FORMAL SEMANTICS FOR MUSIC NOTATION CONTROL FLOW"

Zeyu Jin

Carnegie Mellon University
School of Music, Pittsburgh, PA
zeyuj@andrew.cmu.edu

ABSTRACT

Music notation includes a specification of control flow,
which governs the order in which the score is read us-
ing constructs such as repeats and endings. Music theory
provides only an informal description of control flow no-
tation and its interpretation, but interactive music systems
need unambiguous models of the relationships between
the static score and its performance. A framework is in-
troduced to describe music control flow semantics using
theories of formal languages and compilers. A formaliza-
tion of control flow answers several critical questions: Are
the control flow indications in a score valid? What do the
control flow indications mean? What is the mapping from
performance location to static score location? Conven-
tional notation is extended to handle practical problems,
and an implementation, Live Score Display, is offered as
a component for interactive music display.

1. INTRODUCTION

Music notation has been evolving for centuries, creating
a symbolic system to convey music information. Early
music notation contained only lines and notes, which are
sufficient for communicating pitches and durations. It was
later that bar lines and time signatures emerged, grouping
music into measures and introducing the idea of beats.!
The notation for music control flow, like repeats and co-
das, came even later. Control flow helps to identify repeat-
ing structures of music and eliminates duplication in the
printed score. In the Classical period, control flow nota-
tion is closely tied to music forms such as binary, ternary
and sonata and is more of a musical architecture than a
means of saving space.> Conventional practice for control
flow notation is well established. The literature [6, 15] has
formalized the notation in all kinds of ways and there is
little conflict among definitions. However, traditional mu-
sic theory has not explored the possibilities of expanded
or enriched representations for control flow, and there is

"Far beyond formalizing the notion of beats, music notation led to
the “discovery” of time as an independent dimension that did not de-
pend upon physical actions. In particular the musical rest is the first
direct representation of “nothingness” existing over time, or of time it-
self. Composers developed this concept centuries before the scientific
revolution, Kepler, Newton, graphs with a time axes, etc. [3]

2For example, “In practically all the sonatas of the earlier period the
exposition is repeated, as is indicated by the repeat-sign at its end, which
is also helpful for the reader in finding the end of the exposition ...” [2]

Roger Dannenberg

Carnegie Mellon University

Computer Science Department, Pittsburgh, PA

rbd@cs.cmu.edu

[ES. ol

[kS
—
DC. al Sepma =
— e T —
= Coda
RSl AT
P —_—
[D.C al Sepm
—
—+ May thrssgh 4 == SKlip i T EICWLTTY

Figure 1: Control flow definition in Read’s book

a gap between often simplified theoretical ideals and ac-
tual practice, especially in modern works. In practice, we
find nested repeats, exceptions and special cases indicated
by textual annotations, multiple endings, and symbols for
rearrangement.

We encountered this gap between theory and practice
in the implementation of music notation display software.
We needed a formal (computable) way to relate notation
to its performance, and we found conventional notions too
limiting to express what we found in actual printed scores.
To address this problem, we developed new theoretical
foundations based upon models of formal language and
compilation, and we applied these developments to the
implementation of a flexible music display system.

Music control flow is the reading order of measures
affected by control symbols including the time signature,
measures, repeats, endings, etc. It can also be viewed for-
mally as a function f that maps the performed beat & to a
location of a score, <m,b>, a measure and beat pair. (k)
describes the reading order of the score. In principle, we
can rewrite the score in the order f(1), f(2), ...to cre-
ate an equivalent score with no control flow (other than
reading sequentially). We call this the “flattened score”
or “performance score.” Audio recordings and MIDI se-
quences are both in the order of the flattened representa-
tion of the corresponding score.

Existing music theory devotes little attention to con-
trol flow, and in fact, there does not seem to be even a
standard term for the concept of control flow. To define
the meaning of control flow symbols, the conventional
practice is to use words and visuals to illustrate the read-
ing order. For example, Read uses arrows to mark the true
reading order (see Figure 1) [15]. This approach defines
both the syntax and meaning.

*Zeyu Jin and Roger B. Dannenberg, “Formal Semantics for Music Notation Control Flow,” in Proceedings of the 2013 International

Computer Music Conference, Perth, Australia, August 2013, pp. 85-92.

85 | 2013 ICMC idea |

*Zeyu Jin and Roger B. Dannenberg, “Formal Semantics for Music Notation Control Flow,” in
 Perth, Australia, August 2013, pp. 85-92.

 Proceedings of the 2013 International
Computer Music Conference,

*

However, the visual definition is incomplete; there are
cases where we are not sure which production to use. One
such case is nested repeats where there are two ways of
grouping the right repeat with the left repeat. In common
practice music, we often restrict the number of levels of
repeats to be 1, which excludes the nested repeat prob-
lem. In more modern and flexible music practice, there
are nested structures, text annotations [8] and repetitions
conditioned on actual time [17]. There lacks an unam-
biguous way to formalize the syntax and the meaning of
such notation. While nested repeats are relatively simple
to formalize, we argue that the general problem of formal-
izing control flow is non-obvious, interesting, and useful.

In this paper, we present a new framework for formal-
izing control flow notation based on formal grammar and
compilation. One core feature of this framework is that it
can be easily designed by humans and applied automati-
cally by computer. As an example, we show a formal def-
inition of control flow notation that unifies conventional
music notation and some of the most frequent notations
used in modern music practice. We evaluate the ambiguity
and completeness of this definition within our framework.
Finally, we show the implementation of this method and
its application.

2. RELATED WORK

The score representation and interpretation is essential to
score writing, printing, auto-accompaniment and conduct-
ing systems. Most works in this field focus mainly on stor-
ing and visualizing the score so as to accommodate both
traditional and modern music practice, and, as a minor
concern, provide room for implementing correct and user-
friendly score play-back systems. Early studies such as
MuseData [9] and Common Music Notation [16] mainly
concern the encoding of conventional measure-based scores
in their original notational presentation. To further en-
code logical structure of the score and support a wide
range of modern presentations, structured music descrip-
tion languages like MusicXML [12] offer standards for
score sharing and archiving. More recently, commercial
score printing software like Finale® and Sibelius*, and
score accompaniment software like SmartMusic> can gen-
erate a music performance from notation. However, the
algorithms that map the score to performance are prob-
lematic when nested repeats are involved. Given that pop-
ular score editors attempt to perform scores by following
control flow, it is surprising that they do not define a syn-
tax for control flow, check scores for validity, or offer a
consistent meaning for control flow notation.

More recent study with an emphasis on music control
flow modeling led us to develop a score player for HCMP
[7]. This work provides data structures and algorithms for
finding the dynamic score (similar to the “flattened score”
in this work) by unfolding the static (original) score pre-

3Finale music notation software: http://www.finalemusic.com/
4Sibelius music notation software: http://www.sibelius.com/
3SmartMusic software: http://www.smartmusic.com/

86 | 20131CMC

Abstract Soore Headueg Chrde

==

L3

n I: A :|

AT TA

A A

| e

e

I'K |
n-a_’i..-a B | =A= A= =B=
ff. A= =B= =B==C

[ge—

: I
?Er A= =h= == | A= =B= =A==
';.' Boh st |
" fa oA B ——-b | CA-SB=2C- b=
¥ Fimg, 130 o fine |
" Ty —A- =B} E=E ==
'.. % Forsr. 1P ol e :
» I Sk =B=] |SE=E=7==h

Figure 2: Control flow notation and the corresponding
reading order in common music practice

sentation. This work also draws attention to arrangement
in which performance order is specified as a list of sec-
tion labels (e.g. “play the intro, verse 1, verse 2, chorus,
chorus”), a common practice in popular music. However,
the algorithms in this work do not handle nested repeats
or provide a systematic way to validate the correctness of
notation. Overall, previous work has made great contri-
butions to the notational presentation of the score, while
the basic questions of music control flow, such as “what
notation is right” and “what is the correct performance or-
der given this notation” are still unanswered. In this work,
we provide a systematic scheme to define the “right” no-
tation and produce the flattened score representation with-
out ambiguity.

3. COMMON MUSIC PRACTICE

Frequently used control flow symbols in common practice
music are summarized in Figure 2. To avoid ambiguity,
we often make the following restrictions:

e No control flow symbols are allow within the blank
staff in Rule 1, 2 and 3.

e There can only be at most one type of DC/DS sym-
bols in the entire music.

o [eft and right repeats can be used within the blank
staff in Rules 4-9.

4. EXTENDED MUSIC PRACTICE

In modern music practice, the control flow notation is much
more flexible; there are many examples undefined in the
conventional notation framework. Figure 3 shows some
of the many unconventional examples found in The Real

5] D5 fer Seker
1 Aélf!—-l-!—a-l_i-l- Afres vha sl B0
iy T prpe g
i3 [Ej

Pt AH]

A 13 nd (B 0L Sud BT Grandt L

SEEE e

Py © oite

I. o Hclaeni o w——

= =M =hanral - Ol
L8

Framn Immprovdie
T B b e e
; =
1

1t 1 caady 5k L = oy

W T i

e —

e

Figure 3: Control flow notation in modern music practice

Book [8). The six examples® contain four typical notations
in modern music practice:

Nested repeats (example 1 and 5).

Multiple and nested DS/DC-coda notation: In Example
3, the notation is complicated. The relation among
D.C. al coda, to coda and coda signs are connected
by lines.

Re-arranged sections (Example 2): re-order the section
marks to create a different reading order of the score.

Word annotation (Example 1,4 and 6): omitting or play-
ing some measures conditioned on different rounds
of repetition.

One could dismiss these particular scores as anomolies,
but we find that in music, the exception proves the rule.
Existing commercial software interprets Example 5 in-
consistently. In Finale 2012 and Sibelius 7, the default
reading order is a-b-b-c-b-b-c—d7, but in MuseScore?, the
order is a-b-b-c-a-b-c-d. The correct order is a-b-b-c-a-
b-b-c-d, which differs from both software interpretations.
Clearly, we need a more sophisticated approach that offers
a syntax and meaning that can be shared by both humans
and computers. In the next section, we show such an ap-
proach based on formal language and attribute grammars.
In Section 6, we show an even more flexible method “the
intermediate notation” that supports extensions based on
textual annotations.

SFrom 1 to 6: “Follow Your Heart” by J. Mclaughlin pp.154—155;
“Forest Flower” by Charles Lloyd p.158; “Good Evening Mr. & Mrs.
America” by John Guerin p.176; “Group your own” by Keith Jarrett
p.182; Little Niles by Raudy Weston p.267; “Mallet Man” by Gordon
Boek p.282

7One can notate nested repeat by manually specifying which measure
the right repeat goes to.

$MuseScore music notation software: http://musescore.org/

87 | 2013ICMC idea | LIOHE PHFERS

é}ii‘.i";{ Y

L, ml Fine
Iy, LF}]

by g -

Figure 4: Symbolizing the score: this score is converted
to the following list of strings to represent control flow:
(block, 0, 4) Fine ||: (block, 4, 4) :|| ||: (block, 8, 4) |
(block, 12,4)] :|| [(block, 16, 4) | DC.Fine

5. MODEL FOR EXTENDED MUSIC PRACTICE

The framework for defining music notation control flow
takes three steps: First, abstract the score into symbols;
next, define the syntax for a well-formed score based on
formal grammars; finally, define the meaning of each gram-
mar using meta expressions. From this, we obtain the
mapping function f (k).

5.1. Symbolize the Score

For both convenience and clarity, we first convert the vi-
sual score to a list of symbols, each corresponds to a no-
tation or a block of notations in the score. Table 1 shows
a list of these symbols. To separate the problem of con-
trol flow semantics from the (much) larger and more gen-
eral problem of music notation semantics, we simply la-
bel each block of notation between control symbols and
assume the meaning and duration of a block is known.

The procedure is to read the score from left to right,
write down each control flow symbol and name the inter-
vening blocks as shown in Figure 4.

Table 1: Symbols used to label Control flow notation

Symbol Meaning
(b, k, 1) A block of score, starting
from beat k with length /
|l: and :|| | Left Repeat and Right Repeat
[Beginning of an ending
] Endpoint of an ending
DC dal Capo
DC.Coda D.C. al Coda
DC.Fine D.C al Fine
DS Del Segno
DS.Coda D.S. al Coda
DS.Fine D.S. al Fine
Segno the Segno sign
Coda the Coda sign
ToCoda To Coda (or Coda symbol)
Fine Fine

5.2. Context-free Grammar

A context free grammar (CFG) [1] is used to formalize
the valid sequences of music symbols. A grammar is a set
of rules that describe how a string (or a sequence of sym-
bols) is formed. A context-free grammar (CFG) consists
of terminal, nonterminal, productions, and a start symbol.
In a CFG, one nonterminal is distinguished as the start
symbol. The start symbol is replaced according to pro-
ductions. After replacement, any remaining nonterminal
can be replaced according to productions, and so on, until
only terminals remain.

For example, we can define S as a whole score and E
as a score element. Then we can define the following: A
score S is a sequence of 1 or more musical elements (E),
optionally followed by a right repeat. A grammar for this
language (set of scores) is:

Starting: S

(G1) S —> E
(G2) S —> E :|
(G3) E -—> E E
(G4) E —> Db

Here, we consider “b” to be a terminal denoting any
block, although we could add productions that expand
“b” (now a nonterminal) to terminals of the form “(block
start duration).” Based on this CFG, we are able to tell if
a sequence of symbols is formed from this grammar us-
ing derivation. For example, (b, 0,4) (b, 4,4) :| is
well-defined from the grammar because we can derive it
from S using the productions:

S =>E :|
=> E E :|
=> (b, 0, 4) (b, 4, 4) :|

[use E -> E E]
[use E -=> b (twice)]

We say that a sequence of symbols is a well defined
score if it can be derived using a grammar. The result of
a derivation is a tree structure where each score symbol is
a leaf and where each parent node and its children corre-
sponds to a production in the grammar. The leaves from
left to right (or more precisely in preorder traversal) will
generate the input sequence. The tree is called a parse
tree in compilation theory. As an example, the tree for
(b,0,4) (b,0,4) :|| is shown in the Figure 5.

A program that converts a sequence of symbols into a
parse tree is called a parser. A parser essentially runs the
grammar “backwards,” reducing a string of nonterminals
to the start symbol by applying productions in reverse.
Many parsing algorithms have been developed for gram-
mars of different complexity. LR(1) [10] and LALR(1)
[14] are the most frequently used parsers for programming

Figure 5: Parse tree for (b,0,4) (b,4,4) :||

88 | 2013ICMC

languages. However, not all context-free grammars can
be parsed by LR(1). Since LR(1) parsers are balanced in
generality and computational efficiency, we often design
grammars acceptable to LR(1) parsers.

5.3. Ambiguity and Error Handling

The problem of ambiguity arises when there are multi-
ple parse trees for the same the sequence of symbols and
the same grammar. For example, if we change production
(G2) to E — E : |, we get an ambiguous grammar. The
score b : | b : | can be generated two ways:

S =>E =>EZE=>E :| E => Db :| b :]
S => E E :| = EE :
H

B
| =>
b :]

E b :| =>E => Db :| b :]

The first derivation (line 1) implies a sequence of two
repeated blocks. The second derivation (line 2) implies
nested repeats. Notice that while semantics are not in-
herent in formal grammars, we often associate semantics
closely with productions and parse trees.

5.4. Syntax Directed Translation and Attribute Gram-
mar

A syntax-directed definition is a context free grammar to-
gether with attributes and rules. The attributes are asso-
ciated with grammar symbols and the rules are used to
define the relation among symbols [13]. For any termi-
nal or nonterminal X, denote X.a as some attribute of
X. For a production like X — YZ, the rule can be X.a =
op(Y.b,Z.c) which contains some attribute symbol, an equal
sign and some expression op of Y.b and Z.c.

Define attribute code as the flattened presentation for
all the terminals and nonterminals in our formal control
flow framework. Define “|” as the concatenation opera-
tor that links two lists of symbols to be one. For exam-
ple, if E1.code = (b,0,4) (b,4,4); and E2.code = ||: (b,8,4)
:||, then E1l.code | E2.code = (b,0,4) (b,4,4) ||: (b,3,4) :]|.
Furthermore, define attributes “beat” and “dur” to be the
starting beat and duration for any terminal or nontermi-
nal. For any block b, assume b.beat is the “starting beat”
of b and len is the “length” of the block. The syntax di-
rected definition for the simple grammar (G1)-(G4) can
be defined as follows:

Starting: S
(Gl) S -> E {
(1.1) S.code = E.code
(1.2) S.beat = E.beat
(1.3) S.dur = E.dur }
(G2) S —> E :| {
(2.1) S.code = E.code | E.code
(2.2) S.pbeat = E.beat
(2.3) S.dur = E.dur + E.dur }
(G3) E -> E E {
(3.1) E.code = El.code | E2.code
(3.2) E.beat = El.beat
(3.3) E.dur = El.dur + E2.dur }
(G4) E —> b {
(4.1) E.code = (b, b.beat, b.dur)
4.2) E.beat = b.beat
4.3) E.dur = b.dur }

E.code = [h,4)
] . Cheat =0
E.code = 004} 048] Edw=4 . code =

Eheat =0 |

“as | Bbear =0
e i E =N EX
Eihadsdad {]——{] boghr = i

1 ; b.oode =

|' - - = Hl.ldln-.-r..{.] B Byt = 4
Butur = 4
E.codle = [h,8.2)
& cithe Fiapar = 4
{0 &) {4 &) [0S} b4 4 Edur=d
S il s

Sdw=g+B= 10

Figure 6: Data flow in syntax directed translation

Rule (G1) says the flattened representation of a score
can be a flattened score element with the same starting
beat and duration. Rule (G2) says if the score has a re-
peat, then the flattened score is two copies of the score
element before the repeat sign with the starting beat equal
to that of the score element and the duration equal to two
times the duration of the score element. Rule (G3) says
if a score element is formed by two sub-score elements,
then the flattened element is made by concatenating the
flattened representation of sub-elements, and the duration
is the sum of the lengths of the sub-elements. Finally, if
an element is a single block, then all the attributes of the
block are copied to the element (G4).

Based on the parse tree, we can apply rules from leaves
to root in order to synthesize the attributes of upper levels.
For the example shown in Figure 5, the attribute flow is
shown in Figure 6.

Finally the flattened score is in s.code and the dura-
tion of the entire score is 16 beats. Although this is a
simple example, notice that we have precisely and un-
ambiguously specified how to interpret score control flow
notation. Moreover, we have introduced a meta-notation
based on attribute grammars that allows us to define other
interpretations of score control flow.

5.5. The Mapping Function

One goal of defining control flow is to obtain a mapping
from beats in a performance of the score (i.e. the flattened
score) to positions or blocks in the original score. We
denote the mapping as f(k), where k is the beat position
in the flattened score (S.code) and f(k) is the position in
the score. The map can be constructed by summing beat
durations in the flattened representation S.code to obtain
k for each block in the original score.

5.6. Well Defined Music Control Flow

As a demonstration of how we can use this framework to
formalize music control flow for extended music practice,
the following grammar supports nested repeats and un-
limited endings. An even more sophisticated implemen-
tation is used in a newly implemented score display sys-
tem which can model word annotation and section-based
arrangement. Because space is limited, we only show

89 | 2013 ICMC idea |

DS.al.coda in the DS/DC family and limit our attention
to the “.code” attribute only.

Define nonterminal S as the score, L as the left-most
part of the score, E as score element, LEND as the ending
within L and ND as the ending. Add two additional sym-
bols to the original score: # at the beginning and $ at the
end.

The score S: to be consistent with case 1, the score
needs to be decomposed into an L, the leftmost part that
could have multiple right repeats, and an E followed by
the ending sign $. This gives us

S > L $ {
S.code = L.code; }
S ->LES {
S.code = L.code | E.code; }
S -> L Segno E ToCoda E DS.coda Coda E $ {
S.code = L.code | EO.code | El.code |
EO.code | E2.code; }

The leftmost group L: If there are no non-paired right
repeats in the score, L should be an E. Or this L can pro-
duce more L, right repeat sign followed by an E and also
an ending structure, the leftmost multiple endings.

L > L :| E {

L.code = Ll.code | Ll.code | E.code; }
L > # E {

L.code = E.code; }
L —> L :| {

L.code = Ll.code | Ll.code; }
L -> LEND E {

L.code = LEND.code | E.code; }
L -> LEND {

L.code = LEND.code; }

The score element E can be a simple block, a repeated
structure, an ending or a DS.al.Coda structure.

E -> b {

E.code = (b, b.beat, b.dur); }
E > |: E] {

E.code = El.code | El.code; }
E ->|: END [E] {

For n = 1 to ND.count
EO.code = EO.code | El.code
| ND.ending[n];

EO.code = EO.code | El.code | E2.code; }
E -> E E {

EO.code = El.code | E2.code; }
E -> E Segno E ToCoda E DS.Coda Coda E $ {

E.code = El.code | E2.code | E3.code |

E2.code | E4.code; }

ND and LEND: Because of the complication of this
structure, we need to record each ending to the top level
by creating a new attribute ND.ending with a list structure.
We also need to use a loop to pair different endings with
the constant part.

LEND -> # END [E] {

For n = ND.count downto 1

LEND.code = LEND.code | EO.code
| ND.ending[n];

LEND.code = LEND.code | EO.code | El.code; }
ND -> ND [E :| {

ND.count = NDl.count | 1;

ND.ending[ND.count] = E.code; }

ND -> [E :|
ND.count =

{
1;
ND.ending[1]

= E; }
It can be shown that this grammar can be parsed by
LR(1) without ambiguity (“Reduce-reduce” error or “Shift-

shift” error). “Reduce-shift” errors occur but can be solved
by “preferring reduce then shift.”

6. IMPLEMENTATION

We implemented a Java-based API called MCFC (music
control flow compiler) that creates a score compiler from
a user-defined lexical definition and grammars at start-up
and translates string-format score symbols to a flattened
score based on the given grammar. Unlike lex and yacc
[11], which are used frequently for generating code frame-
works for making compilers, MCFC generates the entire
compiler directly from the CFG and attribute grammar,
and users can switch among different grammars without
closing the application. This feature is especially useful
when dealing with notation from different domains.

MCEFC does not assume any model of the score and
works in the string representation. The first step for any
application to have this API embedded is to convert the
score to a list of symbols as demonstrated in Section 5.1.
To make the compiler understand the semantics of these
symbols, the user needs to provide an additional file declar-
ing all the symbols, which is known as lexical definition,
and is accomplished using regular expressions similar to
those used in lex [11].

6.1. Grammar Definition

The grammar definition is put in an additional file with ex-
tension “.g.” The content of the grammar definition is es-
sentially identical to the attribute grammar shown in Sec-
tion 5.6.

6.2. The Intermediate Grammar

The score compiler supports a built-in grammar that uses
a small set of instructions to make control flow more flex-
ible. The basic instructions are shown in Table 2.

Table 2: Default Intermediate Language Grammar

Symbol Meaning

(&, <CV>, <N>) A section mark; | A2 ‘ is (&,A,2)

(loop, L<N>) A loop mark labelled by L,

similar to left Repeat

(rep, L<N>, T<N>) | Repeat to Label L for T times,

similar to Right Repeat

(Ib, B<N>) A Jump mark labelled by B
(mp, L<N>, T<N>, | jump to B at the T-th repetition
B<N>) for loop L

90 | 20131CMC

The intermediate grammar can be used to annotate
word-defined scores as in Figure 3. It is very useful to
compile the original score to this intermediate form and
then use the built-in translator to further compile it to a
flattened score. The compiler for the intermediate gram-
mar has sophisticated functions such as loop mapping,
which helps to relate static score positions back to mul-
tiple performance positions (k in f(k)). For example, one
might want to select score position as it occurs in the “2nd
repeat after the D.S.” For example, consider the score

(&,2,1) [: |: (b,0,4) :| (&2A,2) (b,4,4) :|

which is translated into intermediate presentation

(&,A,1)
(rep,1,2)

(1oop, 0)
(&,A,2)

(loop, 1)
(b, 4,4)

(b,0,4)
(rep,0,2)

and finally to the flattened score

(&,A7,1)
(b,0,4)

(b,0,4)
(b,0,4)

(b,0,4)
(&,A,2)

(&,R,2)
(b,4,4)

(b, 4,4)

Output symbols are marked with labels (below) called flags
that show the mapping from the symbol to loop. The for-
mat is [L1,countl;L2,count2,...| where countn is the num-
ber of repetitions of loop Ln. Notice that (b,0,4) appears
with four distinct loop labels

[l [LO,1;L1,1]
[LO,2;L1,1] [LO,2;L1,2]

[LO,1;11,2] [LO,1] [LO,1]
[LO,2] [LO,2]

6.3. Rearrangement

The other feature of this built-in translator is its ability to
handle rearrangement. In the example above, the score is
separated into subsections by section marks.

Al-[] (b,0,4) (b,0,4)
A2-[LO,1] (b,4,4) (b,0,4) (b,0,4)
A2-[L0,2] (b,4,4)

One can input a rearrangement based on the section marks
and the loop mapping.

Al-[] A2-[L0,2] Al-[]

Then the flattened score is

Al-] (b,0,4) (b,0,4)
A2-[L0,2] (b,4,4)
Al-[] (b,0,4) (b,0,4)

In this way the rearrangement notation used in Figure 3
can be compiled.

7. APPLICATION

The score compiler is used in a music score display ap-
plication that, in turn, can be used as part of a human-
computer interface for score following, human computer
music performance, music education, multimedia databases,
etc., where the correct reading order is essential. As a
demonstration, we built a system called Live Score Dis-
play (LSD for short) where performers import score im-
ages, annotate control flow symbols, re-arrange the score
and play the score in real time. With the flattened score
representation, the user can browse to any repetition of a
repeat, even in heavily nested repeats.

7.1. Score Annotation

Ideally, scores would all be machine readable with con-
sistent control flow notation. In reality, we often work
with scanned score images, and optical music recognition
(OMR) would at best require extensive manual editing to
produce usable data. Our solution is to import scanned
or photographed score images and manually annotate the
elements that are critical for control flow and display.

The score annotation interface is provided to import
score images and annotate the layout of the score and the
control flow symbols. This interface is shown in Figure
7a. There are four main panels: the leftmost contains the
score structure tools, which are used to draw the system
boundary, barlines and places between the barlines where
control flow symbols occur. These places and barlines are
called time points. Next to the structure toolbar is the
symbol toolbar, which is used to place symbols on time
points. In the middle is the notation panel where users add
annotations. The rightmost panel is the navigator where
a small-size score is shown along with the string-format
symbols that are used in the score compiler.

To compile the score and enter the arrangement mode,
one can press the “GoLive” menu on the menubar. If
there are notation errors, a prompt window will display
an error message and suggestion. To switch between dif-
ferent grammars, one can find “switch grammar file” and
“switch lex file” in the “GoLive” menu.

7.2. Arrangement Mode

When the score is compiled, the program enters “arrange-
ment mode” as shown in Figure 7b. The arrangement
editor features a navigator which highlights the selected
section in the “section selector” panel. In the bottom is
the section panel where one can insert or delete more sec-
tions. The sections are shown in small square widgets
with the name and corresponding loop marks (see Sec-
tion 6.2). One can also add dynamic controls between
sections, which are special repeat signs that can be dy-
namically controlled in the performance mode to model
“repeat until cue” directions.

7.3. Performance Mode

After the score is arranged, the user can enter Live mode
and set up an HCMP conductor [4, 5] to play with a band.

The HCMP conductor synchronizes sequencers, audio, video,

and other media to live performers by broadcasting score
position and tempo changes via OSC signals [18]. LSD
registers with the conductor as a “player” object and dis-
plays the score’s current and next system to the performer
in a manner similar to the lyric display in a Karaoke sys-
tem. When the control flow jumps, an arrow is shown to
point out the direction and unplayed measures are shaded
(Figure 7c).

91 | 2013 I1CMC idea |

B SINKTY Syl furisiim Panc i gadew

! - -
== g : -
g ST
L le By
- ' Elndgiersy
e B d,

.""d: < =
el IH | 0P g ol sl it gi sl 5 "
=t NN - L -y =
Fir &

FT s N LU gl pf_aa | =
g P T o s =
PT M v paw aae i ga e i o]
H"l: ! ' e ———
A% Baum g ded F Pl]
L ¥
b 1 B w1 1 B PR | W, gna’ i
L ,- E ' ML i
i :'- i LT PN BTN EELE |
- .
BN | WeRradreyerad e STl g
i — — =
-
gl Wh Saay - buria mnsa
(a) Notating Mode
ATTITTLT L B At wrbecnpd Nerciana (ahoded b Srcinm Sebrcion
L. £ -
I —rp——
[(=
1 A g
paaa
B i ——— wany
b Y .. - =1
i STee 3 L r "
....... - - ’
e L. L]
[' ;
”; FRTIATE DT FRELTEE
e T v
P S e -
% mer] s e . e e
= - . e .= "
¥ .
" a |
lade M=

Eearmaged S mams & metee o Beflngh Sociion were Hopctn o

(b) Arragement Mode

Wropeke 8 e [hagilay Pane P v Plasmsi 1ok

reee AT FLICEY = e

r L -'.'.":"::“.:-.:l-:-
Mrder - mg Lerves

—— —
T e

L T e

(c) Performance Mode

Figure 7: Live Score Display user interface

8. SUMMARY AND CONCLUSIONS

The interpretation of control flow symbols in music no-
tation is an intricate problem that existing music theory
solves only in a highly simplified and informal manner.
We have described a framework that borrows from formal
languages, formal semantics, and compiler theory. The
framework allows us to describe precisely what scores
have valid control flow directives and what these direc-
tives mean. Furthermore, we showed that we can model
modern practices such as nested repeats and textual di-
rectives that have no conventional control flow notation.
We can also model the practice we call “arrangement” in
which additional directives override control flow conven-
tions to perform the score in a new sequence, including
on-the-fly arranging such as vamping a section until cued
or taking an optional cut.

Beyond theory, we created a flexible implementation
for displaying music notation in live performance, map-
ping the performance position to the score position, look-
ing ahead to page turns and non-sequential jumps in the
score notation, and allowing the user to add annotations
and arrangements. The Live Score Display system has a
meta-notation system in which new control flow syntax
can be introduced.

In the absence of interactive computer music, control
flow semantics is mostly a theoretical problem. Regard-
less of theory, the “meaning” of a score is really whatever
the performers choose to perform. However, the problem
is much more concrete in the context of interactive sys-
tems. Computers and humans must agree on control flow
semantics if we expect to perform conventional scores with
computers. Computers can “understand” scores or we can
“tell” computers what they mean. Either way, we need
formal descriptive models to express our intentions. This
work offers an initial step toward this goal.

9. ACKNOWLEDGEMENTS

The authors would like to thank Nicolas Gold, Gus Xia,
and Dawen Liang for discussions and earlier work that set
the stage for this research. This work was partially sup-
ported by the National Science Foundation under Grant
No. 0855958.

10. REFERENCES

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman, Com-
pilers: Principles, Techniques and Tools, 2nd ed.
Prentice Hall, 2007.

[2] W. Apel, “Harvard Dictionary of Music,” in Harvard
University Press. Harvard University Press, 1970,
p. 696.

[3] A. W. Crosby, The Measure of Reality: Quantifica-

tion and Western Society, 1250-1600. Cambridge
University Press, 1997.

92 | 20131CMC

[4] R.B. Dannenberg, “New Interfaces for Popular Mu-
sic Performance,” in International Conference on
New Interfaces for Musical Expression, New York
University, New York, Jun. 2005, pp. 130-135.

[S] ——, “A Virtual Orchestra for Human-Computer
Music Performance,” in Proceedings of the Interna-
tional Computer Music Conference 2011, San Fran-
cisco, Aug. 2011, pp. 185-188.

[6] T. Gerou and L. Lusk, “Repeat Signs,” in Essen-
tial Dictionary of Music Notation. Alfred Pub Co,
1996, p. 110.

[7] N. Gold and R. Dannenberg, “A reference archi-
tecture and score representation for popular music
human-computer music performance systems,” in
International Conference on New Interfaces for Mu-
sical Expression, Oslo, Jun. 2011, pp. 36-39.

[8] Hal Leonard Corporation, The Real Book: Sixth Edi-
tion, 6th ed. Hal Leonard Corporation, 2004.

[9] W. B. Hewlett, “MuseData : multipurpose represen-
tation,” in Beyond MIDI. MIT Press Cambridge,
Oct. 1997, pp. 402-447.

[10] D. Knuth, “On the translation of languages from left
to right,” Information and control, vol. 9, pp. 707-
639, 1965.

[11] J. Levine, T. Mason, D. Brown, and B. Cupac, Lex
& yacc, 2nd ed. O’Reilly Media, Oct. 1992.

[12] Michael Good, “MusicXML for Notation and Anal-
ysis,” in The Virtual Score: Representation, Re-
trieval, Restoration,, Walter B. Hewlett and Eleanor
Selfridge-Field, Ed. Cambridge, MA: MIT Press,
2001, vol. 12, pp. 113-124.

[13] J. Paakki, “Attribute Grammar Paradigms Language
Implementation A High-Level Methodology,” ACM
Computing Surveys (CSUR), vol. 27, pp. 195-255,
1995.

[14] D. Pager, “A practical general method for construct-
ing LR(k) parsers,” Acta Informatica, vol. 7, no. 3,
pp. 249-268, 1977.

[15] G. Read, Music notation a manual of modern prac-
tice. Boston: Allyn and Bacon, Inc., 1964, pp. 224—
231.

[16] B. Schottstaedt, “Common music notation,” in Be-
yond MIDI. MIT Press Cambridge, Oct. 1997, pp.
217-221.

[17] K. Stone, Music notation in the twentieth century: a
practical guidebook. = W. W. Norton & Company,
1980.

[18] M. Wright, “Open Sound Control: an enabling tech-
nology for musical networking,” Organised Sound,
vol. 10, no. 3, p. 193, Nov. 2005.

