
1Abstract Time Warping of Compound Events and Signals

Roger B. Dannenberg
Carnegie Mellon University
Pittsburgh, PA 15213 USA

dannenberg@cs.cmu.edu

ABSTRACT: Functions of time are often used to represent continuous parameters and the passage
of musical time (tempo). A new approach generalizes previous work in three ways. First, common
temporal operations of stretching and shifting are special cases of a new general time-warping
operation. Second, these operations are ‘‘abstract.’’ Instead of operating directly on signals or
events, they operate on abstract behaviors that interpret the operations at an appropriate structural
level. Third, time warping can be applied to both discrete events and continuous signals.

1. Introduction 2. Shift, Stretch, and Warp
Expressive control is a central problem in the field Let us begin by defining two operators, shift(d) and
of computer music. The idea of using functions of stretch(s), which operate on time points. Note that
time for control is an old one. It is not surprising shift(d) is a function, so shift(d)(t) is a function
that functions have also been proposed as a applied to a time point. We define these operators
mapping/warping from beats (score time) to real as follows:
time. Formally, this mapping is the integral of shift(d)(t) = d+t
1/tempo as a function of beat position or score stretch(s)(t) = st
time. [Rogers 80] Researchers pursuing discrete
structural representations for music invented ‘‘shift’’ The shift operator corresponds to musical operations
and ‘‘stretch’’ operations that can be neatly of delay, rest, or pause, and the stretch operator
composed. [Buxton 85, Spiegel 81, Orlarey 86] corresponds to augmentation, diminution, or tempo.
Originally applied to discrete events (notes), these Starting with a score where time is indicated in
operations are also a natural way to manipulate arbitrary units, shift and stretch operators can be
continuous time functions such as amplitude or pitch used to construct a mapping from score time to real
envelopes, and in fact these manipulations are time. For example, to perform a score at half speed
implicit (though not composable) in Music N and shifted by 10 seconds, in Arctic one would
[Mathews 69] languages. Still more recently, write:

abstraction has entered the picture, and researchers score ~ 2 @ 10.
are concerned with the details of, for example,

In Nyquist, one would write:
whether a ‘‘stretched’’ vibrato slows down or not.

(at 10 (stretch 2 (score))).[Rodet 83, Dannenberg 86, Desain 92] In languages
Similar operations are available in many otherlike Nyquist [Dannenberg 92], where signals are
notations.generated, this issue is especially important. Without

abstraction, a tempo change would affect the rate of The meaning (semantics) of nested operators can be
audio oscillators and cause a pitch change! How can expressed mathematically using function
we avoid stretched attacks, unsteady vibrato, and composition:
erratic drum rolls under the influence of time warps? (shift(10) stretch(2))(t)°

= shift(10)(stretch(2)(t))Previous work (such as [Jaffe 85]) does not address
= shift(10)(2t)abstraction issues that arise with time warping.
= 10 + 2tConversely, previous work that addresses

The ‘‘shift’’ and ‘‘stretch’’ operators are just specialabstraction issues does not support time warping.
cases of what Jaffe terms time maps [Jaffe 85],This new work provides a more general solution in
Anderson and Kuivila term timewhich time warping and other time functions can be
deformations [Anderson 86], and I will call timeapplied to abstract behaviors.

1Published as: Dannenberg, ‘‘Abstract Time Warping of Compound Events and
Signals,’’ in Proceedings of the 1994 International Computer Music Conference,
International Computer Music Association, (September 1994), pp. 251-254.

warps [Dannenberg 89]. Time warps can be ‘‘knows’’ how to transform the result of a behavior.
arbitrarily nested, and the effect of nested warp Instead, it is the responsibility of the behavior itself
functions is that of function composition. to perform the transformation. We call this idea

behavioral abstraction. This is abstraction in the
sense that the behavior ‘‘packages’’ or hides details3. Continuous Functions
about how transformations are achieved. Secondly,If the time warp is to be applied to discrete events
our behaviors are abstractions in that they representsuch as note-on or note-off, the score time of the
an infinite class of actual behaviors that varyevent is passed through the warp function to yield
according to pitch, time, duration, loudness, and sothe real-time of the event. On the other hand, it is
on.also important to support continuous time functions

such as pitch bend, amplitude, articulation, and other How can a programming language support
continuous parameters. Normally, these functions behavioral abstraction? In Nyquist, sounds are
are expressed in terms of score time. created and manipulated by combining built-in

signal-processing primitives (essentially unitTo warp a function of score time, g, by a warp
generators). The Lisp function definition facility isfunction, f, we compose g with the inverse of f to
used to create new behaviors implementing notes,−1obtain a function of real time: g(f (t)).
phrases and entire compositions. An abstract(Remember that time warp f maps score time to real
behavior is simply a Lisp function that computes and−1time, so its inverse f maps real time to score time,
returns a sound. An instance of a behavior isand g is a function of score time. Therefore, we
obtained by evaluating (applying) the function.−1apply f to real time t to get score time, then

evaluate g at that point, yielding the value of g at a To support transformation, we need a way to
given real time.) communicate transformation parameters to

behaviors. One possibility is to pass everyTo summarize the results so far, we have seen that
transformation parameter as a function parameter tothe ‘‘shift’’ and ‘‘stretch’’ operators seen in many
every behavior. This would result in very longmusic representations and languages are a special
parameter lists and a very clumsy notation system.case of general time-warping functions. The

literature tells us that time-warping functions can be Instead, transformation parameters are contained in
nested using function composition, so this gives us a an environment that is implicitly passed to every
general way to handle nested ‘‘shift’’ and ‘‘stretch’’ behavior. Environments are dynamically scoped,
in conjunction with other ‘‘warp’’ operators. meaning that a nested function (the callee) inherits
Finally, we see that continuous functions can be the environment from its (calling) parent. Special
warped using function composition and function forms are used to modify the environment, for
inverse. example, in

(transpose 2 (seq (a) (b) (c))),
4. Abstraction Issues the environment passed to seq will have its
Once time warps are introduced, however, we must transposition attribute incremented by 2. Also, the
revisit the ‘‘vibrato problem’’ [Desain 92]: what is seq operator modifies the time map seen by b so
the interpretation of warped vibrato? Should the that b is shifted to the stop time of a, and so on.
vibrato rate fluctuate when time is warped?

It is important to note that transformations like
Previous work has generally ignored this problem.

transposition and time warps modify the
One solution would be to ‘‘build in’’ methods for

environment before evaluating the enclosed Lisp
handling warps, so that vibrato would get one

functions which implement behaviors. It is critical
treatment, envelopes would get another, and so on.

that transformations operate in this manner. This
This is convenient if and when the default behavior

gives behavioral abstractions a chance to determine
matches the composer’s intentions, but it is usually

how transformations will be implemented. For
better to allow the composer to retain complete

example, a fixed-length attack followed by a
control over how warping is applied.

stretchable decay could be implemented as follows:
Our solution is to extend the mechanisms introduced (defun env ()
in Arctic [Dannenberg 86] and available in the (seq (stretch-abs 1.0 (attack))

(decay)))author’s current language project Nyquist. These
mechanisms are quite general and can be used in The stretch-abs transformation replaces the
many representation and language systems. stretch factor in the environment with 1.0 so that

attack is not stretched. The decay sub-behaviorIn Nyquist, it is not a transformation operation that
2

inherits the environment from env and stretches example:
accordingly. The environment is dynamically (warp (f) (loud (contour)

(behavior))).scoped. The reader is referred to [Dannenberg
89] for more examples. Roughly, this expression says: compute behavior

with a time-varying loudness given by contour,Most other systems have avoided the behavioral
with everything warped according to f. In keepingabstraction issue by restricting the results of
with the behavioral abstraction concept,functions to note lists and by restricting
(contour) is computed within the environmenttransformations to operations on note attributes.
warped by f. The environment, modified by thisDesain and Honing [Desain 92] solve the problem
warped loudness contour, is then used for theby returning functions of multiple parameters. As in
evaluation of (behavior).Nyquist, transformations modify parameters rather

than the actual behaviors, and the ‘‘how to Within behavior, it may be necessary to access
transform’’ knowledge is encapsulated in Lisp current values of transformation functions such as
functions rather than transformation operators. produced by (contour). This function will be

bound to the special variable *loud*, but *loud*
is a function of ‘‘post-warp’’ real time, whereas5. Time Warping and Continuous
behavior will generally be written in terms ofTransformations
‘‘pre-warp’’ score time. Let f be the time warpIf the environment provides a time-warping function
function and g be some transformation function. Tof, any discrete time point t affected by f can be
get the current value of g, we map the logicalmapped to real time simply by computing f(t). For
‘‘now’’ (0) into real time and then evaluate g at thatexample, the Nyquist pwl function computes a
point: g(f(0)). In Nyquist, this is written:piece-wise linear function from a list of breakpoints.

When pwl is warped, the default is to map each (sref *loud* (sref *warp* 0))
or simply (get-loud),breakpoint into real time.

where sref evaluates a time function at a particularThe Nyquist sine function generates a sinusoid at a
time. Finally, we note that an integration operator isgiven pitch and duration. Warping a sinusoidal
useful for converting tempo function to a warpsignal would distort the frequency, so in Nyquist the
function. Figure 1 illustrates a variety of ways astart time and end time of the sine behavior are
behavior can respond to time warping.warped, keeping a constant frequency in real time.

To compute sine, a start time and end time are
6. Summary and Conclusionsrequired, and these are given by f(0) and f(d), where
We have considered several aspects of Nyquist andf is the time warp function and d is the specified
their interaction. We discussed the idea of(unwarped) duration of the sine.
behavioral abstraction, whereby a single abstractIf we really want the effect of warping the sine (as
behavior can be instantiated in different contexts to−1in g(f (t)) = (g f)(t)), we could write the°
instantiate any number of concrete, or actualexpression:
behaviors. An important principle is that

(s-compose
‘‘transformations’’ on behaviors, such as stretching(warp-abs nil (sine p))
and shifting, are interpreted in an abstract way. The(s-inverse *warp*)).
details of ‘‘how to stretch’’ are encapsulated withinHere, s-compose denotes function composition,
the abstraction. Time mapping or warping functions

s-inverse denotes function inverse, and *warp*
were presented along with a semantics that areis a special variable reflecting the time-warp
consistent with abstraction principles. We showedfunction in the environment. (Note: ‘‘function’’
how shift and stretch operators are just special caseshere means function of time in the form of a Nyquist
of general time warping. Finally, we showed thatSound data type. Do not confuse this with Lisp
continuous control parameters can be integrated withfunctions.) The (warp-abs nil ...)
behavioral abstraction and time mapping.construct removes the time-warp function from the
Transformation functions are ordinary signals inenvironment seen by sine so that the sinusoid is
Nyquist, so the full range of signal processing andonly warped once. One could even use this
behavioral abstraction facilities can be applied tomechanism for FM synthesis, although the built-in
transformation functions.Nyquist FM oscillators are more efficient.
An efficient implementation is possible in NyquistTime-warp transformations can be composed with
because s-compose, s-inverse andother continuous transformations. Consider this

3

s-integrate all have fast, incremental
implementations. Furthermore, time-maps and
continuous transformations can be computed at low
sample rates. Implementation details are the subject
of a forthcoming paper, and the full Nyquist
implementation itself is available from the author.

New compositional techniques are facilitated by the
A time warp function. unification of audio signals, control signals, time

warping, and transformations. For example, tempo
changes can be smoothed with low-pass filters, the
rate of a drum roll can track a pitch contour analyzed
from speech input, and doppler shift and phasing
effects can be achieved using arbitrary, even audio-
rate synthesized control functions. The

A ‘‘wiggle’’: 4 oscillations, not warped. encapsulation of behavioral details offers the
composer a powerful new tool for expressive
control. We look forward to the exploration of these
possibilities.

References
[Anderson 86] Anderson, D. P. and R. Kuivila. AccuratelyAn unwarped compound behavior: 4 ‘‘wiggles’’ in

Timed Generation of Discrete Musical Events.sequence, with varying amplitudes.
Computer Music Journal 10(3):48-56, Fall, 1986.

[Buxton 85] Buxton, W., W. Reeves, R. Baecker, and
L. Mezei. The Use of Hierarchy and Instance in a Data
Structure for Computer Music. Foundations of
Computer Music. In C. Roads and J. Strawn, MIT
Press, 1985, pages 443-466.

[Dannenberg 86] Dannenberg, R. B., P. McAvinney, and
The compound behavior warped. D. Rubine. Arctic: A Functional Language for Real-

Time Systems. Computer Music Journal 10(4):67-78,
Winter, 1986.

[Dannenberg 89] Dannenberg, R. B. The Canon Score
Language. Computer Music Journal 13(1):47-56,
Spring, 1989.

[Dannenberg 92] Dannenberg, R. B. Real-Time Software
Synthesis on Superscalar Architectures. In Proceedings

Only start and end points are warped; oscillation of the 1992 ICMC, pages 174-177. International
frequency is fixed. Computer Music Association, San Francisco, 1992.

[Desain 92] Desain, P. and H. Honing. Time Functions
Function Best as Functions of Multiple Times.
Computer Music Journal 16(2):17-34, Summer, 1992.

[Jaffe 85] Jaffe, David. Ensemble Timing in Computer
Music. Computer Music Journal 9(4):38-48, 1985.

[Mathews 69] Mathews, M. V. The Technology of
Start and end points are warped, wiggles are linearly Computer Music. MIT Press, Boston, 1969.
stretched to fit.

[Orlarey 86] Orlarey, Y. MLOGO: A MIDI Composing
Environment. In P. Berg (editor), Proceedings of the
International Computer Music Conference 1986, pages
211-213. International Computer Music Association,
1986.

[Rodet 83] Rodet, Xavier, Pierre Cointe, Jean-Baptiste
Barriere, Yves Potard, B. Serpette, and J. J. Briot.
Applications and Developments of the FORMES

Amplitude inversely proportional to ‘‘tempo.’’ programming environment. In Proceedings of the 1983
International Computer Music Conference.Figure 1: Time warp variations.
International Computer Music Association, 1983.

4

[Rogers 80] Rogers, J., J. Rockstroh, and P. Batstone.
Music-Time and Clock-Time Similarities Under Tempo
Changes. In Proceedings of the 1980 International
Computer Music Conference, pages 404-442.
International Computer Music Association, 1980.

[Spiegel 81] Spiegel, L. Manipulations of Musical
Patterns. In Proceedings of the Symposium on Small
Computers in the Arts, pages 19-22. IEEE Computer
Society, 1981.

5

