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ABSTRACT

Convincing synthesis of wind instruments requires more than the reproduction
of individual tones. Since the player exerts continuous control over amplitude,
frequency, and other parameters, it is not adequate to store simple templates
for individual tones and string them together to make phrases. Transitions are
important, and the details of a tone are affected by context, To address these
problems, we present an approach to music synthesis that relies on a perfor-
mance model to generate musical control signals and an instrument model to
generate appropriate time-varying spectra. This approach is carefully designed
to facilitate model construction from recorded examples of acoustic perfor-
mances. We report on our experience developing a system to synthesize trumpet
performances from a symbolic score input.

INTRODUCTION

Our goal is the creation of high-quality synthesized musical performances of
wind instruments. These instruments are especially interesting because they
are driven continuously by a source of energy controlled by the player. Because
energy is always being.added to the instrument, the player exerts continuous
control over the sound production. Proper instrument performance relies on
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this control, and any synthesis effort must address the wide range of sounds so
enabled, We have studied the trumpet and achieved good results. We believe
that our techniques will apply to wind instruments in general and perhaps
even to strings, but this must be demonstrated before we can draw conclu-
sions.

Our work is oriented toward a synthesis model in which the input is a
symbolic score, such as common practice music notation, and the output is
a digital audio performance. There are other interesting problems, but this
one forces us to address the problem of control, which is so important to
music,

Given the problem of rendering an audio performance from a symbolic
score, continuous control plays a key role as an intermediate representation
in the rendering process, We first generate control signals from the score and
then synthesize sound from the control signals. (See Fig. 1) This is a fairly
simple idea, and in most ways it is consistent with nearly all synthesis tech-
niques. However, we have selected our continuous control parameters and
designed our synthesis methods especially to help us create realistic perfor-
mances.

One common problem in synthesis is to produce control signals that result
in the desired sounds. A classic example is the specification of parameters for
FM synthesis in order to render a given spectrum or spectral evolution. If a
synthesis algorithm can be inverted, then good control parameters can be
derived or approximated from the analysis of acoustic performances. If the
synthesis algorithm cannot be inverted, then the search for good control para-
meters can be difficult, requiring human perception and intelligence.

Another problem in synthesis is the production of control signals from the
score. If control parameters are closely tied to musical concepts such as pitch
and loudness, then rules can be derived by hand or through machine learning

Score

| Apply Performance
‘ Model :

Control
Signals

Apply Synthesis
vModel

Fig. 1. The overall problem can be factored into two subproblems: the Performance
Model and the Instrument Model.
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to obtain control signals. On the other hand, if control parameters reflect
peculiarities of the synthesis model (such as variations in lip tension in a phy-
sical model or the modulation index in FM synthesis), then control para-
meters are more difficult to obtain.

In our work the primary control signals are fundamental frequency and
RMS amplitude. These signals are perceptually and musically relevant, which
helps to derive these signals from a symbolic score. It is also possible to derive
these signals from acoustic performances. This means that the synthesis model
can be tested with “correct” information derived from a human performance.
This in turn allows us to decompose the overall problem into the subproblems
of control generation and sound synthesis,

EXPERIMENTAL APPROACH

Before describing the techniques we have developed, we will explain the meth-
odology that led to these techniques. The methodology is important because
there is still much work to be done, and without a methodology, future pro-
gress would require new insight and breakthroughs. We do not expect all future
work to be routine or automatic, but at least the methodology gives us hope
that our techniques will apply to other instruments and musical styles.

Our first efforts were directed toward synthesis. We thought that we might be
able to represent the time-varying spectrum as a function of amplitude and
frequency envelopes. This led to a number of experiments to explore this
hypothesis. In this work, acoustic performances are analyzed to derive ampli-
tude and frequency envelopes. These are then fed back into the trial synthesis
algorithm and the results are compared subjectively by listening, (See Fig. 2)

The goal of this first stage is to develop an “instrument model” that can pro-
duce high-quality sound given the proper control signals. Proper control sig-
nals are insured because we use controls derived from the analysis of acoustic
performances. Success at this stage is critical; if a good performance does
not result from “real” control signals, there is little hope that artificially derived
control signals will make the results any better.

The second stage is to derive control signals from a symbolic score. The task
is to develop and refine a “performance model” that converts a score into con-
trol signals. There are many options available at this stage because of the way
we have approached the problem. A good starting point is a set of examples
of control signals extracted from performances of various articulations, inter-
vals, pitches, and dynamic levels. These are used to (manually) build and refine
rules for performance. To evaluate the resulting performance model, a human
performer can be asked to play the symbolic score and the results can be ana-
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Fig. 2. Testing and refining the Instrument Model.

lyzed. This gives “target” frequency and amplitude envelopes that can be stud-
ied and compared to artificially generated ones. (See Fig. 3)

These “target”control signals can be synthesized using the instrument model
to produce a resynthesized performance. This can be compared to a perfor-
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Fig. 3. Testing and refining the Performance Model.
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mance synthesized using control signals from the artificial performance mod-
el. (See Fig. 4) Listening to synthesized performances allows us to focus on
the problems that are perceptible and ignore control signal discrepancies that
do not matter. This may point to the need for more data collection, and the
refinement process iterates.

The final test is to compare a completely synthetic performance to an acous-
tic, human performance. If these are indistinguishable, the synthesis is consid-
ered to be successful. In practice, however, there will always be unwanted
imperfections and inconsistencies in the human performance that will not be
duplicated in the synthetic one (cven if the synthesis includes intentional
human-like imperfections) Therefore, there will always be noticeable differ-
ences between human and synthetic performances. Thus, we must evaluate
the quality of synthesis in subjective terms, just as we would compare two
human performers in an audition.

If the synthetic performance is not acceptable, the next step is to determine
the source of the problem. If there is a subtle timbral difference, it may not
be clear whether the performance model or the instrument model is at fault.
To isolate the problem, we can analyze the acoustic performance and feed the
control signals into the instrument model (as in Fig. 2). If this eliminates the
problem, then the problem is with the performance model. We can compare
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Fig. 4. ‘Testing and refining the Performance Model by listening.
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the synthesized controls to the analyzed controls to search for the problem. On
the other hand, if the problem is with the instrument model, we now have a
“set of control signals to use in testing refinements to the model (as in Fig. 3).

To summarize, we believe that continuous controls are a key to high-quality
synthesis. Synthesis algorithms should be designed to use controls that can be
obtained automatically from acoustic examples. This allows an “instrument
model” to be developed, tested, and refined by comparing acoustic to syn-
thetic performances. Ideally, control signals should be musically relevant to
simplify the task of deriving control signals from symbolic scores.

OTﬁER APPROACHES

To clarify our approach and the main contributions of our research, we will
describe some other approaches to sound synthesis. Most current commercial
synthesis systems are based on MIDI. (Rothstein, 1992) MIDI was designed
to represent keyboard performance information, and while not limited to key-
board information, MIDI certainly creates a mindset that is note-oriented.
MIDI notes are generally started and stopped by discrete messages. This rein-
forces the abstraction that each note is independent, but with wind instru-
ments, notes are not independent. The character of note attacks and decays is
very important but is not portrayed by MIDI note-on and note-off messages.
Of course, MIDI offers continuous control and system exclusive messages,
which can convey more information, but this is not standard practice.

Sampling-based synthesizers illustrate the problems of note-oriented syn-
thesis even further, With sampling, the initial portion of a note is recorded
and saved with a “steady state” portion that is looped to extend the note’s dura-
tion as needed. A problem with this approach is that the initial attack (in
winds) is highly variable, so many samples are needed to represent different
attacks. Furthermore, the shape of the amplitude envelope is also highly vari-
able, and the spectrum of an acoustic instrument changes with amplitude.
Sampling synthesis does not offer much control over the spectral content of
the signal after the initial attack, Thus, while sampling can render a particular
note quite well, it does not offer a range of control over spectrum, attacks,
and envelopes required for high-quality wind synthesis.

Analysis/synthesis techniques and other synthesis studies share many of the
problems of sampling. For example, classic studies of additive synthesis
(Moorer, 1977) analyze single notes to obtain trajectories for a number of har-
monics. These can be added together to reproduce the original note, but the
envelope data is not so useful for synthesizing arbitrary notes. Scaling and
stretching operations are possible, but they do not produce good sounding
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results because scaling (for amplitude change) does not result in the proper
spectral changes, and stretching (for duration change) does not result in the
proper envelope shape.

In general, the problem with sampling and additive synthesis is the focus on the
note rather than either the production of sound or control mechanisms. If we
can produce sound and control it, we can synthesize notes and phrases of all
kinds, but if we focus on producing only a single particular note, we have no
control and no ability to produce phrases.

Other work has started by observing the spectral variation of single notes
and searched for a vector basis for the range of spectra (Horner, 1997; Hour-
din, Charbonneau, & Moussa, 1997; Kleczkowski, 1989; Laughlin, Truax, &
Funt, 1990; Oates & Eaglestone, 1997). These approaches are also note-
oriented and result in a certain set of wavetables that can be summed accord-
ing to certain envelopes to approximate the original note. The result is essen-
tially a specialization of additive synthesis, and all the limitations and prob-
lems described above apply.

Physical models (Roads, 1996) solve the problem of note-oriented synthesis,
but leave open the problem of control. Learning to control an acoustic instru-
ment is difficult and so are direct models of acoustic instruments. We focus
on spectral models in order to simplify the problem of control.

RELATED RESEARCH

Our instrument model can be viewed as a specialization of additive synthesis
(De Poli, 1993) or a generalization of wavetable synthesis (Moorer, 1978). A
good review of wavetable interpolation techniques is found in Horner and
Beauchamp, 1996. Beauchamp (1995) demonstrated another method for
obtaining an appropriate spectrum from a few control parameters for trumpet
synthesis. His method relies on the observation that the spectral envelope of
the trumpet can be predicted from the RMS amplitude. Given a spectral
envelope and a pitch, the amplitudes and frequencies of harmonics can be
computed.

The idea of timing variation as related to musical structure (Sundberg,
1991) and emotion (Canazza, De Poli, Roda, & Vidolin, 1997) are also rel-
evant to our goal of deriving control information from scores. Chafe (1989)
derived bowing information from a score and used it to control physical mod-
els in order to synthesize a string quartet, and Berndtsson (1996) used a
rule-based system to synthesize the singing voice. Garton (1992) has used per-
formance models to control and even compose for synthetic instruments.
Arcos, Mantaras, and Serra (1997) use a combination of instrument models
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and performance models to alter digitized instrumental performances. All of
these are good examples of research that integrates performance and synthesis
models.

THE INSTRUMENT MODEL

The instrument model has a set of control functions as input and produces a
digital audio sound as output. The output should be perceptually very close
to the acoustic instrument béing modeled. (Instrument designers should be
able to model non-existent instruments as well, but this is beyond the scope
of this article) We first describe the basic synthesis technique, then we
describe how data is analyzed to create instrument models, and finally, we
describe experiments to validate the assumptions and simplifications implied
by this approach.

Our instrument model is based on the idea that at every time-point the
spectrum is nearly harmonic. This instantaneous harmonic spectrum is deter-
mined primarily by a small number of parameters, called modulation sources.
These have meaning to the performer and can be automatically measured
and extracted from real performances. As to the trumpet, the primary modu-
lation sources are the current RMS amplitude and fundamental frequency. (A
simple modification to provide inharmonic attack transients to this model
will be presented later) Synthesis is very simple and fast (see Fig. 5):

(1) Create curves which describe the value of amplitude and pitch (frequency)
as a function of time,

(2) Use the values of amplitude and frequency to access (index) a database of
stored representations of spectra, and

(3) Output the spectrum.

Table 1
émplitude Spectrum | Waveform
ontrol Database “| Construction
Frequency 7Y Table 2
Control

Fig. 5. Block diagram for Spectral Interpolation Synthesis. Amplitude and frequency
control signals are used to select spectra from the Spectrum Database. Inter-
polation is used to make smooth transitions from each table to the next. Fre-
quency also controls the phase increment of a table-lookup oscillator, and am-
plitude also scales the resulting waveform.
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The spectrum is represented by an array of numbers describing the relative
weights (amplitudes) of harmonics. We typically store a two-dimensional array
of these sample spectra. When this two-dimensional database is accessed by
the instantaneous amplitude along one dimension and the frequency along
the other, we interpolate among the four nearest spectrum samples to yield
an output spectrum.

To output the spectrum, we generate a wavetable (which represents one pe-
riod of the periodic sound in the time domain) and interpolate andio samples
from the table to produce the required frequency. In this way, we produce one
period of the sound to output., Many options are available regarding exactly
how and when the wavetables are computed. At one extreme, spectra are com-
puted at the fundamental frequency. That is, each period of the synthesized
sound can be computed from the stored spectra. To make the algorithm more
efficient, we compute only 20 spectra per second and produce every sample
by interpolation between two tables. This effects a smooth, continuous spectral
change. The result is scaled by the instantaneous RMS amplitude to produce
the proper amplitude fluctuations in the sound. After that step, our synthe-
sized sound has controlled fluctvations in timbre, pitch, and amplitude.
Because the resulting spectrum is the smooth interpolation of spectral sam-
ples, we call this Spectral Interpolation (SI) Synthesis.

Tables are created with matching phases to avoid any phase cancellation
during the interpolation, We assume the phase information does not have an
audible effect on the synthesized sound. We do not store phase information
for the harmonics in the spectra, only their relative amplitudes. This basic
model is further extended along a few dimensions as described in the following
sections.

Spectral Data Collection

To create an instrument model, we need an array of spectra indexed by pitch
and amplitude. We create this array by analyzing actual performances. This
process is described in detail in this section.

To measure spectra, we use the SNDAN utility package, implemented by
Beauchamp (1993). We used SNDAN’s phase-vocoder-based algorithm for
extracting spectra, RMS amplitude, and frequency. This algorithm carries out
pitch-synchronous Fourier Transforms over two windowed periods of the
sound to measure the instantaneous spectrum. This method is intended for
tones with nearly constant pitch, We also used SNDAN’s other algorithm,
based on MQ analysis (McAulay & Quatieri, 1986), to analyze phrases with
several pitches.

A trumpet player played simple notes, increasing or decreasing the ampli-
tude level at a moderately fast speed, covering as widée a dynamic range as
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possible. We measured the maximum playable dynamic range to be under 30
dB.

During these measurements, we also discovered that it is easier for the
player to produce a steady decrescéndo over a large dynamic range than to
produce a corresponding crescendo. Therefore, we extracted the spectra from
notes with decreasing amplitudes to obtain spectra for different amplitude
levels.

Collecting spectral data is quite simple: using SNDAN, we obtain a spec-
trum for each period. We scan through this data and retain only spectra at
which the amplitude function crosses predetermined thresholds. We do the
same measurement for several pre-defined pitches, and in this way build the
database of spectra indexed by amplitude and frequency.

How many harmonics should spectra contain? To reduce computational
power and storage requirements, the number should be as low as possible. At
the same time, we do not want to sacrifice the quality of the synthesized sound
in any degree. We did not find any audible difference between synthesized
phrases using 30 harmonics or the maximum possible number (the Nyquist
rate divided by the fundamental frequency), so we decided to use 30. In some
cases, we limited the number of harmonics according to the frequency of the
highest note in the phrase under study. This simplifies the implementation,
but may not be generally applicable.

Spectra and Wavetables

We can see that the step of computing wavetable data from spectral data has to
be done approximately twenty times in a second, the rate at which we intro-
duce new spectra for interpolation. Instead of storing the spectral data, we
could store the corresponding time domain wavetable directly, saving those
wavetable computations. This can be done if the phases of the harmonics do
not need to be changed during synthesis, and as a matter of fact, we used this
technique before we combined the pure SI synthesis with spliced attacks. How-
ever, if the phase distribution of the harmonics can be different from note to
_note (which is the case with spliced attacks, as we will see later), this technique
can not be applied. .

Therefore, we store amplitude spectra and compute wavetables as necessary.
An interesting opportunity exists to simulate body resonances and frequency-
dependent radiation patterns by inexpensive multiplies in the frequency
domain, although we do not take advantage of this at present. There are sev-
eral ways to compute time-domain data from the spectrum (IDFT, IFFT,
etc). At this point, we perform a simple addition of sinusoids. In the future,
especially in a real-time environment, this issue should be addressed more
carefully.
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Testing the Model

We have presented a synthesis technique and a corresponding analysis tech-

nique. It is now time to ask whether this approach really works. The synthesis

technique is simple and makes a number of assumptions that need to be veri-

fied:

(1) The frequency of the fluctuation of the timbre, that is, the spectral sample
rate, is relatively low,

(2) The phase information in the spectrum is perceptually irrelevant, and

(3) The instantaneous spectrum is basically a function of the absolute instan-
taneous value of the RMS amplitude and pitch, and nothing else.

We performed a number of experiments to either verify these assumptions or,

where the assumption does not exactly hold, to enhance the basic model. In

the following sections, we describe the synthesis model in more detail through

these experiments and enhancements.

Spectral Sample Rate

In previous work Serra, Rubine, and Dannenberg (1990) analyzed tones from
a variety of wind instruments to obtain spectra, and reconstructed the original
tones by spectral interpolation. In that early form of the method, the only con-
trol function was time: The output spectra were sampled at certain times
from an original digitized tone. Tones were reproduced from those sample
spectra.

Listening tests determined that the results were good and that slow spectral
sample rates (in the range of 5 to 20 spectra per second) were adequate and
produced high quality representations of the original tone. This laid the
groundwork for the present investigation.

Phase and Inharmonicity
Listening tests also proved our second assumption, namely that the phases of
the harmonics do not carry perceptually relevant information. The tests also
determined that some instruments (notably trumpets, trombones, and saxo-
phones) were not convincing when resynthesized. This was the result of inhar-
monicity within the attack portion of the sound. Many instrument tones have
a very characteristic and inharmonic attack portion. As this portion has a sig-
nificant audible effect, and as the basic Spectral Interpolation model is only
capable of producing harmonic sounds, an extension of the model became
necessary, Aside from attacks, the conventional sounds of wind instrument
tones are essentially harmonic.,

Fortunately, we have found that it is possible to use recorded attacks to give
the impression of a natural attack. Carefully made splices are used for the
transition from recorded attacks to synthesized tones. Spliced attacks can be
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automated and incorporated easily into the basic Spectral Interpolation mod-

el. Note that attacks begin with a stopped airflow and silence, so there is no

need to splice from synthesized tones to the beginning of the attack, only
from the attack to the tone. The method of splicing is the following:

(1) Start with a recorded attack. Shorter attacks are better for several reasons:
The memory requirement is smaller with shorter attacks. Also, a short
attack contains less envelope shape information, making it possible to
attach the attack to different envelope shapes. On the other hand, the
sampled attack should belong enough to capture the whole inharmonic
part. Also, the end of the attack must settle into a harmonic structure
because the amplitude and phase of each partial must be continuous at
the splice point (that is, at the end of the sampled attack and the beginning
of the Spectrum Interpolation).

(2) Measure the phases and amplitudes of the harmonics as well as the overall
RMS amplitude of the sound at the end of the attack. These attributes are
stored with the attack.

(3) Use these attributes to determine the initial phase and amplitude for the
first spectrum used by Spectral Interpolation synthesis.

(4) After that, to avoid phase cancellation, compute all wavetables using this
same set of phases. Compute all subsequent spectra according to the fre-
quency and RMS amplitude control signals.

This procedure requires that the phases of wavetables be adapted to the phases

of the attacks. Therefore, we cannot precompute wavetables, but rather must

compute them from amplitude spectra on the fly. Also notice that the final
amplitude distribution in the attack may not exactly match the amplitude dis-
tribution predicted by the Spectral Interpolation model. To avoid any disconti-
nuity, we simply adopt the final amplitude distribution of the attack as the

“correct” spectrum, and interpolate to the spectrum generated by the Spectral

Interpolation model during the first 1/ 20" second of synthesis.

The last parameter to be matched is the overall RMS amplitude. The ampli-
tude control function can specify any value at the splice point. Meanwhile,
the amplitude value at the end of the attack is arbitrary. The attack has to be
scaled so that those two amplitude values match. At first glance, attack scaling
is questionable, but in practice, we generally start with relatively loud attacks
and scale them down for softer attacks. We found that this simple method pro-
duces good sounds.

As we mentioned, finding the ideal length of the sampled attacks could be
automated by observing the relations of the frequencies of the partials, but
for the time being we have not implemented this technique, and we set the
length manually using listening tests to determine the right duration. We have
had good results using attacks of about 30ms for the trumpet. This is long




INSTRUMENT AND PERFORMANCE MODELS 223

enough for our analysis software to begin analyzing partials to determine their
amplitude and phase.

As with the spectra, a collection of sampled attacks for different pitches and
amplitude levels are necessary to produce realistic sounds, and one can even
imagine that there might be more than two (amplitude and frequency) sources
for variation in attack quality. For our experiments, we use a sample for each

_pitch we want to resynthesize with spliced attacks. We used only one attack
per pitch and scale to achieve different amplitudes rather than use a set of
attacks with different amplitude levels. In spite of this disregard for context,
“transplanted” attacks sound authentic. This is encouraging because it indi-
cates that a large library of specialized attack sounds is not necessary.

Working with attacks, we developed a strategy for their use. When there is a
clear stoppage of air by the tongue, a spliced attack is appropriate at the next
note onset. In the case of slurs and legato phrases, the spliced attack should
be omitted. This simple rule can be used to automate the insertion of attacks,
and the attack sample can be chosen purely on the basis of pitch.

Sample Rates

An interesting finding is that it is beneficial to decouple the amplitude control
sample rate from the spectral interpolation rate. Originally, we stored the
spectrum as the absolute amplitudes of the harmonics, Thus, the overall
amplitude was encoded into the spectrum. We used 20 Hz as the combined
spectral sample rate and amplitude control rate, We experienced that this was
not fast enough to track rapid changes in the amplitude €.g., between slurred
notes) and introduced audible artifacts. To avoid this problem, we factored
out the overall amplitude information from the stored spectra. At present,
the stored spectra (which, as we already described, are accessed at a 20 Hz
rate) are normalized, and the desired amplitude fluctuation is realized by mul-
tiplying the output of the core spectral interpolation (which has an essentially
constant RMS amplitude) by the amplitude control function. This function is
realized by a piece-wise linear curve, and resynthesis studies have shown a
sample rate of 100 Hz is adequate to reproduce even fast amplitude fluctua-
tions.

Slurs

Another possible source of “difficult” transient sounds is slurs, that is, contin-
uous transitions from one pitch to another. We tried cross-fades from one pitch
to the next, as suggested by Strawn (1985). We also tried treating the slur sim-
ply as a rapid pitch transition, using pitch and amplitude curves derived from
acoustic performances. In this method, slurs are represented entirely in the
frequency and amplitude control functions, so no special synthesis treatment
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is required. Both approaches sound good in listening tests, so we use the latter
method.

Sources of Spectral Variation

After these first experiments, we knew that spectral interpolation could pro-
duce good sounds, but we still needed to know whether our main assumption
is true: that the current spectrum can be determined solely from the current
RMS amplitude and fundamental frequency. It is well known that upper par-
tials grow faster than linearly with increases in amplitude, and this is why
wind instruments sound brighter at higher amplitudes. To test the hypothesis
that RMS amplitude determines the spectrum at a given pitch, we analyzed
acoustic performances of a trumpet playing slow and fast increasing and
decreasing amplitudes on a constant pitch. After analysis, the amplitude of a
selected partial is plotted as a function of overall RMS amplitude. Note that
the resulting graph is not a function of time, but an indication of how the
amplitude of a selected partial relates to overall amplitude. If the spectrum is
determined solely by RMS amplitude, then we expect curves plotted for differ-
ent performances will be similar. If other factors, such as rate of amplitude
change, are important, then we should see a separation in the plots. In other
words, data analyzed from increasing amplitude changes and data analyzed
from decreasing amplitude changes will form two clusters if direction of
change is important.

In Figure 6, we show examples of the plotted data. Those figures compare
the spectra measured at increasing and decreasing amplitudes. Each plot
shows the amplitude of one particular harmonic, measured 5 times from notes
with increasing amplitude, and 5 times from notes with decreasing amplitudes.

In the figures we see well-defined curves from the maximum amplitude (0
dB) down to a certain level, below which the curves become mixed with a sub-
stantial amount «. .oise. That “threshold” is well-below the softest sustainable
tone at the first harmonic, but increases as we go higher in the harmonics,
reaching around —10dB at the tenth harmonic. These curves indicate that
RMS amplitude accounts for much of the spectral variation. Some separation
can be discovered between the two sets of curves, but it seems to be insignifi-
cant. (Also, there seems to be no difference between the curves obtained from
rapidly versus slowly changing amplitudes))

We conducted listening tests using timbre databases obtained from both sets
of measurements (increasing and decreasing) to compare their possible effect.
We did not find significant (if any) audible differences. We conclude that the
instantaneous amplitude (not the rate or direction of change) is enough to
determine the timbre to a close approximation.
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The noise in the curves indicates that there may be other factors at work, so
cither we need to identify other sources of variation or we need to show that
this variation is not perceptually significant. A third possibility is that there is
simply randomness in the spectrum. It might be interesting to model the ran-
domness rather than ignore it, but we have not explored this possibility. Since
there could be any number of sources of variation, we resort to resynthesis
and subjective listening experiments to show that the observed variation is
not significant. Listening tests based on Figure 2 indicate that amplitude and
frequency are adequate to produce very realistic tones.

However, we found that if tables are built from one performance and then
tones are synthesized using amplitude and pitch signals from another, there
can be some very subtle differences between the synthesized and the original
tones. The difference seemed to be related to brightness. Knowing that a trum-
pet player can modify the brightness slightly with changes in embrochure, we
tried to use it as a third control function and attempted to build spectral tables
based on different embrochure settings. We were able to cause some spectral
variation based on different analyzed tones, but our results were inconsistent.
This is an interesting area for future research. Meanwhile, although we some-
times observe slight variations in brightness between original and resynthesized
tones and phrases, the synthesized results sound very realistic. If very slight tim-
bral differences are critical, we expect that spectral brightness can be modified,
for example, by translating the coordinates of the spectral lookup table.

Our trumpet model is capable of rendering very fine performances of clas-
sical music. We chose classical music because the playing style is more “pure”
and free of effects than, say, jazz styles. (We believe that jazz performances
can also be rendered, but this will require more research) Given this instru-
ment model, we can turn to the problem of the performance model.

THE PERFORMANCE MODEL

The goal of the performance model is to automatically generate control infor-
mation for the instrument model based solely on information in a symbolic
score. (We assume that the score is available in a machine-readable form, so
we are not concerned with interpreting images of printed pages) So far, our
performance model is simple and limited, but it has produced some very
nice performances. Note that we have only studied the trumpet in detail. In
this section, we will describe our progress to date.

Our work on the performance model has focussed on the fine details of con-
trol rather than the more coarse features of duration and pitch, For the most
part, we will use duration and pitch as specified by the score, assuming that
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we can apply the work of Sundberg (1991), Clynes (1987), and others to create
more musical performances. This still leaves open the problem of appropriate
amplitude and frequency envelopes, slurs, attacks, vibrato, and other fine
details.

Clynes (1984) introduced the idea that amplitude envelopes should be modi-
fied according to context. In particular, if a passage is moving upward in pitch,
the performer will tend to increase blowing pressure, and this increase will
affect the note envelope, giving it relatively more amplitude toward the latter
part of the note and relatively less at the beginning, as compared to a note in
a descending passage. This idea can be extended to other situations. For exam-
ple, the pitch contour associated with any three consecutive notes can be (up,
up), (up, down), (down, up), or (down, down), and the magnitudes of “up”
and “down” can vary from zero (unison) to a large leap.

Clynes (1987) originally studied envelope generation and developed rules by
listening to synthesized tones. Sundberg, Askenfelt, and Fryden (1987) also
developed performance models using analysis-by-synthesis techniques, but
this work addressed discrete parameters of amplitude and timing rather than
continuous control signals. In our work, we present a trumpet player with
exercises designed to elicit different amplitude envelopes under controlled con-
ditions, and we generalize from these examples.

Trumpets and Other Instruments

Although most of our in-depth studies have used trumpet tones, we have used
Spectral Interpolation Synthesis to realize clarinet, alto saxophone, bassoon,
and trombone tones. These tests followed the analysis/synthesis paradigm, so
control signals and spectra were derived from specific tones and then used to
resynthesize those tones. We expect that Spectral Interpolation Synthesis mod-
els of most wind instruments will be successful for two reasons. First, the
resynthesis experiments indicated that other winds can be synthesized given
the proper control information. Second, none of the techniques for creating
trumpet instrument models seem to depend on any specific feature of the
trumpet. Of course, there could be specific problematic features of other
instruments, such as the noise of a flute. Further work is needed to discover
the applicability and limitations of Spectral Interpolation Synthesis.

Trumpet Envelope Features

Earlier, we described the analysis of trumpet tones in order to build a mapping
from instantaneous amplitude and frequency to spectra. For the performance
model, our concern is to build mappings from features in the score to amplitude
and frequency envelopes. Therefore, we took recordings of performances, seg-
mented them into individual notes, and extracted amplitude envelopes for study.




298 R.B. DANNENBERG AND I. DERENYI

We obtained a number of interesting results. The most striking (and in retro-
spect, perhaps the most obvious) feature we detected in the trumpet tone
amplitude envelopes is a sudden decay near the end of the note (see Fig. 7).
This decay has a simple explanation: these notes are articulated with the ton-
gue, meaning that the tongue stops the flow of air until the moment of attack,
at which point the tongue is lowered to release air to the lips. In order to
articulate the next note, the tongue must, at some point, stop the air from the
previous note. This causes the rapid decay. If there is even a slight rest or
silence before the next note, the rapid decay will not be present. This observa-
tion immediately yields an important rule for trumpet synthesis: when there
are consecutive tongued notes (no slur in the score), there should be a rapid
decay followed by a tongued attack. Recall that tongued attacks are synthe-
sized using sampled attacks in the instrument model.

Aside from rapidly tongued articulations, the amplitude envelope is quite
smooth. This is to be expected because amplitude corresponds directly to driv-
ing pressure. As a simple experiment, try to blow air through a small opening
in the lips while rapidly pulsing or modulating air pressure with the dia-
phragm. The first author, a trumpet player, can modulate pressure at about 8
Hz, but even this low rate feels very rapid, uncomfortable, and foreign to
trumpet playing. Thus, we conclude that the trumpet player modulates driving
pressure with muscle movements that are typically well below 8 Hz. We call
this the “breath envelope”, Superimposed upon this relatively slow fluctuation
is the more rapid modulation of the tongue, which by stopping the air com-
pletely can effect rapid attacks and decays. We call these the “tongue attack
envelope” and “tongue stop envelope,” or collectively the “tongue envelopes”.

RMS Amplitude (linear scale)

Time

i

Fig. 7.  Atypical trumpet amplitude envelope (an Abd4, mezzo forte, from an ascending
scale of tongued quarter notes). Note the rapid decay at the end.
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Another feature of interest is a slight rise in the envelope before the tongue
stop. Perhaps this is due to the tongue pushing out air as the passageway is
blocked. Performances from other trumpet players and other instruments
might shed more light on this phenomenon,

Although we often think of notes as having zero amplitude at the beginning
and end, this is not always the case, even when the tongue completely closes
the air passageway and the valves momentarily close off the bore of the instru-
ment. Slurs have especially high amplitude from one note to the next (see Fig.
8).

In addition to this qualitative analysis of envelopes, we performed some sta-
tistical tests on the envelopes we extracted from acoustic performances. One
test, performed by Hank Pelerin, measured the time position of the centroid
(center of mass) in ascending versus descending pitch phrases. We found a sig-
nificant difference between the centroids of notes played within different pitch
contours. This confirms that Clynes’ ideas on envelope shape are consistent
with data measured from actual performances.

Modeling Envelopes

Envelopes are typically described by a set of parameters. For example, the
ADSR envelope (Adams 1986) of analog synthesizers is described by the
attack time, decay time, sustain level, release time, and overall duration. An
ADSR envelope is far too crude for realistic instrument synthesis, so a more

Slurred Amplitude Envelope

RMS Amplitude (linear scale)

Time

Fig. 8. A typical trumpet slurred amplitude envelope (a C5, mezzo forte, from an as-
cending scale of slurred quarter notes). Note the high initial and final ampli-
tudes compared to Figure 7.
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sophisticated model with more parameters is required. On the other hand,
since parameters have to be computed, there is an advantage to having fewer
parameters. The model should be just general enough to realize the necessary
envelopes.

Our performance model is based on the idea of a smooth breath envelope,
controlled by the player’s chest and: diaphragm muscles, modulated by rapid
tongue envelopes. The tongue attack envelope is modeled simply using a
smooth rise with a duration of around 32 to 34 ms. The tongue stop envelope
is more complicated, starting with a “hump” of about 30 to 50 ms and ending
with an exponential decay of about 50 to 60 ms. The “hump” is scaled so that
when the tongue envelope is multiplied by the (decreasing) breath envelope,
the peak of the hump has roughly the same amplitude as the beginning (see
Figure 9).

Even with tongued articulation, the amplitude does not fall to zero unless
there is a pause or rest between notes. The performance model is careful to
match the envelope amplitude from the end of one note to the beginning of
the next to avoid audible clicks, and the synthesis model insures signal and
phase continuity by using just one oscillator.

For slurs between notes, we see a dip in the amplitude (again, see Figure 9)
that is shallower and shorter than the tongued articulation. We use the same
envelope model (so “tongue envelope” is misleading), but the parameters are
changed. For example, if the pitch change is upward, and the articulation is a
slur, then the envelope only decays to 20 percent of the maximum amplitude
and the decay lasts only about 30 ms.

In addition to tongue envelopes, we need a breath envelope. Because the
breath envelope has a simple shape, we decided to take the envelope from an

Synthetic Envelope

*Hump*

“Breath" \

Decay

Amplitude

>

4——Attack

Time

Fig. 9. A synthetic envelope showing the attack, breath envelope, Ahump@ and de-
cay. Envelope features are exaggerated for clarity.
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acoustic performance of a half note as a prototype. By extracting a region of
this prototype and then stretching to the desired length and amplitude, a vari-
ety of breath envelones can be constructed. These seem to satisfy our needs
with just a few control parameters. Figure 10 illustrates the prototype envel-
ope. To obtain a rising envelope characteristic of a note in an ascending
phrase, an early portion of the envelope can be selected (labeled “A”). To
obtain a diminishing envelope characteristic of a note in a descending phrase,
a later portion of the envelope can be selected (labeled “B”). An envelope for
a slurred note, where the amplitude is relatively constant, can be obtained by
extracting the central part of the overall envelope (labeled “C”), ignoring
most of the rise and decay.

Since the overall shape is simple, we suspect other formulations of the
breath envelope are possible and would work equally well. For example, the
beta functions suggested by Clynes (1984) generate similar shapes.

As observed by Sundberg (1987), amplitude generally increases with pitch.
For our model, we took actual data from the performance of ascending and
descending scales and used curve-fitting software to obtain a rule for amplitude
change. We found that a linear relationship between fundamental frequency
and pitch offers a reasonable fit to the data and sounds good, at least for mez-
zo-forte playing. More elaborate rules are undoubtedly necessary to deal with
dynamic levels specified in the score, and in fact, we have already modified
our rule to give a slight increase in dynamics to the final note in a phrase.

Breath Envelope Prototype

Amplitude
A
Y

Time

Fig. 10. Different regions (for example those labeled A, B, and C) of the prototype
breath envelope are extracted and stretched to form a variety of breath envel-
opes. The breath envelope is then (usually) multiplied by tongue envelopes to
form a complete envelope such as shown in Figure 11,
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Frequency envelopes are also important, and a performance with a steady,
unwavering frequency will stand out as artificial when compared to an acous-
tic recording. To date, we have used frequency envelopes extracted from acous-
tic performances for our model. In fact, we stretch and transpose the same
function for every note without any problem. In the future, we need to incor-
porate a vibrato model and look more carefully for trends that we have over-
looked.

The exact values for all envelope parameters are computed based on note
durations, pitch, pitch contour, and articulation (tongued, slurred, or not con-
tiguous). Note that articulation refers to transitions both from the previous
note and to the subsequent note. Parameter values are based on an analysis
of notes performed in different contexts. Figure 11 illustrates an acoustic
envelope and a synthesized envelope with manually chosen parameters. For
each parameter, we study example envelopes like this one to see what score
attributes (e.g., duration, pitch, articulation) seem to affect the parameter. We
then construct a simple linear or exponential function, essentially curve fitting,
that predicts the parameter from the score attributes, When listening tests
uncover a problem, we look for a relationship between the score and good
parameter values that was overlooked. Then, we elaborate the model to take
into account this new relationship.

So far, we have constructed the performance model manually, but as our
techniques become routine, it becomes clear how we might use machine learn-
ing techniques to automate and perhaps improve on the model-building pro-
cess. We assume that there is an algorithm or function for converting a set of

Acoustic and Synthetlc Envelopes

Amplitude

Time

Fig. 11. An actual amplitude envelope (thin line) and a synthetic envelope (heavy ling).
The synthetic envelope parameters were adjusted by hand to achieve a close
match to the original.
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parameters to an envelope. We want to learn a method for selecting or comput-
ing parameters based on attributes of the score, for example a quarter note
slutred to a half note a major third up in pitch. (In this example, the attributes
are quarter, half, and a major third. In practice, there will be many more at-
tributes.) ‘

The first step is to obtain discrete envelope parameters from performed
examples of various phrases. We have done this by hand, but it should be pos-
sible to use gradient-descent methods to pick parameters that minimize the
least-squares error between the original and synthesized envelopes. (The cur-
rent model has 7 parameters that are not directly measurable from the origi-
nal) :
Now, assume we have a set of attributes from the score (inputs) and a set of
envelope parameters (outputs). We want to learn a function from inputs to out-
puts. This is a supervised learning problem, and there are many machine-
" learning techniques that can be applied. Some relevant techniques are neural
networks (McClelland & Rummelhart, 1988), fanction approximation (Boyan,
Moore, & Sutton, 1995), and case-based reasoning (Leake, 1996).

RESULTS

We have used our performance model to synthesize the beginning of the
Haydn Trumpet Concerto. Various durations and articulations are required,
" so this piece is very difficult for most synthesis techniques. Our system is able
. to render a very realistic performance from the score with only a few added
. annotations on phrasing. The renderings are perhaps too perfect to sound
* human: attacks are clean, and the sound is very consistent throughout. It is
. very difficult to provide an objective evaluation. Sound examples are available
- at http:/ /www.cs.cmu.edu/ ~ rbd/sis.html.

FUTURE WORK

Our success so far is very encouraging, but there is still much work to be done.
Our goal is an orchestra of synthetic instruments and performers capable of
realizing a notated score with realism. With the methodologies we have intro-
duced, we believe this goal is possible. So far, most of our modeling has
involved step-by-step manual tasks, but we envision a highly automated pro-
cess of building instrument and performance models.

The process starts with the capture of acoustic performances. We need good
methods to measure absolute amplitude as opposed to relative amplitude,
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because absolute amplitude will be the primary control. Players perform vari-
ous passages to produce examples of different pitches, amplitudes, articula-
tions, and phrasing, .

Next, spectral tables are constructed by locating source material with differ-
ent combinations of pitch and amplitude. For instruments with inharmonic
attacks, we also need to isolate a selection of attacks from the performed
data. The instrument model construction can be automated almost entirely,
including listening examples to help evaluate the model.

The performance model is more complex, but with experience, this too can
be mostly automated. Assume that a general envelope model can be developed
based on the ideas of breath and tongue envelopes. We then generate examples
that provide good envelope parameters for a given set of score attributes, and
we use machine learning to find a relationship between score attributes and
envelope parameters. To obtain training examples, we first segment the acous-
tic performance into individual notes. Segmentation of phrases into individual
notes currently requires hand editing, but since the score is known, segmenta-
tion can be automated by tracking frequency changes and looking for ampli-
tude changes at note transitions. Then, an optimization algorithm derives sets
of parameters that best fit the extracted envelopes. Next, machine learning
uses these examples to derive functions from score attributes to envelope para-
meters. ‘

In addition to low-level mappings from score attributes to performance data,
a successful performance must incorporate a musical sense that operates at
the level of phrases and sections. We believe that at these higher levels of
abstraction, instrument-specific details tend to be less important, so one gen-
eral set of performance rules should apply (perhaps with minor extensions
and modifications to deal with different musical styles). Other researchers
have made interesting progress in this area,~and their results will provide
most of the necessary high-level knowledge of music performance.

Thus, we believe that instrument models and performance models can be con-
structed automatically with little more than a set of performances by a skilled
musician. The next step will be to develop the present trumpet model further
and to try it out on more examples. We need to apply these techniques to other
instruments and work toward automating the whole modeling process. While
our specific findings apply to the trumpet, we hope that the more general
ideas of relating envelopes to the breath, tongue, and musical structure will
apply to all winds.

To many composers, the idea of recreating what humans already do well is
boring at best. Although we enjoy the technological challenge and appreciate
the advantages of a clearly defined research goal, we acknowledge that playing
trumpets and other acoustic instruments may not be the best application of




INSTRUMENT AND PERFORMANCE MODELS 235

computers. Future work can investigate the use of Spectral Interpolation
Synthesis to create hybrid instruments by interpolating between different
instrument models. Systematic alterations of instrument and performance
models might also create a new performance practices. Finally, our techniques
might be used to make new and interesting synthetic instruments more musi-
cally sophisticated and appealing.

SUMMARY AND CONCLUSION

We have described research that takes a significant step towards high-quality
synthesis of wind instrument performances. The strength of this work does
not lie in any particular signal processing strategy or device, but rather in the
overall perspective and approach in which synthesis is viewed as a combina-
tion of performance knowledge and instrument characterization. These two
concepts are linked by the carefully chosen intermediate representation of
time-varying frequency and amplitude control signals.

By design, our approach enables us to extract appropriate control signals
from actual performances and then use these to refine both the performance
model and the instrument model. This approach factors the overall problem
into two parts, both of which now seem tractable.

The key to the instrument model is the realization that the time-varying
spectrum is determined almost entirely by relatively simple modulation
sources such as amplitude and frequency. Experiments with the trumpet have
shown that this assumption holds even during rapid amplitude fluctuations.
Because of this relationship, an instrument can be modeled as a function
from modulation sources to spectrum, This mapping can be captured automa-
tically from acoustic performances.

The remaining synthesis problem is to generate appropriate modulation. A
careful analysis of trumpet envelopes has produced a wealth of information
and guidance, and a performance model has been created to produce modula-
tion control signals from score information. Many details of the control signals
appear to be related directly to features of the score. For example, a tongued
note has a characteristic attack and decay, and the amplitude centroid of a
note occurs later in time if the note is in an ascending line. A trumpet perfor-
mance model has been constructed, and it is clear how machine learning tech-
niques can be applied.

We are just beginning to realize and evaluate musical phrases created by our
models. In the future, we plan refine the models using a more extensive set of
test cases, automate the modeling process, and apply these techniques to other
instruments.




236 R.B. DANNENBERG AND L. DERENYI

REFERENCES

Adams, R, (1986). Electronic music composition for beginners. Dubuque, IA: Wm. C, Brown
Publishers.

Arcos, JL., de Mantaras, R.L, & Serra, X, (1997). SaxEx: a case-based reasoning system for
generating expressive musical performances. In Proceedings International Computer
Music Conference 1997 (pp. 329—336). San Francisco: International Computer Music
Association. '

Beauchamp, J. (1993). Unix workstation software for analysis, graphics, modification, and
synthesis of musical sounds. Audio Engineering Society Preprint, No. 3479 (Berlin Con-
vention, March).

Beauchamp, J. & Horner, A. (1995). Wavetable interpolation synthesis based on time-variant
spectral analysis of musical sounds, Audio Engineering Society Preprint, No. 3960 (Paris
Convention, February), pp. 1—17.

Berndtsson, G. (1996). The KTH rule system for singing synthesis. Computer Music Journal,
20, 7691,

Boyan, Moore, and Sutton, (Eds) (1995). Proceedings of the Workshop on Value Function
Approximation. Tech. Report CMU-CS-95-206. Pittsburgh: Carnegie Mellon University
School of Computer Science,

Canazza, S., De Poli, G., Roda, A. & Vidolin, A. (1997). Analysis by synthesis of the expres-
sive intentions in musical performance. In Proceedings International Computer Music
Conference 1997 (pp. 113—120). San Francisco: International Computer Music Asso-
ciation.

Chafe, C. (1989). Simulating performance on a bowed instrument. In M, Mathews & J.
Pierce (Eds), Current directions in computer music research (pp. 185—198). Cambridge
MA: M.LT. Press,

Clynes, M. (1984). Secrets of life in music; Musicality realised by computer. In Proceedings of
the 1984 International Computer Music Conference (pp. 225—232), Computer Music
Association.

Clynes, M. (1987). What can a musician learn about music performance from newly discov-
ered microstructure principles (PM and PAS)? In A. Gabrielsson (Ed), Action and per-
ception in rhythm and music, (pp. 201—233). Publications issued by the Royal Swedish
Academy of Music No. 55.

De Poli, G. (1993). Audio signal processing by computer, In G. Haus (Ed.), Music processing
(pp. 73—105). Madison; A-R Editions.

Garton, B. (1992). Virtual performance modeling. In Proceedings of the 1992 International
Computer Music Conference (pp. 219—222). San Francisco; International Computer
Music Association.

Horner, A, & Beauchamp, J. (1996). Piecewise linear approximation of additive synthesis
envelopes: A comparison of various methods. Computer Music Journal 20, 72—95.

Horner, A. (1997). A Comparison of wavetable and FM parameter spaces. Computer Music
Journal 21, 55—85.

Hourdin, C.,, Charbonneau, G. & Moussa, T. (1997). A sound-synthesis technique based on
multidimensional scaling of spectra. Computer Music Journal, 21, 56—68.

Kleczkowski, P. (1989). Group additive synthesis. Computer Music Journal 13, 1220,

Laughlin, R, Truax, B,, Funt, B. (1990). Synthesis of acoustic timbres using principal com-
ponent analysis. In ICMC Glasgow 1990 (pp. 95—99). San Francisco: International
Computer Music Association,

Leake, D, (Ed) (1996). Case-based reasoning: Experiences, lessons, and future directions.
Cambridge: MIT Press.

McAulay, R. & Quatieri, T. (1986). Speech analysis/synthesis based on a sinusoidal represen-
tation. IEEE Transactions on Acoustics, Speech, and Signal Processing 34, 744—754.




INSTRUMENT AND PERFORMANCE MODELS 237

McClelland, J. & Rumelhart, D, (1988). Explaralzons in paraIIeI distributed processing, Cam-
bridge: MIT Press.

Moorer, JA. (1977). Signal processing aspects of computer music — A survey, Proceedings of
the IEEE, (July).

Moorer, J.A. (1978). How does-a computer make music? Computer Music Journal, 2, 3237,

Oates, S. & Eaglestone, B. (1997). Analytical methods for group additive svnthesis. Computer
Music Journal, 21 21—68.

Roads, C. (1996). Physical modeling and formant synthesis. In The Computer Music Tutorial
(pp. 263—316). Cambridge: MIT Press.

Rothstein, J. (1992). MIDI: A comprehensive introduction. Madison, WI: A-R Editions.

Serra, M.-H., Rubine, D. & Dannenberg, R.B. (1990). Analysis and synthesis of tones by
spectral interpolation. Journal of the Audio Engineering Society 38, 111128,

Strawn, J. (1985). Modeling musical transitions. Ph.D. Dissertation, CCRMA /Department of
Music, Stanford University.

Sundberg, Askenfelt, & Fryden (1983). Musical performance: A synthesis-by-rule approach
Computer Music Journal 7, 37—43.

Sundberg, J. (1991) Music performance research: An overview. In Sundberg, Nord, & Carl-
son (Eds), Music, language, speech and brain (pp.173—193). Wenner-Gren International
Symposium Series, Vol. 59. London: Macmillan.

Roger B, Dannenberg

School of computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

USA

Tel.; +1-3214-412-268-3827

Fax: +1-3214-412-268-5576

E-mail: roger.dannenberg@cs.cmu.edu
http:/ /www.cs.cmu.edu/ ~ rbd/home. html

Dr. Dannenberg is a Senior Research Computer
Scientist on the faculty of the Carnegie Mellon Univer-
sity School of Computer Science, where he received a
Ph.D. in 1982. His current work includes various pro-
jects in music understanding and the design and
implementation of languages for music performance
and synthesis, His work on automated accompani-
ment led to the Piano Tutor, a multi-media expert sys-
tem for teaching beginners to play the piano, and Vivace, a practice aid used by thousands
of students on a daily basis. He is co-editor of the book Multimedia Interface Design.

Dr. Dannenberg is also a trumpet player and composer. In addition to playing jazz with
artists such as Roger Humphries and Eric Kloss, Dr, Dannenberg’s most recént musical
efforts involve interactive real-time computer graphics and computer music, His latest com-
mission is a work for the Foro de Musica Nueva in 1998,




238 R.B. DANNENBERG AND L DERENYI

Istvan Derenyi

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

USA

E-mail: derenyi@cs.cmu.edu

Istvan Derenyi was born in Budapest, Hungary, 1969.
At present he participates in the Computer Music
Project at the Computer Science Department of the
Carnegie Mellon University and is working toward
his Ph.D, degree in Computer Science. He received
his first M.S. degree in Electrical Engineering in
1994, He also holds an M.S. in Technical Education
and a B.S. in Economics.

Before coming to the CMU, he worked in the music
industry for two years. As a musician, he has com-
posed several short pieces.

His computer music related interest covers the dif-
ferent aspects of digital sound synthesis and signal processing, as well as the creation of
composition supporting tools.




