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Abstract

Traditional procedural programming languages make
real-time programming difficult because the programmer
must prevent the procedural nature of his programs from
interfering with the real-time response that he wants to
implement. . To solve this problem, we propose a
functional programming language that allows the
programmer to “stand outside” the time domain, thus
avoiding confusion between the sequential nature of
program execution and the time-varying nature of
program output. An abstract model for real-time control
is presented which is based on prototypes and instances.
A prototype is a higher-order function that maps a starting
time and duration scale factor into a function of time,
called an instance. - Operations are provided to
manipulate and combine prototypes to describe complex
responses to systein inputs, Using the model as a basis, a
language for real-time control, named Arctic, has been
designed. The objective of Arctic is to lower the
conceptual barrier between the desired system response
and the representation of that response.
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1. Introduction

In the past, real-time control has been achieved more
through ad-hoc techniques than through a formal theory.
Languages for real-iime control have emphasized
concurrency, access to hardware 170 devices, interrupts,
and mechanisms for scheduling tasks rather than taking a
high-level problem-oriented approach in which
implementation details are hidden. In this paper, we
present an alternative approach to real-time control that
enables the programmier to express the real-time response
of a system in a declarative fashion rather than an
imperative or procedural one,

Examples of traditional, sequential languages for real-
time control include Modula (13, 15, 14], Ada [6, 3], OWL
[71, and OCCAM [10]. These languages all provide
support for concurrency through muitiple sequential
threads of control. .The programmer must work hard to
make sure his processes execute the right instructions at
the right times, and real-time control is regarded as the
most difficult form of programming {8]. In contrast, our
approach is based on a non-sequential model in which
behavior in the time domain is specified explicitly. This
model describes possible system responses to real-time

conditions and provides a means for manipulating and
composing  responses. We have defined and
implemented a programming language [5] based on the
model in order to describe and explore the model
through examples. It should be emphasized that our
efforts have concentrated on the development of a
notation for specifying desired real-time sbehavior. Any
implementation will only approximnate the desired
behavior, just as computer implerentations can only
approximate arithmetic on real numbers. We have not
addressed the problem of specifying or meeting
maximum latency requircments or minimum frequency
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response; however, our current work is focussed on
reimplementing our language to achieve real-time
performance capabilities for music applications.

2. The Model

Our model is based on the idea that real-time systems
can be described in terms of responses to events, and that
the appropriate response may involve a complex behavior
that is extended over some interval of time. The response
may even be affected by events that occur as the response
is in progress. We use higher-order functions! called
prolotypes to represent a set of appropriate responses to a
type of event. A prototype takes an argument called the
starting time, which is the real time of the event, and
usually determines when the response should begin. The
result of applying a prototype to a starting time is a
function of time, called an instance, representing the
response to the event.

Prototypes have two other arguments, called the
duration factor and terminaté, on which instances may
also depend. The duration factor usually affects the
overall duration of the response, and terminate is a time
at which a response should be discontinued due to the
occurence of an asynchronous event. In some cases, it is
convenient to violate these suggested interpretations of a
prototype's arguments; therefore, prototypes are not
required to obey these conventions,

At this point, the reader may wonder why we have
included higher-order functions in our model, when
simple functions of time are perfectly good models for
envelopes, audio signals, and control inputs. And
furthermore, one can perform simple transformations on
control functions to shift them in time or to stretch them,
The reason for higher-order functions is that they give us
the ability to model responses at higher levels of
abstraction than the level of audio signals or even control
functions. Consider this example: If one were to ask a
performer to make a note longer, it is likely that he would
increase the duration of the note, but leave the pitch
unaftered. One can model this note concept with a
prototype such that increasing the duration factor results
in a longer instance, but not a lower frequency. On the
other hand, if we were to simply stretch a function of

1A higher-order function is a function whose value is itsclf a
function.

ICMC '84 Proceedings

time, the resulting function would exhibit lower pitch
along with its increased duration.

Figure 2-1 illustrates this concept. If we “stretch” the
note by increasing the duration factor argument of the
note prototype, then the instantiation will have the
desired properties. On the other hand, if we instantiate
the note prototype immediately to obtain a function of
time, then stretching the function will not produce the
desired result, as illustrated at the bottom of the figure.
The essential ingredient of the model is its ability to
model abstract notions, and to allow the manipulation of
these abstractions. Abstractions can then be
“instantiated” to produce the control functions or audio
signals that realize or implement the desired abstraction.

Let us consider another example: suppose we would
like to describe a set of amplitude envelopes with starting

" times determined by one parameter, and decay times

determined by another. The attack time, however, should
always be 0.01 seconds. This set of amplitude envelopes
could be modeled by a prototype, where the starting time
and duration factor of the prototype establish the starting
time and decay time of each envelope in the set. Thus,

Original

Prototype ¢ h
J tretc > J

Instantiation \U’

W\
’\/\/ Stretch > /\/\/

Figure 2-1: [llustration that the stretching of a prototype
is not necessarily equivalent to the
stretching of an instance.

the prototype represents or can be used to generate an
infinite set of envelopes, and each envelope in the set is a
particular instance of the prototype. Figure 2-2 illustrates
several instances of this envelope prototype.

In general, the instances gencrated by a prototype can
be arbitrary, although it is convenient for the parameters
to correspond in a reasonable way to the concepts of
“when” and “how long”. As a third example, a prototype
can represent a musical phrase: suppose we want to
model a sustained tone preceded by a grace note of
constant duration. Notice that if we simply took a
representation of two notes and scaled time uniformly,



NI

Figure 2-2: A family of envelope contours
generated by a prototype.

then the grace note would lengthen along with the other
note. (The pitch might drop as well') In contrast,
prototypes allow us to describe the desired response
precisely, without necessarily writing a separate pair of
notes for each combination of starting time and duration
factor. Thus, we can express a multitude of individual
responses using a single general description. This
example illustrates again the importance of being able to
manipulate response descriptions at the appropriate
level(s) of abstraction.

In the language Arctic, the starting time and duration
factor will be implicit parameters, but for now, we will
notate an instance of prototype P by P(s, d), where s is the
starting time, and d is the duration factor. For the
mathematically inclined, an instance is a function from an
interval of time to the reals:

S R-R,
and a prototype is a higher order function from starting
time (a real) and duration factor (a real) to an instance:
P:RxR— (fR— R).
Corresponding to every prototype P is a function
Pslop‘. RXR—R
representing the time at which P(s, d) “finishes”. By
convention, instances of prototypes are defined on the
interval (s, Pswp s, d)]. Pswp makes it possible.to write
expressions representing sequential responses, as we shall
see in Section 2.3.

2.1. Shift and Scale

Standard transformations allow prototypes to be
transformed by shifting the time argument, or by scaling
the duration factor, resulting in a new prototype.

A prototype can be shifted in time using the shift (@)

notation. P @ x is a prototype defined by:

(P@x)s d) = P(s + xd, d)
Informally, the expression P@x means “apply P at x”.
Notice that the delay x is scaled by the implicit duration
factor. This scaling may seem a little confusing, but it
often simplifies nested expressions, as we shall see.

The duration factor can be scaled using the scale (~)
notation. P~x is a prototype defined by:
(P~ x)(s,d) = P(s, xd)

Thus, P~x means “an instance of P with duration scaled
by x”. Noticethat P@0 =P ~1=P.

Shift and scale expressions can be nested; let us look at
a few examples. The first example illustrates a nested
scale expression: ’
(P~x)~yXs 1) =
(P~x)s)) =
P(s, xp).
The effect is to multiply the nested duration factors. The
next example shows a shift  expression within a scale
expression:
(P@3)~s d =
(P@3)s yd) =
P(s + 3yd, yd).
Notice how the duration factor yd scales the shift amount
from 3 to 3yd.

2.2. Other Operations and Primitives

In addition to the scale and delay operations,
conventional operations including addition and
multiplication of instances are defined. For example, 3P
is an instance of prototype P multiplied by 3, and P+ Q is
an instance of P added to an instance of Q. We note that
the ability to operate on instances is an important part of
the model, but we will not dwell on the definitions of
operations in this paper.

Where do prototypes come from? We take prototypes
to be primitives in our model, but we would like to
suggest that prototypes can take several forms. First, a
prototype can represent a transformation of a function.
The function can be described or computed by a
programmer, or it can be a recording of a function in the
real world, such as a loudness contour of a musical
instrument, or the shape of a city skyline.

Further parameterization is a means of achieving

ICMC ’84 Proceedings



families of prototypes. For example, consider the set of
prototypes whose instances arc of the form ffy) =
sin(w(t-s)) over the range (s s+d]. We can imagine a
prototype called sin that takes a parameter (w) in addition
to the usual starting time and duration.? . A number of
useful parameterized prototypes can be imagined,
indicating that time and duration alone are not generally
sufficient as a parameter space for prototypes. However,
this does not necessarily indicate a problem in the model.
Making special cases out of time and duration allows us
to adopt a convenient notation in which these parameters
are often implicit. This makes sense because they are
almost universal among interesting prototypes. Other
parameters, like frequency, color, and texture are less
universal and are more conveniently handled as explicit
parameters.

2.3. Collections and Sequences

Up to this point, we have only considered prototypes
that yield instances that are real-valued functions. For
several reasons, we must extend the concept of prototype.
First, a response to an event may consist of a number of
parallel activities; we need some representation for
concurrency in our model. We will fill this need using
the concept of collections described below. Secondly, we
would like to be able to express a complex response to an
event in terms of simpler responses. This leads us to
consider hierarchical descriptions in which a complex
prototype is defined in terms of other prototypes. In
Section 3, we will describe the programming language
Arctic, which is based on the model and allows
hierarchical descriptions of prototypes.

Collections are an extension of the concepts of
prototypes and instances. A collection prototype is a
higher-order function with the same domain as a
prototype (time and duration factor), but whose range is a
set of instances, called a collection instance. A collection
prototype (hereafter referred to simply as a collection)

" can be thought of as a set of prototypes. An instance of
the collection is equivalent to the set of instances of the

2/\)tcrnativcly, we could introduce higher ordered functions (meta-
prototypes?) whose ranges arc prototypes. In this cxample, sin would
be a mew-prototype, sin(w) would be a prototype, sin(w)(s, d) an
instance, and sinw)(s, d)(¢) the vaiue of the instance at time £
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component prototypes, all with the same arguments. We
indicate collections by square brackets enclosing a list of
protolype expressions. For example, the following
collection C consists of three prototypes:

C=[P~x; P@S5;Ql
An instance C(s, d) is the set containing P(s, dx), P(s +
5d, d), and Q(s, d).

Just as every simple prototype P has a corresponding
stop time P, op & collection C may indicate a stop time
CS, op' The duration is indicated by including “end @ e”
in the list of expressions, where e is a constant, and C

is defined to be:

top

Coopfs @) = 5 + de, '
that is, the sum of the start time s and the product of th
duration factor 4 and the indicated constant e. For
example, if C = [Q; P @ 2; end @ 5], then Cmp(o, 2) =
10. Think of C as starting at time 0 and ending at time 5,
relative to the implicit starting time (0), and multiplied by

the duration factor (2).

A sequence is a special form of collection that models a
sequence of events, We will denote a sequence by using
“|” as a separator in place of the semicolon used for
collections. For example:

[P~x|P@5|Q]

is a sequence. A sequence differs from a collection only
in the way instantiation is defined. In a collection, the
components are all applied to the same starting time, but
in a sequence, the components are applied to the stop
time of the previous component. A sequence can always
be rewritten as a collection; for example:

[PIQIR]..Y|Z] =

P,Q@P,;R@Q ;..;Z@Y |

The stop time of a sequence is that of the last element of
the sequence. In the previous example, the stop time of
the sequence is Z stop

Together with shift and scale, collections have some
nice algebraic properties, some of which are shown
below:

- Distributive Laws:
[P;Ql@: = [P@t;0@1
[P.Q]~d = (P~d;Q~d
[PI1Ql~d = [P~d|Q~d
Associative Laws:
([P:Ql:R] = [P;[Q;:R]l
(PI1QIIR] = [PIICIR]



Commutative Laws:

[P; 0l = [Q:; A
(r@x@y = (P@y) @x
P~x)~y = (P~y)~x
Identity Laws:
' P@0 = P
P~1 = P

2.4. Discussion of the Model

The model can be used to specify the responses of a
real-time system to events which may be either
synchronous or asynchronous, and either continuous or
discrete. We consider a real-time system to have two
forms of input or output: continuous and discrete. A
continuous input or output is a time-varying value, which
corresponds to an instance in the model. For example, if
the instance X represents a continuous input, then we can
write the expression (@X + b) which depends on input X,

A discrete input or output is an event that carries no
information except for its name and its time of
" occurrence. Events are modeled by the instantiation of a
prototype, where the time of the instance is the physical
time of the corresponding event, and the implicit
duration factor is (arbitrarily) taken to be equal to 1.

The total input to a system can be written as a
collection. For example, suppose we have a system that is
controlled by a pointing device and two buttons labeled A
and B. The pointing device generates two functions, X
and Y, which correspond to the position of the pointer at
any point in time, and the buttons are associated with
prototypes named A4 and B. Furthermore, suppose that
button A is pressed at times 2 and 5 and that button B is
pressed at time 6. Then a collection describing this input
s[X; Y;A@2 A@5; B@ 6]. In Section 3, we will
describe a language that allows the specification of the
system response to such an input. '

The model borrows from the GROOVE system {9], in
that behavior is represented as the combination of
functions of time, and new behaviors can be created by
combining and modifying functions. The model is also
indebted to the 4CED program (1}, in which actions can
be triggered by events, and in which timing is notated
explicitly. In the model, however, there is no notion of
sequential execution or state. Instead, the time at which a

function takes on a given value, or the time at which some
function starts is specified through expressions that give
complete timing information; thus, there is no need for
imperative-style commands that must be executed in
sequence. Assignment in the traditional imperative
language sense is not defined because assignment implies
the existence of variables that can take on different values
at different points in the execution of a program. In
contrast, the model uses functions to denote time-varying
responses, and our resulting language will be of the
applicative, or functional style[2] as opposed to the
imperative style. The language Formes [4, 12] is intended
to solve the same problems of real-time control that we
address. In Formes, time-varying values are computed by
rules that are associated with objects. These rules are
invoked by a “monitor” program that walks a
“calculation tree” consisting of the currently active
objects. The data-structure is walked at intervals

" corresponding to the time resolution of the system.

Formes capitalizes on the abstraction facilities of its
underlying object-oriented programming language to
hide many of the details of the computation of functions. -
Interestingly, this allows Formes programs to take on a
declarative style.

While it may seem strange to abandon ‘the more )
sequential programming style for real-time control, there
are some good reasons for doing so, In a language in
which statements are executed in sequence, we are forced
to use the time domain to describe program behavior.
The programmer must take great pains to prevent
sequential execution from interfering with the real-time
behavior of his programs. The sequential nature of
procedural program execution forces the programmer to
pay attention to many implementation details that are
irrelevant to his overall task. On the other hand, our
model allows us to describe real-time behavior using a
language whose meaning can be understood outside of
the time domain. By “stepping-out” of the time domain,
behavior can be described in a more problem-oriented
fashion, but we must give up the notions of sequence,
assignment, and variables: these only make sense within
the time domain,

The model gives us powerful concepts of prototypes,
instances, and collections, but the model does not deal
with the problems of naming objects and building
hierarchical descriptions (programs). Using the model as
our basis, we now proceed to construct a language for
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describing real-time systems. The language allows the
definition of prototypes and collections in a structured,
hierarchical fashion. The language is called Arctic. It is
“poles” apart from previous process-oriented languages.

3. Arctic: An Applicative Language for
Real-Time Control

Arctic is a language for describing systems whose inputs
and outputs may be time-dependent and asynchronous.
The model presented above forms the basis for Arctic,
which includes facilities for combining and naming
objects in the model. - Arctic is an untyped language like
Lisp or APL, but its syntax has been influenced strongly
by Pascal. This is strictly a matter of taste, and a Lisp-like
or even a music-oriented syntax can be imagined.

The current version of Arctic is designed as an aid to
evaluating the model and the concept of applicative
languages for real-time control. Consequently, the
language specification omits a number of “features” that
might be desirable in a practical implementation, since
“features” often distract one’s attention from the central
issues. The design of Arctic is far from frozen! In order
to reduce the length of this presentation, we will
concentrate on the interesting aspects of Arctic and not
attempt to document a complete definition.

3.1. Preliminaries

An Arctic program specifies a system’s response to a set
of real-time inputs. This is accomplished by defining
prototypes and collections, some of which are instantiated
by external, real-time events.

An Arctic program is literally a string of tokens: spaces
and new lines serve as separators, but have no other
significance. As in other programming languages, but
unlike our notation for the model, a token can be
composed of multiple characters, and multiplication is
indicated explicitly by the symbol “*”. For example, XY
is an identifier, and X * Y represents the product of two
values.

In this paper, we will use italics for Arctic identifiers
and boldface for language keywords.
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3.2. Prototypes

A prototype is indicated by its corresponding identifier
or by a prototype expression. The following are examples
of prototypes:

Contour
Contour @ Delay
Contour ~ 2 @ Delay

Recall that an instance is an application of a prototype to
a particular time and duration factor. In Arctic, this
application can only occur as the direct or indirect result
of an external stimulus. The direct case occurs when a
programmer defines a prototype that corresponds to an
external event. The prototype is instantiated when the
event occurs. The indirect case is the result of a prototype
that is instantiated by another. For example, suppose
there is an external event called Key, and the programmer
writes the following definition:
Key causes [4 | B].

The event Key results in the direct instantiation of the
prototype Key, which in turn instantiates protoiypes A
and B. The particular names associated with various
physical events are system-dependent, but every system
includes the event Ge, which occurs when the real-time
system is started.

3.3. Variables

It is often convenient to refer to the same instance at
several points in a program. A variable is a reference to a
particular instance. Variables are defined using
assignment (indicated by “:="), and a variable may only
be assigned once. Thus, variables only vary in the sense
that they refer to time-varying functions; once defined,
their meaning is constant because no reassignment can
occur. (Perhaps definition is a more appropriate term
than assignment in the light of this single assignment rule,
We chose to use the term “assignment” for historical
reasons [11].) In addition to the use of variables to refer
to internally generated instances, variables are also used
to refer to external, continuous inputs and outputs. As a
simple example, an Arctic program to implement a linear
amplifier with gain control is:

Go causes [output := input * gain);

The variables input and gain are system inputs, and the
variable ouzput is the system output.

3.3.1. Sums and Products
A variable may also be defined as a sum or product of
expressions. The following assignments:

a+= b; a += ¢;
x.-y;x'-z;



are equivalent to:

a:=b+c
X = y* z;

However, the first form is useful when the number of
addends or factors depends upon the number of instances
at a given time. (We will illustrate this with examples
below.) Notice that @ += b is not equivalent to
a := a + b, which would violate our single assignment
rule, and would also present us with a recursive definition
of a.

3.3.2. Declarations .

Variables must be declared as ordinary (value), sums
(sum), or products (prod). In addition, the keywords
input and output may precede one of the three variable
keywords to indicate that the variable corresponds to a
system input or output. Here are some example variable
declarations:

input value amplitude, frequency,
output sum SignalOut;
prod Gain;

3.4. Prototype Declaration
The language provides a certain number of built-in, or

predefined prototypes which can be used within any

program. In addition to these predefined prototypes, new
prototypes can be created by combining other prototypes
in a prototype declaration. We will describe prototype
declaration by example.

(1) P(in X; out Y) causes

(2) [value

(3) Z = X *2;

(4) oZ) e 3

(5) Y :=Z + (sin(Z) ~ 15);
(6) end @ 15 1;

In line 1, the heading names the prototype (P) and
specifies a few parameters. The forms of parameter
specifications and their meanings are listed below (the
symbol x stands for a parameter identifier):

The effect is to declare a local variable
x and assign to it the value of the
actual parameter. Thus, an in
parameter is one that is passed ‘o an
instantiation.

inx

The effect is to declare a local variable
x. The value of x is assigned to the
actual parameter; hence, there must be

_out x

1

an assignment to x within the body of
the prototype. Thus, an out parameter
is one that is returned from an

instantiation.
sum x The actual parameter must be a sum
variable. The identifier x becomes a
local name for the actual parameter.
prod x Similar to sum x, for product (prod)

variables.

On line 2 begins the body of P, which is a collection.
The local variable Z is declared. Line 3 defines Z with an
assignment (:=). Line 4 is a prototype specification
which says apply Q@ (which we assume is defined

~ elsewhere) with parameter Z after a delay of 3. In line S,

an assignment is made to Y of an instance that is the sum

of Z and sin(Z). This line illustrates a predefined,

parameterized prototype sin. This prototype yields a sine

function with unit amplitude at the specified frequency,

Z. The sine function starts at the implicit starting time,

and its duration (but not frequency) is scaled by the
duration factor, 15. Finally, in line 6, the reference

duration of P is defined to be 1.

3.5. Parameter Passing

The semantics of parameter passing deserves some
further explanation. In particular, we wish to illustrate
what happens when we pass an instance as a parameter.
We will also illustrate the use of variables as references to
instances.

The general rule for parameter passing is: Parameters
to prototypes are always instances or scalars, and are not
themselves affected by any shifting or scaling that may be
applied to the prototype. Of course, instances are often the
result of applications of prototypes, which are subject to
both shifting and scaling. To illustrate this rule, let Ramp
be the prototype illustrated at the top of Figure 3-1, and
described by:

nY) = (- 9/d, where
r = Ramp(s, d).

And let Unit be a prototype illustrated at the bottom of
3-1, and described by:

() = 1fors<t<s+d and
u(1) = 0 otherwise, where
u = Unils d).

Notice that Unit can be used to “gate” an interval of a
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Ramp
14

T
s s+d

Unit
14

s s+d

Figure 3-1: The Ramp and Unit prototypes.

function; for example, Figure 3-2 illustrates the two

instances:

(Ramp ~ 3) * (Unit @ 0),and

(Ramp ~ 3) * (Unit 8 I).
In the figure, ¢ is the time of instantiation, 3 is the scale
factor applied to Ramp, and 0 and / are shifts applied to

" Unit (relative to 2).

(Ramp ~ 3) * (Unit @ 0)

14

T T T
t t+l t+2 t+3

(Ramp ~ 3) * (Unit 8 1)
14

0 T T T T
t t+1 t+2 t+3
Figure 3-2:

(Ramp ~ 3) * (Unit @ 0),
and (Ramp ~ 3) * (Unit @ I).

Now, let Gate be defined as follows:;

Gate(in f) causes
Loutput += f* Unir;
end @ /7;

This prototype causes an interval of the parameter fto be
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added to output. The interval is determined by the
implicit starting time and duration of the Unit prototype,
and these are inherited from the instantiation of Gate.
Consider the following program:

[value r;
r := Ramp ~ 3;
Gate(r) @ 03

This is equivalent to:
output += (Ramp ~ 3) * (Unit ¢ 0);
Similarly, the following two programs are equivalent;
[value r;
r = Ramp ~ 3;
Gate(r) @ 1]
output += (Ramp ~ 3) * (Unit @ 1);
Notice that the value of r is bound to f (the formal
parameter of Gate), and this value is independent of the
starting time of Gate. Finally, we present one more
variation, illustrating the importance of our use of the
variable rin the previous examples:
Gate(Ramp ~ 3) @ 1
In this example, the instantiation of Ramp is within the
scope of the shift operation, so the instance of Ramp
passcd to Gate is defined on the interval (¢ + 1, t + 4).
The output is illustrated in Figure 3-3.

Gate(Ramp ~ 3) @ 1

1]

T T T
t t+l t+2 t+3

Figure 3-3: Output produced by: Gate(Ramp ~ 3) @ 1

3.6. A Simple Application

We are now ready to write a simple real-time system.
To illustrate the power of Arctic, we will define a
computer-music instrument all the way down to the
signal-processing level. (In a more likely scenario, an
Arctic program would control special-purpose hardware
for music synthesis.) Let us first define a prototype FMI
that implements a simple FM instrument:

FM[(in freq) is
sin(freq + sin(freq*2) * MI)* AmpEnv;

The prototypes MI and AmpEny are prototypes for the

- modulation index and amplitude envelopes, and are not

defined here. The prototype sin(f) generates a sine
function with frequency f'starting at the implicit starting



time and with the implicit duration. Using FMI, we can
define a routine that plays a note:
play(in pitch) causes
{output + = FMI(PitchToFreg(pitch)) ~ 2};
When play is instantiated, it generates a note and adds it
to output. The function PitchToFreq is used to translate a
pitch number to frequency and is not defined in this
example. The duration of the note is (arbitrarily) scaled
to 2 seconds. If we connect output appropriately to a
loudspeaker, and instantiate play(20), we should hear a
- tone with pitch corresponding to pitch number 20. Let us
extend our program so that we can perform from a
keyboard. We assume that we have a keyboard interfaced
to our Arctic system and that pressing a key instantiates
the prototype KeyDown(i), where i is the number of the
key. The prototype KeyDown is defined as follows:
KeyDown(in i) causes [play(i + offser));

The operation of the program is as follows: whe'ne_ver a
key is pressed, an instance of KeyDown is created, which
in turn instantiates play. The value offset is added to i to
effect a transposition. Play then creates an instance of
FMT and adds the resulting signal to owtput, which causes
an audio output. If two keys are pressed at once, we get
two instances of each of our prototypes, and two
independent and concurrent signals are added to the
output. The reader may have noticed that there is no way
in this simple example to stop a note once it has begun.
The problem is that information can only be passed to an
instance in one of two ways: by passing parameters at the
point of instantiation, or by assignments to global
variables that are used by the prototype. There is no
convenient way to say “hold this note until the key is
released”. In the next section, we present new language
mechanisms that allow us to express this sort of response
to asynchronous events.

4. Asynchronous Events

It must be possible to define prototypes whose
responses are altered by discrete events that occur after
instantiation. For this purpose, we add a new language
construct:

P until C then Q

where P is a prototype, C is a condition, and Q is another
prototype. The effect of this prototype is as follows.
First, P is instantiated at the implicit starting time, If C
becomes true before the duration of this instance of P has
elapsed, then the instance of P and all instances created
directly or indirectly by P are terminated. At this time, Q

is instantiated. We will now define what we mean by a
condition and termination.

4.1, Conditions
A condition is a time-varying boolean expression. For

example, if X, Y, Selector, and R are functions of time
(they may be instances or variables), then the following
are conditions:

X>Yand(Y>=0)

(Selector = STOP) or (R > 100)
A condition may also include terms that are syntactically
similar to a prototype heading; for example:

event Panic()

event KeyUp(in /) and (i = 23)
These terms are true at the instant of time wheén the
prototype is instantiated; if the prototype has in
parameters, then they are passed to the condition
expression as if the expression were the definition of the
prototype. The keyword event indicates that we are
waiting for an event to cause an instance of the named
prototype. (If event is omitted, the expression would
denote the value of a new instance of the prototype as

" usual)

4.2. Termination

To terminate an instance at time ¢, we want not only to
ignore the value of the instance after time ¢, but also to
disable its effect on sum and prod variables either directly
or indirectly. To describe this formally, we add a third
implicit parameter, called terminate, to each prototype,
and define all Arctic primitives (the building blocks of
Arctic programs), such as unit and ramp, to terminate
their response at the time indicated by terminate
whenever it is less than the normal stop time. The
terminate parameter is inherited just like the starting time
and duration factor, and it can be modified only by until
expressions. Otherwise, the termination time is inherited
by all subexpressions of an expression, giving termination
the desired properties. ‘

4.3. Example

Let us modify our previous example to turn off notes
quickly when a key is released. First, FM/ is modified to
take an amplitude contour as a parameter:

FMI(in freq, env) is
sin(freq + sin(freq*2) * MI) * env;, .

To accomplish our goal, we will generate an amplitude
contour that has an initial part while the key is down, and
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a final part that commences when the key is released.
The overall contour must be continuous at the transition
from the initial to the final parts. We assume a suitable
final envelope prototype called AmpFinal, and all
instances of AmpFinal have an initial value of 1.

The following program plays a note until the release of
the key indicated by KeyNumber:
play(in pitch, KeyNumber) causes
[value E; _
E := AmpEnv until
(event KeyUp(in i) and / = KeyNumber)
then AmpFinal * E(start);
output + = FMI(PitchToFreq(pitch), E) ~ 2
The variable E gets the amplitude envelope from
AmpEnv until the event KeyUp(KeyNumber). At that
time, E is terminated and AmpFinal * E(start) is
instantiated. In this prototype expression, E is a function
. of time (an Arctic variable), so E(start) is the value of E at
the time start; start is a keyword which always denotes
the implicit starting time of the current prototype. In this
case, start is the point in time at which AmpEnv is
terminated and at which AmpFinal is instantiated. This
insures that E is a continuous function. (Recall that the
initial value of an instance of AmpFinal is 1) The
envelope E is passed to FMT and the resulting signal is
added to output. The instance of FMT is scaled somewhat
arbitrarily to 20. The precise response of FMI and the
duration of the note will depend upon the prototypes
AmpEnv, MI, and AmpFinal, as well as the timing of
events KeyDown and KeyUp.

To complete our program, we must redefine KeyDow

to pass the key number to play: '
KeyDown(in i) causes [play(i + offset, 1)];

We have now written a program that implements a
polyphonic keyboard instrument. Pressing a key will
initiate a note with an amplitude contour governed by the
prototype AmpEnv. Releasing a key will terminate the
AmpEnv contour, and initiate an AmpFinal instance to
complete the amplitude contour.

5. Implementation of Arctic

We have been careful to avoid implementation
considerations in the design of Arctic; our goal has been
to stress elegance and clarity without concern for practical
~ matters. We expect the implementation of Arctic to be
both challenging and illuminating. Ultimately, we expect
our implementation research to lead us to the design of
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special-purpose architectures for highly parallel real-time
control.

Implementation of a prototype Arctic system was
completed in September 1983. This system did not run in
real-time and used hand-compiled Arctic programs
linked with a function-manipulation library to provide
graphic and audio output. We have recently completed
an interpreter for a large subset of Arctic. Again, the
system does not run in real-time. Instead, it reads an
Arctic program and a description of system inputs. The
system outputs are then computed and written to a file,
after which they may be displayed or used to control real-
time or software synthesis. We are presently designing a
real-time version of Arctic for the M68000 processor.

6. Summary _

We have outlined a new approach to the problem of
real-time control. Our approach is based on a powerful
model in which the primitive elements are functions of
time, and a simple notation is provided for manipulating
and combining time-varying functions. ‘Parts of the
model correspond directly to continuous and discrete
real-time inputs and outputs.

The model provides the semantic foundations for the
programming language Arctic, which extends the model
with declaration and naming facilities that allow the
construction of modular programs.  Arctic is an
applicative language, which implies no sequential
execution, no side effects, and inherent parallelism. We
know of no other applicative language that can
declaratively specify real-time system response or deal
with asynchronous events.

The applicative nature of Arctic is crucial, however. In
contrast to sequential programming languages, the
evaluation of Arctic programs is not time-dependent.
This makes it much simpler to manipulate values which
are time-dependent.

7. Conclusions
Several aspects of Arctic require more thought and

experiment. The use of starting times and durations is

just a first approach to the more general problem of
temporal alignment, and we would like to improve this
aspect of the model. Second, we would also like to see a
more clegant way to handle asynchronous inputs. At
present, asynchronous inputs can terminate an instance



and start another, but it is awkward to pass information to
the new one. Third, we have not dealt with arbitrary
transformations in the time domain. This would provide,
for example, a mechanism for implementing tempo
variations. Finally, Arctic must be extended with data
structures such as arrays and lists, in order to more easily
perform arbitrary computations.

We feel that the problem of real-time control is largely
a problem of language. To tackle the design and
implementation of complex systems, we must have a
powerful notation. By introducing such a notation, we
feel that Arctic makes a significant contribution to the
field of real-time control.
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