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 Introduction

 In the past, real-time control via digital computer
 has been achieved more through ad hoc techniques
 than through a formal theory. Languages for real-
 time control have emphasized concurrency, access
 to hardware input/output (I/O) devices, interrupts,
 and mechanisms for scheduling tasks, rather than
 taking a high-level problem-oriented approach in
 which implementation details are hidden. In this
 paper, we present an alternative approach to real-
 time control that enables the programmer to ex-
 press the real-time response of a system in a
 declarative fashion rather than an imperative or
 procedural one.

 Examples of traditional, sequential languages for
 real-time control include Modula (Wirth 1977a;
 1977b; 1982), Ada (DOD 1980), CSP (Hoare 1978),
 and OCCAM (May 1983). These languages all pro-
 vide support for concurrency through multiple
 sequential threads of control. Programmers must
 work hard to make, sure their processes execute the
 right instructions at the appropriate times, and real-
 time control is regarded as the most difficult form
 of programming (Glass 1980). In contrast, our
 approach (Dannenberg 1984; 1986) is based on a
 nonsequential model in which behavior in the time
 domain is specified explicitly. This model describes
 possible system responses to real-time conditions
 and provides a means for manipulating and compos-
 ing responses. The programming language Arctic is
 based on the nonsequential model and was designed
 for use in real-time computer music programs. It
 should be emphasized that our efforts have concen-
 trated on the development of a notation for specify-
 ing desired real-time behavior. Any implementation
 only approximates the desired behavior, just as

 Arctic: A Functional

 Language for Real-Time
 Systems

 computer implementations can only approximate
 arithmetic on real numbers. We have not addressed

 the problem of specifying or meeting maximum
 latency requirements or minimum frequency re-
 sponse; however, our current work is focused on
 reimplementing our language to achieve real-time
 performance capabilities for music applications.

 The Model

 Our model is based on the idea that real-time sys-
 tems can be described in terms of responses to
 events (discrete inputs) and functions (continuous
 inputs), and that the appropriate response may in-
 volve a complex behavior that is extended over an
 interval of time. The response may even be affected
 by events that occur as the response is in progress.
 We use higher-order functions called prototypes to
 represent a set of appropriate responses to a type of
 event. (A higher-order function is a function whose
 value is itself a function.) A prototype takes an ar-
 gument called the starting time, which is the real
 time of the event, and usually determines when the
 response should begin. The result of applying a
 prototype to a starting time is a function of time,
 called an instance, representing the response to the
 event.

 Prototypes have at least two other arguments,
 called the duration factor and the terminate, on
 which instances may also depend. The duration
 factor usually affects the overall duration of the
 response, and the terminate is a time at which a
 response should be discontinued due to the occur-
 rence of an asynchronous event. In some cases, it is
 convenient to violate these suggested interpreta-
 tions of a prototype's arguments; therefore, proto-
 types are not required to obey these conventions.
 At this point, the reader may wonder why we

 have included higher-order functions in our model,
 when simple functions of time are perfectly good

 Computer Music Journal, Vol. 10, No. 4, Winter 1986,
 C 1986 Massachusetts Institute of Technology.

 Dannenberg, McAvinney, and Rubine 67

This content downloaded from 
            132.174.253.119 on Tue, 06 Jul 2021 15:38:15 UTC             

All use subject to https://about.jstor.org/terms



 models for envelopes, audio signals, and control
 inputs. The reason for higher-order functions is
 that they give us the ability to model responses at
 higher levels of abstraction than the level of audio
 signals or even control functions. Consider this
 example: If one were to ask a performer to make
 a note longer, it is likely that the performer would
 increase the duration of the note, but leave the
 pitch unaltered. One can model this note concept
 with a prototype such that increasing the duration
 factor results in a longer instance, but not a lower
 frequency. On the other hand, if we were to simply
 stretch a function of time, the resulting function
 would exhibit lower pitch along with its increased
 duration.

 Figure 1 illustrates this concept. If we "stretch"
 the note by increasing the duration factor argument
 of the note prototype, then the instantiation will
 have the desired properties. On the other hand, if
 we instantiate the note prototype immediately to
 obtain a function of time, then stretching the func-
 tion will not produce the desired result, as illus-
 trated at the bottom of the figure. The essential
 ingredient of the model is its ability to model
 abstract notions, and to allow the manipulation
 of these abstractions. Abstractions can then be

 "instantiated" to produce the control functions or
 audio signals that realize or implement the desired
 abstraction.

 Let us consider another example. Suppose we
 would like to describe a set of amplitude envelopes
 with starting times determined by one parameter,
 and decay times determined by another. The attack
 time, however, should always be 0.01 sec. This set
 of amplitude envelopes could be modeled by a pro-
 totype, where the starting time and duration factor
 of the prototype establish the starting time and de-
 cay time of each envelope in the set. Thus, the pro-
 totype represents or can be used to generate an
 infinite set of envelopes, and each envelope in the
 set is a particular instance of the prototype.

 As a third example, a prototype can represent a
 musical phrase. Suppose we want to model a sus-
 tained tone preceded by a grace note of constant
 duration. Notice that if we simply took a represen-
 tation of two notes and scaled time uniformly, then
 the grace note would lengthen along with the other

 Fig. 1. Stretching a proto-
 type is not necessarily
 equivalent to the stretch-
 ing of an instance.

 Original
 Prototype

 Stretch

 Instantiation
 Instantiation

 Stretch

 note. (The pitch might drop as well!) In contrast,
 prototypes allow us to describe the desired response
 precisely without writing a separate pair of notes
 for each combination of starting time and duration
 factor. Thus, we can express a multitude of individ-
 ual responses using a single general description.
 This example illustrates again the importance of
 being able to manipulate response descriptions at
 the appropriate level(s) of abstraction.

 Notice that timing is explicitly specified when
 a prototype is instantiated. This is in contrast to
 more conventional languages in which timing is
 only implied by control structures and is usually
 obtained by explicit synchronization. We find that
 in most cases it is much easier to specify timing
 (when something should take place) than to specify
 synchronization (timing constraints among differ-
 ent processes or events). We will discuss the issue
 of synchronization further after describing the
 Arctic language.

 A Description of Arctic

 Arctic is a language for specifying systems whose
 inputs and outputs may be time-dependent and
 asynchronous. The model presented above forms
 the basis for Arctic. Artic also includes facilities for
 combining and naming prototypes and instances.
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 Fig. 2. Instances of primi-
 tive prototypes and opera-
 tions on them.
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 Arctic is an untyped language like Lisp (McCarthy
 1965) or APL (Iverson 1962), but its syntax has been
 influenced strongly by Pascal. The choice of syntax
 is strictly a matter of taste, and a Lisp-like or even
 a music-notation-oriented syntax can be imagined.

 The 6urrent version of Arctic is designed as an
 aid to evaluating the model and the concept of ap-
 plicative languages for real-time control. Conse-
 quently, the language specification omits a number
 of "features" that might be desirable in a practical
 implementation, since "features" often distract
 one's attention from the central issues. The design
 of Arctic is not yet frozen! In order to reduce the
 length of this presentation, we will concentrate on
 the interesting aspects of Arctic and not attempt a
 complete definition. We describe the essential ele-

 ments of the language through a series of examples,
 and the output generated by each example is illus-
 trated graphically.

 Primitive Prototypes and Operations

 Arctic has a few primitive, or built-in prototypes.
 Figure 2 illustrates an instance (labeled a) of a unit
 prototype multiplied by 0.7. The unit prototype it-
 self generates a function whose value is one on an
 interval defined by the start time and duration fac-
 tor of the instance. The function is zero everywhere
 else. For example, in instance a in Fig. 2, the start
 time is zero and the duration factor is one. In the

 same figure, b and c are instances of the ramp proto-
 type, and d is an instance of a sin (sine) prototype.
 Instances are just functions of time, and they can be
 combined using various mathematical operators.
 The third graph illustrates the values of the Arctic
 expressions a + b and c * d ("*" denotes multi-
 plication). The fourth graph plots the values of the
 expressions a = b and c > d. Notice that these last
 expressions denote Boolean functions of time.

 Any of these functions could be declared to be
 inputs or outputs. For example, c could be an in-
 stance of ramp as described above, d could be an
 input function, and c * d could be the output of a
 real-time system.

 Shift and Stretch

 For convenience, a prototype instantiation inher-
 its its starting time and duration factor from the
 expression in which it is embedded. However, op-
 erators are provided to change the inherited parame-
 ters wherever necessary. The stretch operator (-)
 is used to change the duration factor. Letting P be
 a prototype and x be a real number, instantiating
 P - x with a duration factor d is equivalent to in-
 stantiating P with a duration factor xd. Informally,
 P - x means "do behavior P, but make it last x
 times as long."

 The shift operator (@) is used to offset the start-
 ing time. Instantiating P @ x at time t and duration
 factor d is equivalent to instantiating P at time t +
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 Fig. 3. Several instances of
 ramp showing the effect of
 shift (@) and stretch (-)
 operations.

 ramp ramp - 2 ramp @ 3 ramp - 2 @ 3

 0 1 2 3 4 5
 Time (sec)

 xd. Informally, P @ x means "do behavior P, but
 start it xd sec later."

 Figure 3 illustrates four instances of the built-in
 ramp prototype, showing the use of shift, stretch,
 and a combination of the two to achieve different

 functions. Although most primitives shift and
 stretch in a linear manner, it is possible to define
 prototypes that change shape arbitrarily according
 to the time and duration factor as described earlier.

 A simple example is the built-in sin prototype. The
 function labeled d in Fig. 2 is an instance of sin(3)
 @ 2 (with the default duration factor of 1). If we
 were to change the duration factor, for example
 sin(3) - 5 @ 2, we would still get a 3-Hz sine
 curve, but there would be 15 periods to fill the
 5-sec duration.

 Variables and Assignment

 Variables are allowed in Arctic, but they are not like
 more familiar variables in procedural languages like
 Pascal and C. In Arctic, a variable can be assigned a
 value one time at most, but the value can be a func-
 tion of time. The assignment operation is denoted
 by the symbol ":=."

 To illustrate variables and assignment, we present
 the expressions that were used to generate Fig. 2.
 First, we write expressions to declare and define a,
 b, c, and d:

 value a, b, c, d;
 a = unit * 0.7;
 b = ramp;
 c = ramp @ 2;
 d = sin(3)@ 2;

 Now we write four expressions describing the four
 graphs. Notice how nonoverlapping functions can
 be added to combine them into one:

 a + b + c * d
 a = b or c > d

 Collections and Sequences

 Up to this point, we have only considered prototypes
 that yield instances that are real-valued functions.
 However, a response to an event can consist of a
 number of parallel activities; collections allow us
 to group several prototype instantiations together.
 Figure 4 illustrates the following collection:

 value x, y;

 [x:= sin(l); y:= ramp]

 The syntax of collections is a list of expressions
 separated by semicolons and enclosed between
 square brackets. The expressions are evaluated with
 the same start time and duration factor, so in this
 case, the sin and ramp instances overlap in time.
 The value of the collection expression is just the
 value of the first prototype in the collection, so we
 have plotted x and y instead.

 A sequence is a special kind of collection that is
 used to specify sequential behavior. Figure 5 illus-
 trates the sequence:

 [sin(1) rampl

 Notice that the syntax is similar to that of a collec-
 tion, but the prototypes are separated by vertical
 bars (1) rather than semicolons. The prototypes are
 instantiated in sequence rather than in parallel, and
 the result is the sum of the instances.

 Asynchronous Behavior

 So far, we have seen how complex behaviors can be
 specified by combining prototypes. All of the be-
 haviors looked at so far have had the property that,
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 Fig. 4. An instance of the
 collection [x := sin(l); y:=
 ramp].

 Fig. 5. An instance of the
 sequence [sin(1)lramp].
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 once instantiated, they run to completion in a pre-
 specified manner. Arctic also allows one to define
 prototypes that can change in response to future
 asynchronous events. The idea is fairly simple: an
 instance is started and allowed to run until some

 designated event occurs. At that time, the instance
 is terminated and replaced by an instance of an-
 other prototype.

 As an example, suppose we want a function con-
 sisting of an increasing sinusoidlike curve that rises
 until it reaches the value 1.5 at which time it holds
 the value 1.5. The entire function should last 3 sec.

 Let us use the prototype

 x := (sin(2) + ramp) - 3

 as the increasing function. Since it is not obvious
 when x will reach the value 1.5, we will write an
 Arctic expression that becomes true at that time.
 The expression is simply

 x> 1.5

 Fig. 6. An instance of the
 do-until-then construct.

 The first prototype is ter-
 minated when it reaches

 1.5, at which time a new
 prototype is instantiated.

 1-

 0-1 ' I V 2 3
 Time (sec)

 Now we are ready to write the desired prototype:

 do x:= (sin(2) + ramp) - 3
 until x > 1.5

 then (unit * x(time)) - (3 - time);

 The expression following do computes the first part
 of the function, and the expression following until
 is evaluated in parallel. When this latter function
 becomes true, the first expression is terminated and
 the prototype following then is instantiated. In this
 expression, time is a special variable whose value is
 the instantiation time (the time at which x > 1.5),
 and x(time) is the value of x at time. We multiply a
 unit by x(time) to make the function continuous.
 (In this case we know x(timel will be 1.5, but if we
 had used a different until condition, it might not
 be possible to know the value in advance. Using
 x(time) is a more general way to make sure the func-
 tion is continuous.) The unit prototype is stretched
 by 3 - time to achieve a total time of 3 sec. The
 value returned by the do-until-then construct is the
 sum of the do expression and the then expression,
 as shown in Fig. 6.

 A few more details are necessary to complete the
 description of this little program. It is important to
 note that the value of an assignment is the value of
 the expression being assigned, so the do expression
 is used not only to define x but also to yield a value.
 Also, notice that x(time) is being evaluated at a dis-
 continuity because x goes to zero at time. Intervals
 in Arctic are always open on the left and closed on
 the right, so x(time) evaluates to 1.5, not 0.

 Prototype Definition

 In Arctic, new prototypes can be named and defined
 in terms of existing prototypes. To illustrate this,
 we will define a new prototype called Note and give
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 examples of its use. The Note prototype takes ad-
 vantage of a special form of assignment (+=) which
 can only apply to variables declared as sum vari-
 ables. The following program

 sum x;

 Ix += ramp; x += sin(2)];

 is equivalent to

 value x;

 x := ramp + sinr(2);

 More specifically, if x is a sum variable, its value is
 the sum of every expression appearing on the right
 side of assignments of the form "x += e." As we
 will see, this type of assignment is useful for com-
 bining the effects of a number of different prototype
 instantiations.

 The Note prototype computes amplitude and fre-
 quency controls named ampO and freqO for a syn-
 thesizer. (ampO and freqO are used for illustration
 and are ordinary Arctic functions. Arctic itself does
 not dictate how control functions are interpreted to
 generate sound.) The definition is:

 out sum ampO, freqO;

 Env is 90 * [ramp - 0.21(1 - ramp) - 0.6 zero -~
 0.2];

 Note(in pitch) causes [
 ampO += Env;
 freqO += unit * pitch;
 1;

 To instantiate Note, the expression given after
 causes in the definition is instantiated, resulting in
 functions being added to ampO and freqO. The out
 keyword indicates that ampO and freqO are system
 outputs. The function added to ampO results from
 an instantiation of Env, another prototype defined
 as a sequence. The first part of the Env sequence
 uses the ramp prototype to compute an attack, the
 second part uses 1-ramp to compute a decay, and
 the third part causes the function to remain at zero
 for a short interval. Stretch (-) operations are used
 within the sequence to adjust the length of each

 part, and so that the total length of the result will
 be the duration factor. This sequence is used as an
 amplitude envelope function. The envelope is mul-
 tiplied by 90 in order to get a medium loud sound
 from our synthesizer. The keyword "is" in the defi-
 nition of Env indicates that Env returns a value.

 In this example, pitch is held constant through
 the duration of each note. This is accomplished by
 using unit to generate a constant function whose
 length is the duration factor. The constant is multi-
 plied by pitch, which is a parameter to Note. For
 example, the following collection:

 [Note(48) @ 0; Note(60) @ 1;]

 results in the ampO and freqO illustrated in Fig. 7.
 Notice how the desired pitches (48 corresponds
 to C4, and 60 corresponds to C5) are provided as
 parameters to Note. The duration of the notes is
 one because the default duration factor is one.

 Example: A Compositional Algorithm

 The next example uses Arctic to compute a se-
 quence of notes, each with random pitch. While
 this example will win no prizes for composition, it
 illustrates how Arctic programs can span many lev-
 els of musical structure, from overall structural to
 details of envelopes or even acoustic signals them-
 selves. The prototype is defined as follows:

 repeat(Note(irnd(50) + 30), 40) - 0.1;

 Let us examine this prototype expression from the
 inside out. The parameter passed to Note is irnd(50)
 + 30, which means "take a random integer from 0
 to 49 and add 30." The resulting number represents
 a random pitch between 30 (F#2) and 79 (G6). The
 random pitch is passed as a parameter to Note,
 which was defined previously.

 Note is in turn a parameter to repeat, a special
 Arctic function that takes two parameters: the first
 is a prototype and the second is a repeat count. The
 prototype is instantiated repeatedly in a sequence
 whose length is given by the repeat count. In this
 case, Note is instantiated 40 times. This would or-
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 Fig. 7. The result of two
 instantiations of the Note
 prototype. The top graph
 represents amplitude and
 the lower one represents
 pitch.
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 dinarily result in a behavior of length 40 sec (1 sec
 per note), but the whole prototype is stretched by
 0.1, making each note last 0.1 sec. The overall be-
 havior is 4 sec long, and a graph of the resulting
 amplitude and frequency functions is given in
 Fig. 8.

 Let us take a more detailed look at how the

 stretch operation (-) works in this example. Recall
 that the duration factor is an implicit parameter to
 every prototype. The duration factor at the outer-
 most level of expressions is one. This is multiplied
 by the stretch factor, so the duration factor passed
 to the repeat prototype is 0.1. The duration factor
 is passed on without modification to each instance
 of Note, from there to Env, and from there to the
 sequence prototype in the definition of Env. The
 sequence consists of three parts, each with its own
 additional stretch operation:

 [ramp - 0.21(1 - ramp) - 0.61zero - 0.2]

 The duration factor passed to ramp in the first part
 of the sequence will be 0.2 x 0.1, or 0.02 sec. The
 other parts of the sequence will have durations of
 0.06 and 0.02 sec, respectively, for a total duration
 of 0.1 sec. This total duration is passed back up
 through Env and Note back to repeat, which uses
 the duration to place the next instance of Note.

 A very similar mechanism is at work with the

 Fig. 8. The result of a
 prototype that computes a
 random pitch sequence.
 The notes are generated by
 the same Note prototype
 used in Fig. 7.
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 implicit start parameter. The repeat prototype
 gets the default start time of zero, which is passed
 through Note and Env to the envelope sequence.
 There, ramp is instantiated at time 0, 1 - ramp at
 time 0.02, and zero at time 0.08. The next instance
 of Note is instantiated by repeat with a start time
 of 0.1 and the same envelope sequence is recom-
 puted 0.1 sec later. If we wanted the entire repeat
 expression to start at 2 instead of 0 sec, we could
 follow the expression by "@ 2":

 repeat(Note(irnd(50) + 30), 40) - 0.1 @ 2;

 Then, the first Note, Env, and envelope sequence
 would inherit a start time of 2 and a duration factor
 of 0.1.

 Arctic also includes a control construct for condi-

 tional instantiation (if-then-else). With a little more
 work, we could have defined the behavior in Fig. 8
 using recursion instead of the special repeat
 function:

 Random(in N) causes[
 if N > 0

 then [Note(irnd(50 + 30)1
 Random(N - 1)]

 else zero - 0];
 Random(40) - 0.1;
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 Random generates a sequence of length N by in-
 stantiating a Note and following it by a sequence of
 length N - 1. If N is not greater than zero, then the
 prototype zero - 0 is instantiated in order to pro-
 vide an end to the sequence.

 Spectral Surface Manipulation

 As a final example, we describe a more complex use
 of Arctic. We begin with a number of functions rep-
 resenting the amplitude envelopes of a series of par-
 tials. These envelopes result from the analysis of
 a tone from an acoustic instrument. The functions

 serve as input to an Arctic program that extracts
 the decay part of each harmonic and stretches it,
 leaving the attack portion unaltered. Other manipu-
 lations, such as the addition of vibrato or amplitude
 scaling are also possible. Nonlinear stretching of
 arbitrary functions is not a primitive in Arctic, but
 it can be simulated in the current implementation
 by breaking a function into a number of "slices,"
 stretching the slices by different amounts, and then
 splicing them back together. The original and the
 resulting functions are plotted in Fig. 9. The Arctic
 program that transformed the functions on the left
 hand side to those on the right is less than 100
 lines long.

 Discussion

 Arctic borrows from the GROOVE system (Mathews
 and Moore 1970) and from Music V (Mathews et
 al. 1969) in that behavior is represented as the com-
 bination of functions of time, and new behaviors
 can be created by combining and modifying func-
 tions. Arctic is also indebted to the 4CED program
 (Abbott 1981), in which actions can be triggered
 by events, and in which timing is notated explicitly.
 In Arctic, however, there is no notion of sequen-
 tial execution or state. Instead, the time at which
 a function takes on a given value, or the time at
 which some function starts is specified through
 expressions that give complete timing information;
 thus, there is no need for imperative-style com-
 mands that must be executed in sequence. Assign-

 Fig. 9. An original tone
 and a tone "stretched"
 nonuniformly by an Arctic
 program. The plotted func-
 tions represent the com-
 bined amplitude and

 frequency functions for 6
 harmonics. Note that the

 attack portion is not
 stretched and the pitch
 has been transposed up
 a fifth.
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 ment in the traditional imperative language sense is
 not defined because assignment implies the exis-
 tence of variables that can take on different values
 at different points in the execution of a program.
 In contrast, Arctic uses functions to denote time-
 varying responses, and our resulting language will
 be of the applicative, or functional style (Backus
 1978) as opposed to the imperative style.

 Several object-oriented languages have been de-
 veloped to solve the same problems of real-time
 control that we address. In the language FORMES
 (Rodet and Cointe 1984; Cointe and Rodet 1984),
 time-varying values are computed by rules that are
 associated with objects. These rules are invoked
 by a "monitor" program that walks a "calculation
 tree" consisting of the currently active objects. The
 data-structure is walked at intervals corresponding
 to the time resolution of the system. FORMES capi-
 talizes on the abstraction facilities of its underlying
 object-oriented programming language to hide many
 of the details of the computation of functions. In-
 terestingly, this allows FORMES programs to take
 on a declarative style. Related object-oriented
 systems include those for animation described by
 Kahn (1979) and Reynolds (1982).

 Other languages have integrated functional ideas
 with more traditional process-oriented implementa-
 tions. The OWL language (Donner 1983), designed
 to program multilegged robots, has processes with
 implicit looping and supports an event- and condi-
 tion-driven style of programming. The Formula sys-
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 tem implemented by Anderson and Kuivila (1985;
 1986) includes a unique facility for describing con-
 tinuous functions procedurally. These functions can
 be "attached" to other processes and are evaluated
 only at points in time where the value is needed.

 While it may seem strange to abandon the more
 sequential programming style for real-time con-
 trol, there are some good reasons for doing so. In a
 language in which statements are executed in se-
 quence, we are forced to use the time domain to
 describe program behavior. Programmers must take
 great pains to prevent sequential execution from in-
 terfering with the real-time behavior of their pro-
 grams. The sequential nature of procedural program
 execution forces the programmer to pay attention
 to many implementation details that are irrelevant
 to his overall task. On the other hand, our model
 allows us to describe real-time behavior using a lan-
 guage whose meaning can be understood outside of
 the time domain. By stepping out of the time do-
 main, behavior can be described in a more problem-
 oriented fashion, but we must give up the notions
 of sequential execution and state change; these
 only make sense within the time domain.

 Another advantage of the functional style is that
 synchronization of expression evaluation is im-
 plicit. For example, if the value of an expression is
 assigned to a variable, then the expression must be
 evaluated before the variable is used in some other
 expression. This follows from the rule that vari-
 ables can only be assigned a value once. When many
 expressions are being evaluated to compute a num-
 ber of functions, implicit synchronization is an
 important factor in keeping programs small and
 understandable. Implicit synchronization is also
 interesting because of its implications for designing
 and programming highly parallel computers called
 dataflow machines (Dennis 1980; Wadge and Ash-
 croft 1985).

 Arctic in Real Time

 The current implementation of Arctic is an inter-
 preter and is not a real-time system. The interpreter
 reads inputs and programs from files, computes
 output functions and events, and writes them to

 another file. The file can be used as input to a
 program that drives a synthesizer, plotter, or some
 other device in real time. An interactive version of
 the interpreter evaluates expressions as they are
 typed and displays output functions graphically.
 The interpreter operates on entire functions, one
 operation at a time. For example, to compute [a +
 b; x * y], the interpreter forms the sum of a and b
 and then takes the product of x and y. Thus, the
 value of a + b at time 100 is computed before the
 value of x * y at time 0. This is, of course, not
 the sort of execution order one would want in a

 real-time system.
 We are investigating the problems of a real-time

 implementation of Arctic. Such an implementation
 will have to interleave the computation of functions
 that overlap in time. Although this could be accom-
 plished by using many processes (one for each func-
 tion), the overhead of context switching would be
 too high in most cases. Another problem is that
 execution order is implicit in Arctic and must be
 computed at run time. The way in which we intend
 to deal with these issues is outlined next.

 In a conventional multiple process system,
 switching from one process to another involves
 saving processor registers associated with the cur-
 rent process, finding the new process, and restoring
 registers for its use. This often takes hundreds of
 instructions. In Arctic, "processes" correspond
 to expressions and assignments, which usually take
 only a few instructions to evaluate. If Arctic were
 to be implemented with conventional processes, it
 would spend nearly all of its time switching con-
 texts, leaving little time for computation.

 Fortunately, evaluating Arctic expressions does
 not require a mechanism as elaborate as conven-
 tional processes. All that is required is a way to
 keep track of what expressions are to be executed.
 The expressions themselves can be compiled into
 instruction lists that save and restore little or no
 context from one execution to the next. The idea is

 to simulate continuous change by reevaluating all
 expressions periodically. Only the current value of
 the functions denoted by the expressions will be
 kept in memory.

 One implementation technique we have used in
 another real-time system is to dynamically compile
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 instructions to execute the desired expressions. For
 each expression to be executed, the following three
 machine instructions are generated:

 load context-address

 call expression-implementation
 jump next

 Each instance of a prototype has a corresponding
 block of memory to hold its local variables, param-
 eters, and other context information. The first
 instruction loads a register with the address of this
 block. The second instruction calls a precompiled
 subroutine that implements the expression. When
 the call returns, the third instruction transfers con-
 trol to execute the next expression.

 An executing Arctic program contains a list with
 one of these instruction triples for each active ex-
 pression. The triples are linked together through
 the address fields of the jump instructions, so the
 list is simultaneously a data structure and exe-
 cutable code. To instantiate a prototype, a context
 is first created and initialized. Then, a triple of
 instructions is generated for each expression and
 linked into the list of active expressions. This
 corresponds to process creation in a conventional
 system.

 The second implementation problem is to make
 sure that expressions are executed in the proper
 order. In particular, the implementation should guar-
 antee that assignments to variables always precede
 any use of that variable in the list of active expres-
 sions. Thus, the list of active expressions must
 be sorted accordingly. Unfortunately, there are cases
 where the insertion of just one expression can force
 the list to be completely reordered. We plan to ex-
 periment with different heuristics and compro-
 mises, and we believe that good performance can be
 achieved on "real" programs.

 Use in the Musician's Workbench

 It is our hope that Arctic will become a practical
 language for real-time control, and we plan to make
 Arctic an integral part of the Musician's Workbench,
 a computer music system we are constructing at
 Carnegie Mellon University. Although space will

 not allow a complete description of the project, it
 may be useful to show how Arctic will fit into the
 scheme of things.

 The highest level interface to the Musician's
 Workbench will be an interactive score editor, which
 will be used for both producing printed scores and
 controlling synthesizers. The editor will support
 conventional music notation as well as extensions
 defined by composers. Here is where Arctic comes
 in. If composers define their own notation, how
 will they describe to the system what the notation
 means? Our solution is to translate graphic scores
 into Arctic programs. (In this case it is not neces-
 sary that the Arctic program run in real time.)

 For example, a composer might design an Arctic
 prototype that takes a pitch and two other param-
 eters called Attack and Color. Using the score edi-
 tor, the composer can create a score in conventional
 notation and specify values for Attack and Color
 for each note as desired. To perform the score, each
 note is translated by the system into a prototype
 instance. The starting time and duration of each
 note are used as the starting time and duration of
 the prototype instance, and the pitch, Attack,
 and Color attributes of each note are passed as
 parameters.

 It should be mentioned that, in keeping with
 Arctic concepts, the score editor will allow one to
 create and edit functions of time in addition to dis-
 crete events like notes. These functions can also be
 input to Arctic programs as in the spectral surface
 example.

 For sound output, we will extend Arctic so that
 external routines (probably written in the C lan-
 guage) can be substituted for Arctic prototypes.
 This will make it easy to interface Arctic to various
 input and output devices without adding extensive
 facilities to the language. We are currently working
 with a device called the Bradford Musical Instru-
 ment Simulator, or BMIS, developed by Peter Com-
 erford at the University of Bradford. The BMIS
 provides 64 table-lookup oscillators with interpola-
 tion between tables. We are writing software for the
 BMIS that will allow us to view amplitude, pitch,
 and interpolation controls as functions to be com-
 puted by Arctic programs.

 With a real-time implementation, composers will
 be able to program the Musician's Workbench as a
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 performance device. The positions of various sen-
 sors will be input to Arctic programs as functions
 of time, and discrete input events such as keys will
 cause the instantiation of composer-defined proto-
 types which will in turn produce the desired re-
 sponse. Real-time outputs will be used to control
 the BMIS or other real-time devices.

 Summary and Conclusions

 We have outlined a new approach to the problem
 of real-time control. Our approach is based on
 the concept of the prototype, an abstraction of be-
 havior, and on the use of functional programming.
 Arctic programs are characterized by the lack of
 sequential execution, the absence of side effects,
 and inherent parallelism. We know of no other func-
 tional language that can specify real-time system
 response or deal with asynchronous events. In
 contrast to sequential programming languages,
 the evaluation of Arctic programs is not time-
 dependent. This makes it much simpler to manipu-
 late values that are time-dependent.

 We have used Arctic to design and manipulate
 individual sounds as well as entire compositions.
 Arctic makes it possible to express rather elaborate
 behaviors with a concise, high-level notation, enab-
 ling composers and researchers to concentrate on
 creation and problem solving rather than program-
 ming and debugging.

 Several aspects of Arctic require more thought
 and experiment. The use of starting times and dura-
 tions solves just part of the more general problem
 of temporal alignment. One possible extension to
 Arctic is to allow the shift operation (@) to take a
 time map (Jaffe 1985) as its right argument. Second,
 Arctic provides an elegant, but not entirely prac-
 tical way to handle asynchronous inputs. At pres-
 ent, asynchronous inputs can terminate an instance
 and start another, but it is awkward to pass infor-
 mation to the new one. Finally, Arctic must be ex-
 tended with data structures such as arrays and lists,
 in order to more easily perform arbitrary computa-
 tions. Perhaps an interface to a procedural language
 will alleviate this problem.

 We feel that the problem of real-time control is
 largely a problem of language. To tackle the design

 and implementation of complex systems, we must
 have a powerful notation. By introducing such a no-
 tation, we feel that Arctic makes a significant con-
 tribution to the field of real-time control.
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