
Concatenative Synthesis Using Score-Aligned Transcriptions

 Roger B. Dannenberg

School of Computer Science, Carnegie Mellon University
dannenberg@cs.cmu.edu

Abstract

Concatenative synthesis assembles segments of pre-
recorded audio to create new sound. In this variation, pre-
recorded audio is labeled by aligning a polyphonic MIDI
representation, essentially forming a symbolic transcription
of the source material. Given a MIDI file to be synthesized,
matching segments of MIDI describing the source are used
to locate corresponding sound segments, which can be
spliced to form the output. This technique is related to audio
mosaics where similar spectral frames are substituted
except that matching symbolic MIDI data allows for
substitutions that are timbrally dissimilar yet harmonically
and rhythmically identical.

1 Introduction
Concatenative synthesis allows synthesizers to reuse

“natural” acoustic sounds from large databases in order to
assemble output sound according to some specification.
(Schwarz 2000, Schwarz 2003, Simon et al. 2005) While
concatenative synthesis was originally developed for high-
quality speech synthesis, the technique is also used for more
artistic applications. The basic idea is that a target
specification (a score, or features derived from audio) is
synthesized by splicing sound units obtained from a
database of source sounds. This approach is analogous to
image mosaics and is sometimes called music mosaicing
(Zils and Pachet 2001; Lazier and Cook, 2003).

One of the interesting and much discussed aspects of
music mosaicing is the selection of sound units from the
database. The quality of match between sound units and the
target sound is an important factor in determining the
similarity of the resulting sound.

Various criteria can be used to evaluate the similarity
and appropriateness of sound units in (re)constructing the
target. Typically, a variety of audio features are considered,
such as pitch, loudness, and spectrum. Depending on the
features, the resulting sound will capture some aspects of
the target specification but perhaps not others. For example,
if the spectrum is closely modeled, we expect to hear a
similar timbral evolution. On the other hand, if the pitch is
the important criteria for comparison then perhaps a melody
will be retained and the timbre will change completely.

In general, the features that are used to compare units are
an abstraction or a projection of a very high-dimensional

signal space (e.g. 44100 samples per second) onto a low-
dimensional feature space. To the extent that the low-
dimensional feature space captures interesting perceptual
information, music mosaicing will produce results such that
abstract qualities in the original sound are preserved and
recognized.

For music, a very salient property is harmony and pitch
content. We recognize melody and chord progressions
regardless of the instrumentation or timbre, dynamic levels,
and other characteristics. It seems that harmony could be an
interesting basis for audio mosaicing, but it is very difficult
to determine harmony and pitch content from arbitrary
music audio, especially in the case of polyphony. A program
that could determine the pitch content of a sample of audio
would need to solve the audio transcription problem.

An alternative to music transcription is polyphonic
music alignment. In this process, a score, usually
represented as a standard MIDI file, is time-aligned to
audio. Once the correspondence between MIDI and audio is
set up, one can easily read off the pitches sounding at a
given location in the audio. Alternatively, given a section of
MIDI where desired pitches are present, one can locate the
audio realization of those pitches.

In the present study, synthesis is performed starting with
a standard MIDI file. This is different from music mosaicing
where the input is audio. Starting from MIDI is closer in
spirit to concatenative synthesis, where a specific symbolic
score (or a notated sequence of phonemes) is to be
synthesized into music (or speech). However, this study is
more concerned with harmony and polyphonic sounds. Due
to the large space of possible note combinations (e.g. 8810
for 10-note polyphony over 88 pitches), it is unreasonable to
expect the high-quality synthesis one might obtain from a
monophonic instrument using a large database and
concatenative techniques. Instead, the goal is to create
interesting textures that retain the timbral quality of the
source music in the database while following the harmony
(and it turns out much of the rhythm) of the source MIDI
file.

Figure 1 is a high-level description of the process. Music
audio sources are aligned with corresponding MIDI files to
obtain time maps so that chords in the MIDI files can be
located in the audio source. Next, each MIDI file is
segmented to obtain a sequence of chords or concurrencies
(Pardo and Birmingham 2000). The time and duration of

352

*Published as: Roger B. Dannenberg, “Concatenative Synthesis Using Score-Aligned Transcriptions,” in
 New Orleans, LA, Nov. 2006. San Francisco, CA: The International Computer Music Assoc., 2006. pp. 352-355.

Proceedings of the 2006 International

Computer Music Conference,

*

these chords comprise the units in the database. The target
MIDI file to be synthesized is then segmented in the same
way to extract concurrencies. A search process finds the unit
with the best match in the database for each concurrency in
the target. Each unit is mapped to the corresponding audio,
and the audio units are concatenated to form the output.

MIDI Versions
Of Sources

Polyphonic
Score Alignment

Segmentation Unit Database

Target
MIDI
File

Segmentation
Select Best

Match for Each
Chord

Concatenate

Music
Sources

Time Maps

Audio
Output

Figure 1. System diagram for concatenative synthesis

using score-aligned transcriptions.

The next section describes in brief how polyphonic
alignment is achieved. Section 3 describes how music is
analyzed and segmented to form the database. Section 4
describes criteria that are used to determine the similarity of
sound units in the database to segments of the source MIDI
file. Section 5 describes some synthesis and implementation
details. This is followed by some discussion and
conclusions.

2 Polyphonic Alignment

A key ingredient in this approach to concatenative
synthesis is the labeling of audio with symbolic pitches. An
accurate labeling of pitches (as opposed to a spectral
representation) will allow us to search the audio for
particular pitches and chords. Labeling is achieved by
aligning MIDI data to the audio file as described by Hu,
Dannenberg, and Tzanetakis (2003).

Where does the MIDI come from? Most popular and
classical music has been transcribed by hand into MIDI files
that can be located on the Web. There is no reliable way to
automate this search, so finding the file is a manual process.
MIDI files are not always perfect transcriptions, and usually
MIDI lacks the expressive timing of a recorded audio
performance, so the MIDI data must be aligned to the audio
before it can be used.

Polyphonic alignment is performed by converting the
MIDI file and the audio file into a representation called the
chromagram. (Wakefield 1999) A chromagram is a
sequence of chroma vectors, 12-element vectors
representing the total spectral energy corresponding to each

of the 12 pitch classes (C, C#, D, …, B). The chroma vector
is chosen because it captures harmonic and melodic
information, which is shared by audio and MIDI, and it
tends to be insensitive to amplitude and timbral differences,
which tend not to match very well between audio and MIDI.

Audio data is divided into 250ms frames, each of which
is analyzed with the FFT. The magnitudes of the FFT bins
are then converted to a chroma vector.

For MIDI data, chroma vectors are estimated without
converting to audio or performing FFTs. Instead, each
chroma vector element is the sum of all the matching pitch
classes sounding during that frame, weighted by the key
velocity and duration (0.25, or less if the note begins or ends
during the frame).

Audio and MIDI chroma vectors are each normalized so
the 12 elements have a mean of 0 and a standard deviation
of 1. The next step uses dynamic time warping to find the
best time alignment, using Euclidean distance between
chroma vectors.

Finally, the rough alignment, which is a path quantized
to points along a 0.25s grid, is smoothed at each point by
finding the best fit to the nearest 7 points, using linear
regression. The resulting points define a sampled function
that can be linearly interpolated to map between MIDI file
time and audio file time.

The score alignment process is written in C++ and runs
about 20 times real time on a 2.4 GHz Pentium 4 CPU.
Source code is available from the author.

3 Music Analysis and Segmentation

Music analysis is performed on both the target and
source MIDI data. After parsing the data from a MIDI file,
the notes from all channels and tracks are merged, forming a
single polyphonic part. All notes on channel 10 are removed
to avoid drum data. Consider the data in Figure 2. Every
time a note begins or ends, the set of currently sounding
pitches changes. The score is segmented accordingly, and
these pitch sets are called concurrencies (Pardo and
Birmingham 2000).

P
itc

h

Time
Figure 2. Scores are segmented at boundaries
corresponding to note beginnings and endings

to form pitch set sequences.

When the MIDI file has actual expressive performance
timing as opposed to notes that are quantized to beat
boundaries, there will tend to be very short concurrencies
due to the “ragged” alignment of notes. A minimum

353

concurrency duration on the order of 0.ls is imposed to
merge very short concurrencies. Scanning the data in time
order, if a concurrency boundary occurs within 0.1s of the
start of the concurrency, the boundary is removed.

Each unit in the database denotes a concurrency in the
MIDI file as well as the corresponding segment in a source
audio file. Each unit is represented by a 4-tuple consisting of
(1) a set of pitches present in the concurrency (2) the onset
time of the concurrency in the corresponding audio file, (3)
the duration in the audio file, and (4) the audio file name.
Notice that while the pitch data is extracted from the MIDI
file, the times and file name refer to the corresponding audio
file where sound will be obtained in the synthesis step.

Similar to sources in the database, the target MIDI file is
represented by 4-tuples denoting its concurrencies. In this
case, there is no corresponding audio, so the time and
duration fields refer to those of the source MIDI file, and the
file name is ignored.

4 Selecting Similar Sound Units

Given a target MIDI file, this system renders a sound
with a similar sequence of concurrencies, thus reproducing
the harmonic progressions of the target MIDI file using
sounds from the database. Because the output units will
match the timing of the target MIDI file, much of the
rhythm of the target file is preserved as well. Furthermore,
to the extent that units are found with matching top notes,
melody will also be synthesized.

For each target file concurrency, a unit is selected from
the database by evaluating similarity between the target
concurrency and every unit in the database. The similarity is
a weighted sum of the following (default weights are written
in parentheses):
• Pitch similarity (10), the degree of match between sets of

pitches. This is based on the F-score (see http://
en.wikipedia.org/wiki/Information_retrieval), defined as
follows: Let S be the set of pitches in the target concur-
rency and U be the set of pitches in the database (source)
concurrency. Let a= |U ∩ S|, b = |U − S|, and c = |S − U|.
Let r (recall) = a/(a+b) and p (precision) = a/(a+c).
Finally, the F-score f = 2rp/(r+p), which ranges from 0 to
1.

• Pitch class similarity (1000): the degree of match between
sets of pitch classes. This is computed just like pitch
similarity (above), but sets of pitch classes replace sets of
pitches.

• Top note similarity (100): If the highest notes are
identical, return a score of 1. If the top notes have the
same pitch class, return a score of 0.5. Otherwise the
score is 0.

• Duration suitability (100): The unit should be long
enough to play the entire concurrency. The score is
min(0.1, log(d1/d2)), where d1 is the duration of the
database (source) unit and d2 is the duration of the target
concurrency. The min function expresses the idea that

there is no advantage to having a source unit much longer
than the target unit.

• Recency rating (1000): Avoid reusing database units too
soon. Let n be the number of concurrencies selected since
the last use of a given database unit. If the database unit is
unused so far or if n = 0 (immediate reuse), return 1.
Otherwise, return 1 − (1/n), yielding a score from 0 to 1.

A common consideration in concatenative synthesis is the
quality of the transition, and often transitions are used
directly from the database. Because the current database is
small compared to the number of possible chord transitions,
no attempt is made to use “natural” transitions. Another
currently ignored but possibly important consideration is the
presence and alignment of rhythmic accents and other
articulatory details.

5 Synthesis

After selecting the unit with the highest similarity rating
from the database, the start time, duration, and file name are
used to access audio samples. In the current implementation,
units are concatenated using a simple cross-fade. Normally,
audio is extracted using the start time of the unit with a
duration that is 0.1s longer than the duration of the source
MIDI file concurrency. Each sound is given a 0.1s fade-in
and a 0.1s fade-out, and sounds are overlapped by 0.1s. This
creates a cross-fade between successive units and preserves
the rhythm and timing of the target MIDI file. If the
database unit is shorter than the source concurrency, the
audio unit is repeated as many times as necessary to fill the
time. (A more sophisticated form of time-stretching could
be used here.)

The entire synthesis system is written in Nyquist
(www.cs.cmu.edu/~music/nyquist) with the exception of the
score-alignment, which is performed by a stand-alone
program. The score-alignment program outputs text files
describing notes and their aligned times and durations.
These files are parsed by a Nyquist program to build a
database of units. A similar process builds a list of
concurrencies from the source MIDI file. Currently, the
database is a simple list, and the most similar sound unit is
found through a linear search. The extraction of sound from
audio files, cross-fading, and assembly are all easily
performed using Nyquist signal-processing primitives. The
entire Nyquist implementation is about 460 lines of code
(not counting the score alignment program).

5.1 Speeding Up the Search

To handle a very large database, linear search might be
too slow. An index based on pitch class similarity can be
used to speed up the search. This is simple if the search is
constrained to consider only units that have a perfect match,
or in other words, the weighting on pitch class similarity is
so high that only exact matches between pitch class sets
need be considered. Since there are 12 pitch classes, there

354

are 212−1 = 4095 non-empty sets of pitch classes. When
constructing the database, it can be partitioned according to
pitch class sets. Naively, one might expect a speed-up of
4095, but not all pitch class sets are equally common.

To get some indication of how pitch class sets are
distributed, I collected statistics from the database extracted
from Beethoven’s Symphonie 5, 1st Movement. There are
1900 concurrencies, but only 166 distinct pitch class sets
(out of 4095). Thus, one might hope for a speedup of 166
because the database can be partitioned into 166 sets of
units. This is still overly optimistic because the distribution
of units across these 166 partitions is highly skewed.
Assuming the source MIDI file has the same distribution of
pitch class sets, the average expected number of audio units
with a perfect pitch class similarity is approximately 42,
giving a speedup of about 45 (i.e. 1900 / 42).

One could also consider imperfect pitch similarity
matches, for example, by searching units that have only one
additional pitch class or only one missing pitch class. This
would of course reduce the speedup even further. Overall,
these numbers should be taken as some indication of a
promising approach, but the results will depend greatly
upon the actual data. For example, a collection of
symphonies in different keys should occupy a much greater
proportion of the 4095 possible pitch class sets.

6 Results and Applications

When dealing with polyphonic audio, the number of
combinations of pitches is so vast that one cannot hope to
achieve anything like high quality synthesis, and this is not
my goal. I have experimented using a Beethoven symphony
to populate the database and various MIDI files as sources.
In most cases, the output has a recognizable harmonic
quality, but it is difficult to follow along and recognize the
source music on a measure-by-measure or chord-by-chord
basis. The target’s rhythm is reconstructed at least to some
extent because units are spliced on concurrency boundaries
where target notes begin and end.

One variation I tried does a slow cross-fade back and
forth between the original source, synthesized from the
source MIDI file, and the concatenative synthesis output.
The return to the source helps the listener to remain oriented
and sets up expectations for the synthesis output, which is
always a bit jarring due to differences in timbre and
sometimes amusing in how the harmony is re-voiced.

Another approach is to synthesize the melody from the
target MIDI file, using a conventional synthesizer, and to
superimpose that with harmony that is created by
concatenative synthesis of the same MIDI file. Here, the
synthesized melody serves as a reminder of and orientation
to the target piece while the somewhat chaotic and turbulent
concatenative synthesis output supplies the harmony and
some rhythm.

Some examples of this approach can be heard at
http://www.cs.cmu.edu/~music/concat/concat.html.

7 Summary and Conclusions

Concatenative synthesis is a recent approach to sound
synthesis that uses a database of stored and analyzed sounds
to reconstruct music. The selection of sound units from the
database is always driven by some notion of similarity be-
tween the database source sounds and the target specifica-
tion. In this work, source sounds are labeled with MIDI
transcriptions, using automated score alignment to simplify
the collection of data. This allows selection to be based on
symbolic pitches as opposed to spectral or other features.
The resulting system can synthesize a harmonic sequence
that corresponds to a target MIDI file. Experiments have
synthesized music that contains the harmonic progression of
the target MIDI file, but in general, the results are somewhat
disorienting because of the juxtaposition of imperfectly
matching chords and uncontrolled timbral content. Mixing
in some synthesized sounds from the target MIDI file, for
example by including the melody, can help the listener find
the correspondence between the target and the concatena-
tively synthesized version.

A larger database is under construction, and it will be
interesting to hear the effect of having more audio units
available. A larger database should allow for better match-
ing to the pitches specified in the MIDI file and even more
interesting outputs. Future work might also attempt to
enlarge the database by pitch-shifting sources.

References

Hu, N., R. B. Dannenberg, and G. Tzanetakis. 2003. “Polyphonic
Audio Matching and Alignment for Music Retrieval.” 2003
IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA). New York: IEEE, pp. 185-188.

Lazier, A., and P. Cook. 2003. “Mosievius: Feature Driven
Interactive Audio Mosaicing.” Proceedings of the 5th
International Conference on Digital Audio Effects (DAFx-03).

Pardo, B., and W. Birmingham. 2000. “Automated Partitioning of
Tonal Music.” Proceedings of the 13th International FLAIRS
Conference. AAAI Press.

Schwarz, D. 2000. “A System for Data-Driven Concatenative
Sound Synthesis.” Proceedings of the COST G-6 Conference
on Digital Audio Effects (DAFX-00).

Schwarz, D. 2003. “New Developments in Data-Driven
Concatenative Sound Synthesis.” Proceedings of the 2003
International Computer Music Conference. International
Computer Music Association, pp 443-446.

Simon, I., S. Basu, D. Salesin, and Maneesh Agrawala. 2005.
“Audio Analogies: Creating New Music From An Existing
Performance by Concatenative Synthesis.” Conference
Proceedings International Computer Music Conference.
International Computer Music Association, pp. 65-72.

Wakefield, G. H. 1999. “Mathematical Representation of Joint
Time-Chroma Distributions.” International Symposium on
Optical Science, Engineering, and Instrumentation, SPIE'99.

Zils, A., and F. Pachet. 2001. “Musical Mosaicing.” Proceedings
of the COST G-G Confernece on Digital Audio Effects
(DAFX).

355

