to this problem are intuitively defined
as features of the state space that are in the immediate
vicinity of the agent. However, often the agent is removed
from the actual environment and might even be controlling
multiple entities or there may be long-range interactions in the
problem. A more accurate characterization of the features we
are seeking are that they influence the results of the actions in a
consistent manner across multiple tasks and allow, to a varying
degree, predictions about the relative value of actions. These
new features have to include enough information to predict the
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Fig. 7. Relative computation required for one test maze and different number
of actions

outcome of the same action across different environments and
should ideally not include unnecessary information that does
not affect the outcome of actions. They are similar in spirit
to predictive state representation [24]. These conditions will
preclude features such as position on a map, as this alone will
not predict the outcome of actions – obstacles and goals are
much more important.

In order to gauge the effect of different local state rep-
resentations, we created an alternative state representation. In
this alternative representation, the world is represented as seen
from the marble, but aligned with the direction to the goal
instead of the direction of the movement. Furthermore, the
view is split up into 4 quadrants: covering the 90 degrees
towards the path to the goal, 90 degrees to the left, to the
right and to the rear. For each quadrant, the distance to the
closest hole and closest wall are computed. Holes that are
behind walls are not considered. The velocity of the marble is
projected onto the path towards the goal. The resulting state
representation is less precise with respect to direction to the
walls or holes than the original local representation but takes
into account up to four holes and walls, one for each quadrant.
As can be seen in figure 6, the results are similar for both state
representations. The new state representation performs slightly
better with fewer training mazes but loses its advantage with
more training mazes.

Computational Saving: There are several factors that in-
fluence the computational saving one achieves by using an
informed initial policy. The computational reduction results
from the fact that our generalized policy evaluation only
computes the value of a single action at each state, whereas
value iteration tries out all actions for every state. As a result,
if the action space is discretized at high resolution, resulting in
many possible actions at each state, the computational savings
will be high. If on the other hand there are only two possible
actions at each state, the computational saving will be much
less. The computation can be reduced at most by a factor equal
to the number of actions. However, since in a small number
of states in the generalized policy evaluation we also try all
possible actions, the actual savings at every sweep will be less.
In order to show the effects of changing the number of actions,
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we reran the experiments for one maze with actions discretized
into 25 different actions instead of 9. As seen in figure 7, the
relative computational saving becomes significantly larger, as
was expected.

We also ran experiments to determine the effect of per-
forming policy updates on a varying number of states. If
many states are updated at every sweep, fewer sweeps might
be necessary, however each sweep will be more expensive.
Conversely, updating fewer states can result in more sweeps,
as it takes longer to propagate values across bad regions which
are now less likely to be updated. The results are presented
in figure 8. When reducing the percentage of states updated
to 0.1%, the computational saving is reduced as it now takes
many more sweeps to find a policy that solves the maze, unless
the initial policy is very good (based on several mazes). The
savings become more pronounced as more states are updated
fully and are the greatest when 2.0% of the states are updated,
performing better than our test condition of 0.5%. However,
increasing the number of states updated further results in
reduced savings as now the computational effort at every
sweep becomes higher. Comparing the extreme cases shows
that when updating few states, the initial policy has to be very
good (many training mazes added), as correcting mistakes in
the initial policy takes longer. On the other hand, if many states
are updated, the quality of the initial policy is less important
– many states are updated using the full update anyways.

Intermediate Policy Representation: Another issue that
arose during testing of the knowledge transfer was the repre-
sentation of the intermediate policy representation. We chose a
nearest neighbor approach, as this allows broad generalization
early on, without limiting the resolution of the intermedi-
ate policy once many training mazes were added to the
intermediate policy. However, after adding many mazes, the
data structure grew very large (around 350,000 data points
per maze, around 5 million for 15 mazes). While the kd-
trees performed well, the memory requirements became a
problem. Looking at the performance graph, adding more than
5 mazes does not seem to make sense with the current state
representation. However, if a richer state representation was

Fig. 9. Aliasing problem: same local features, same policy but different
values

chosen, it might be desirable to add more mazes and then
pruning of the kd-tree becomes essential.

The nearest neighbor algorithm itself is modifiable through
the use of different distance functions. By running the dis-
tances to the closest hole and wall through a logistic function,
we have changed the relative weight of different distances
already. However, instead one could imagine rescaling distance
linearly to range from 0 and 1, where 1 is the longest distance
to either hole or wall observed.

Dynamic Programming on Local State Space: As we are
using the local state space to express an intermediate policy,
it might be interesting to perform dynamic programming
in this state space directly. Due to the possible aliasing of
different states to the same local state, the problem becomes a
partially observable Markov decision process (POMDP). This
is aggravated if one keeps the value function across multiple
tasks, as now even more states are potentially aliased to the
same local state. A policy is less sensitive to this aliasing, as
the actions might still be similar while the values could be
vastly different. An example can be seen in figure 9. Both
positions with the agent have the same features and the same
policy, but the value would be different under most common
reward functions which favor short paths to the goal (either
with discounting or small constant negative rewards at each
time step).

VI. CONCLUSION AND FUTURE WORK

We presented a method for transferring knowledge across
multiple tasks in the same domain. Using knowledge of
previous solutions, the agent learns to solve new tasks with less
computation than would be required without prior knowledge.
Key to this knowledge transfer was the creation of a local state
representation that allows for the representation of knowledge
that is independent of the individual task.

We would like to explore other uses for this intermediate
state representation and would like to verify the claim that
doing dynamic programming using this intermediate state
representation directly has limited use. Also, we plan to apply
this method to a stochastic simulator of the maze and a
physical, actuated maze. Furthermore, we would like to use
this local state representation for the creation of macro actions
that can be carried across multiple tasks.
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