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Abstract 

Concatenative synthesis assembles segments of pre-
recorded audio to create new sound. In this variation, pre-
recorded audio is labeled by aligning a polyphonic MIDI 
representation, essentially forming a symbolic transcription 
of the source material. Given a MIDI file to be synthesized, 
matching segments of MIDI describing the source are used 
to locate corresponding sound segments, which can be 
spliced to form the output. This technique is related to audio 
mosaics where similar spectral frames are substituted 
except that matching symbolic MIDI data allows for 
substitutions that are timbrally dissimilar yet harmonically 
and rhythmically identical. 

1 Introduction 
Concatenative synthesis allows synthesizers to reuse 

“natural” acoustic sounds from large databases in order to 
assemble output sound according to some specification. 
(Schwarz 2000, Schwarz 2003, Simon et al. 2005) While 
concatenative synthesis was originally developed for high-
quality speech synthesis, the technique is also used for more 
artistic applications. The basic idea is that a target 
specification (a score, or features derived from audio) is 
synthesized by splicing sound units obtained from a 
database of source sounds. This approach is analogous to 
image mosaics and is sometimes called music mosaicing 
(Zils and Pachet 2001; Lazier and Cook, 2003). 

One of the interesting and much discussed aspects of 
music mosaicing is the selection of sound units from the 
database. The quality of match between sound units and the 
target sound is an important factor in determining the 
similarity of the resulting sound. 

Various criteria can be used to evaluate the similarity 
and appropriateness of sound units in (re)constructing the 
target. Typically, a variety of audio features are considered, 
such as pitch, loudness, and spectrum. Depending on the 
features, the resulting sound will capture some aspects of 
the target specification but perhaps not others. For example, 
if the spectrum is closely modeled, we expect to hear a 
similar timbral evolution. On the other hand, if the pitch is 
the important criteria for comparison then perhaps a melody 
will be retained and the timbre will change completely. 

In general, the features that are used to compare units are 
an abstraction or a projection of a very high-dimensional 

signal space (e.g. 44100 samples per second) onto a low-
dimensional feature space. To the extent that the low-
dimensional feature space captures interesting perceptual 
information, music mosaicing will produce results such that 
abstract qualities in the original sound are preserved and 
recognized. 

For music, a very salient property is harmony and pitch 
content. We recognize melody and chord progressions 
regardless of the instrumentation or timbre, dynamic levels, 
and other characteristics. It seems that harmony could be an 
interesting basis for audio mosaicing, but it is very difficult 
to determine harmony and pitch content from arbitrary 
music audio, especially in the case of polyphony. A program 
that could determine the pitch content of a sample of audio 
would need to solve the audio transcription problem. 

An alternative to music transcription is polyphonic 
music alignment. In this process, a score, usually 
represented as a standard MIDI file, is time-aligned to 
audio. Once the correspondence between MIDI and audio is 
set up, one can easily read off the pitches sounding at a 
given location in the audio. Alternatively, given a section of 
MIDI where desired pitches are present, one can locate the 
audio realization of those pitches. 

In the present study, synthesis is performed starting with 
a standard MIDI file. This is different from music mosaicing 
where the input is audio. Starting from MIDI is closer in 
spirit to concatenative synthesis, where a specific symbolic 
score (or a notated sequence of phonemes) is to be 
synthesized into music (or speech). However, this study is 
more concerned with harmony and polyphonic sounds. Due 
to the large space of possible note combinations (e.g. 8810 
for 10-note polyphony over 88 pitches), it is unreasonable to 
expect the high-quality synthesis one might obtain from a 
monophonic instrument using a large database and 
concatenative techniques. Instead, the goal is to create 
interesting textures that retain the timbral quality of the 
source music in the database while following the harmony 
(and it turns out much of the rhythm) of the source MIDI 
file. 

Figure 1 is a high-level description of the process. Music 
audio sources are aligned with corresponding MIDI files to 
obtain time maps so that chords in the MIDI files can be 
located in the audio source. Next, each MIDI file is 
segmented to obtain a sequence of chords or concurrencies 
(Pardo and Birmingham 2000). The time and duration of 
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these chords comprise the units in the database. The target 
MIDI file to be synthesized is then segmented in the same 
way to extract concurrencies. A search process finds the unit 
with the best match in the database for each concurrency in 
the target. Each unit is mapped to the corresponding audio, 
and the audio units are concatenated to form the output. 
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Figure 1. System diagram for concatenative synthesis  

using score-aligned transcriptions. 

The next section describes in brief how polyphonic 
alignment is achieved. Section 3 describes how music is 
analyzed and segmented to form the database. Section 4 
describes criteria that are used to determine the similarity of 
sound units in the database to segments of the source MIDI 
file. Section 5 describes some synthesis and implementation 
details. This is followed by some discussion and 
conclusions. 

2 Polyphonic Alignment 

A key ingredient in this approach to concatenative 
synthesis is the labeling of audio with symbolic pitches. An 
accurate labeling of pitches (as opposed to a spectral 
representation) will allow us to search the audio for 
particular pitches and chords. Labeling is achieved by 
aligning MIDI data to the audio file as described by Hu, 
Dannenberg, and Tzanetakis (2003). 

Where does the MIDI come from? Most popular and 
classical music has been transcribed by hand into MIDI files 
that can be located on the Web. There is no reliable way to 
automate this search, so finding the file is a manual process. 
MIDI files are not always perfect transcriptions, and usually 
MIDI lacks the expressive timing of a recorded audio 
performance, so the MIDI data must be aligned to the audio 
before it can be used. 

Polyphonic alignment is performed by converting the 
MIDI file and the audio file into a representation called the 
chromagram. (Wakefield 1999) A chromagram is a 
sequence of chroma vectors, 12-element vectors 
representing the total spectral energy corresponding to each 

of the 12 pitch classes (C, C#, D, …, B). The chroma vector 
is chosen because it captures harmonic and melodic 
information, which is shared by audio and MIDI, and it 
tends to be insensitive to amplitude and timbral differences, 
which tend not to match very well between audio and MIDI.  

Audio data is divided into 250ms frames, each of which 
is analyzed with the FFT. The magnitudes of the FFT bins 
are then converted to a chroma vector. 

For MIDI data, chroma vectors are estimated without 
converting to audio or performing FFTs. Instead, each 
chroma vector element is the sum of all the matching pitch 
classes sounding during that frame, weighted by the key 
velocity and duration (0.25, or less if the note begins or ends 
during the frame). 

Audio and MIDI chroma vectors are each normalized so 
the 12 elements have a mean of 0 and a standard deviation 
of 1. The next step uses dynamic time warping to find the 
best time alignment, using Euclidean distance between 
chroma vectors. 

Finally, the rough alignment, which is a path quantized 
to points along a 0.25s grid, is smoothed at each point by 
finding the best fit to the nearest 7 points, using linear 
regression. The resulting points define a sampled function 
that can be linearly interpolated to map between MIDI file 
time and audio file time. 

The score alignment process is written in C++ and runs 
about 20 times real time on a 2.4 GHz Pentium 4 CPU. 
Source code is available from the author. 

3 Music Analysis and Segmentation 

Music analysis is performed on both the target and 
source MIDI data. After parsing the data from a MIDI file, 
the notes from all channels and tracks are merged, forming a 
single polyphonic part. All notes on channel 10 are removed 
to avoid drum data. Consider the data in Figure 2. Every 
time a note begins or ends, the set of currently sounding 
pitches changes. The score is segmented accordingly, and 
these pitch sets are called concurrencies (Pardo and 
Birmingham 2000). 

P
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Figure 2. Scores are segmented at boundaries 
corresponding to note beginnings and endings  

to form pitch set sequences. 

When the MIDI file has actual expressive performance 
timing as opposed to notes that are quantized to beat 
boundaries, there will tend to be very short concurrencies 
due to the “ragged” alignment of notes. A minimum 
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concurrency duration on the order of 0.ls is imposed to 
merge very short concurrencies. Scanning the data in time 
order, if a concurrency boundary occurs within 0.1s of the 
start of the concurrency, the boundary is removed. 

Each unit in the database denotes a concurrency in the 
MIDI file as well as the corresponding segment in a source 
audio file. Each unit is represented by a 4-tuple consisting of 
(1) a set of pitches present in the concurrency (2) the onset 
time of the concurrency in the corresponding audio file, (3) 
the duration in the audio file, and (4) the audio file name. 
Notice that while the pitch data is extracted from the MIDI 
file, the times and file name refer to the corresponding audio 
file where sound will be obtained in the synthesis step. 

Similar to sources in the database, the target MIDI file is 
represented by 4-tuples denoting its concurrencies. In this 
case, there is no corresponding audio, so the time and 
duration fields refer to those of the source MIDI file, and the 
file name is ignored. 

4 Selecting Similar Sound Units 

Given a target MIDI file, this system renders a sound 
with a similar sequence of concurrencies, thus reproducing 
the harmonic progressions of the target MIDI file using 
sounds from the database. Because the output units will 
match the timing of the target MIDI file, much of the 
rhythm of the target file is preserved as well. Furthermore, 
to the extent that units are found with matching top notes, 
melody will also be synthesized. 

For each target file concurrency, a unit is selected from 
the database by evaluating similarity between the target 
concurrency and every unit in the database. The similarity is 
a weighted sum of the following (default weights are written 
in parentheses): 
• Pitch similarity (10), the degree of match between sets of 

pitches. This is based on the F-score (see http:// 
en.wikipedia.org/wiki/Information_retrieval), defined as 
follows: Let S be the set of pitches in the target concur-
rency and U be the set of pitches in the database (source) 
concurrency. Let a= |U ∩ S|, b = |U − S|, and c = |S − U|. 
Let r (recall) = a/(a+b) and p (precision) = a/(a+c). 
Finally, the F-score f = 2rp/(r+p), which ranges from 0 to 
1. 

• Pitch class similarity (1000): the degree of match between 
sets of pitch classes. This is computed just like pitch 
similarity (above), but sets of pitch classes replace sets of 
pitches. 

• Top note similarity (100): If the highest notes are 
identical, return a score of 1. If the top notes have the 
same pitch class, return a score of 0.5. Otherwise the 
score is 0. 

• Duration suitability (100): The unit should be long 
enough to play the entire concurrency. The score is 
min(0.1, log(d1/d2)), where d1 is the duration of the 
database (source) unit and d2 is the duration of the target 
concurrency. The min function expresses the idea that 

there is no advantage to having a source unit much longer 
than the target unit. 

• Recency rating (1000): Avoid reusing database units too 
soon. Let n be the number of concurrencies selected since 
the last use of a given database unit. If the database unit is 
unused so far or if n = 0 (immediate reuse), return 1. 
Otherwise, return 1 − (1/n), yielding a score from 0 to 1. 

A common consideration in concatenative synthesis is the 
quality of the transition, and often transitions are used 
directly from the database. Because the current database is 
small compared to the number of possible chord transitions, 
no attempt is made to use “natural” transitions. Another 
currently ignored but possibly important consideration is the 
presence and alignment of rhythmic accents and other 
articulatory details. 

5 Synthesis 

After selecting the unit with the highest similarity rating 
from the database, the start time, duration, and file name are 
used to access audio samples. In the current implementation, 
units are concatenated using a simple cross-fade. Normally, 
audio is extracted using the start time of the unit with a 
duration that is 0.1s longer than the duration of the source 
MIDI file concurrency. Each sound is given a 0.1s fade-in 
and a 0.1s fade-out, and sounds are overlapped by 0.1s. This 
creates a cross-fade between successive units and preserves 
the rhythm and timing of the target MIDI file. If the 
database unit is shorter than the source concurrency, the 
audio unit is repeated as many times as necessary to fill the 
time. (A more sophisticated form of time-stretching could 
be used here.) 

The entire synthesis system is written in Nyquist 
(www.cs.cmu.edu/~music/nyquist) with the exception of the 
score-alignment, which is performed by a stand-alone 
program. The score-alignment program outputs text files 
describing notes and their aligned times and durations. 
These files are parsed by a Nyquist program to build a 
database of units. A similar process builds a list of 
concurrencies from the source MIDI file. Currently, the 
database is a simple list, and the most similar sound unit is 
found through a linear search. The extraction of sound from 
audio files, cross-fading, and assembly are all easily 
performed using Nyquist signal-processing primitives. The 
entire Nyquist implementation is about 460 lines of code 
(not counting the score alignment program). 

5.1 Speeding Up the Search 

To handle a very large database, linear search might be 
too slow. An index based on pitch class similarity can be 
used to speed up the search. This is simple if the search is 
constrained to consider only units that have a perfect match, 
or in other words, the weighting on pitch class similarity is 
so high that only exact matches between pitch class sets 
need be considered. Since there are 12 pitch classes, there 
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are 212−1 = 4095 non-empty sets of pitch classes. When 
constructing the database, it can be partitioned according to 
pitch class sets. Naively, one might expect a speed-up of 
4095, but not all pitch class sets are equally common. 

To get some indication of how pitch class sets are 
distributed, I collected statistics from the database extracted 
from Beethoven’s Symphonie 5, 1st Movement. There are 
1900 concurrencies, but only 166 distinct pitch class sets 
(out of 4095). Thus, one might hope for a speedup of 166 
because the database can be partitioned into 166 sets of 
units. This is still overly optimistic because the distribution 
of units across these 166 partitions is highly skewed. 
Assuming the source MIDI file has the same distribution of 
pitch class sets, the average expected number of audio units 
with a perfect pitch class similarity is approximately 42, 
giving a speedup of about 45 (i.e. 1900 / 42). 

One could also consider imperfect pitch similarity 
matches, for example, by searching units that have only one 
additional pitch class or only one missing pitch class. This 
would of course reduce the speedup even further. Overall, 
these numbers should be taken as some indication of a 
promising approach, but the results will depend greatly 
upon the actual data. For example, a collection of 
symphonies in different keys should occupy a much greater 
proportion of the 4095 possible pitch class sets. 

6 Results and Applications 

When dealing with polyphonic audio, the number of 
combinations of pitches is so vast that one cannot hope to 
achieve anything like high quality synthesis, and this is not 
my goal. I have experimented using a Beethoven symphony 
to populate the database and various MIDI files as sources. 
In most cases, the output has a recognizable harmonic 
quality, but it is difficult to follow along and recognize the 
source music on a measure-by-measure or chord-by-chord 
basis. The target’s rhythm is reconstructed at least to some 
extent because units are spliced on concurrency boundaries 
where target notes begin and end. 

One variation I tried does a slow cross-fade back and 
forth between the original source, synthesized from the 
source MIDI file, and the concatenative synthesis output. 
The return to the source helps the listener to remain oriented 
and sets up expectations for the synthesis output, which is 
always a bit jarring due to differences in timbre and 
sometimes amusing in how the harmony is re-voiced. 

Another approach is to synthesize the melody from the 
target MIDI file, using a conventional synthesizer, and to 
superimpose that with harmony that is created by 
concatenative synthesis of the same MIDI file. Here, the 
synthesized melody serves as a reminder of and orientation 
to the target piece while the somewhat chaotic and turbulent 
concatenative synthesis output supplies the harmony and 
some rhythm.  

Some examples of this approach can be heard at 
http://www.cs.cmu.edu/~music/concat/concat.html. 

7 Summary and Conclusions 

Concatenative synthesis is a recent approach to sound 
synthesis that uses a database of stored and analyzed sounds 
to reconstruct music. The selection of sound units from the 
database is always driven by some notion of similarity be-
tween the database source sounds and the target specifica-
tion. In this work, source sounds are labeled with MIDI 
transcriptions, using automated score alignment to simplify 
the collection of data. This allows selection to be based on 
symbolic pitches as opposed to spectral or other features. 
The resulting system can synthesize a harmonic sequence 
that corresponds to a target MIDI file. Experiments have 
synthesized music that contains the harmonic progression of 
the target MIDI file, but in general, the results are somewhat 
disorienting because of the juxtaposition of imperfectly 
matching chords and uncontrolled timbral content. Mixing 
in some synthesized sounds from the target MIDI file, for 
example by including the melody, can help the listener find 
the correspondence between the target and the concatena-
tively synthesized version. 

A larger database is under construction, and it will be 
interesting to hear the effect of having more audio units 
available. A larger database should allow for better match-
ing to the pitches specified in the MIDI file and even more 
interesting outputs. Future work might also attempt to 
enlarge the database by pitch-shifting sources. 

References 

Hu, N., R. B. Dannenberg, and G. Tzanetakis. 2003. “Polyphonic 
Audio Matching and Alignment for Music Retrieval.” 2003 
IEEE Workshop on Applications of Signal Processing to Audio 
and Acoustics (WASPAA). New York: IEEE, pp. 185-188. 

Lazier, A., and P. Cook. 2003. “Mosievius: Feature Driven 
Interactive Audio Mosaicing.” Proceedings of the 5th 
International Conference on Digital Audio Effects (DAFx-03). 

Pardo, B., and W. Birmingham. 2000. “Automated Partitioning of 
Tonal Music.” Proceedings of the 13th International FLAIRS 
Conference. AAAI Press. 

Schwarz, D. 2000. “A System for Data-Driven Concatenative 
Sound Synthesis.” Proceedings of the COST G-6 Conference 
on Digital Audio Effects (DAFX-00). 

Schwarz, D. 2003. “New Developments in Data-Driven 
Concatenative Sound Synthesis.” Proceedings of the 2003 
International Computer Music Conference. International 
Computer Music Association, pp 443-446. 

Simon, I., S. Basu, D. Salesin, and Maneesh Agrawala. 2005. 
“Audio Analogies: Creating New Music From An Existing 
Performance by Concatenative Synthesis.” Conference 
Proceedings International Computer Music Conference. 
International Computer Music Association, pp. 65-72. 

Wakefield, G. H. 1999. “Mathematical Representation of Joint 
Time-Chroma Distributions.” International Symposium on 
Optical Science, Engineering, and Instrumentation, SPIE'99. 

Zils, A., and F. Pachet. 2001. “Musical Mosaicing.” Proceedings 
of the COST G-G Confernece on Digital Audio Effects 
(DAFX). 

 

355


