
Garnet
Comprehensive Support for Graphical,

Highly Interactive User Interfaces

Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden,

David S. Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal
Carnegie Mellon University

ser interface software is difficult
and expensive to implement.’ U Highly interactive interfaces are

among the hardest to create, since they
must handle at least two asynchronous in-
put devices (such as a mouse and key-
board), real-time feedback, multiple win-
dows, and elaborate, dynamic graphics.

The Garnet research project is creating a
set of tools to aid the design and implemen-
tation of highly interactive, graphical, di-
rect manipulation user interfaces. Garnet
also helps designers rapidly prototype dif-
ferent interfaces and explore various user
interface metaphors during early product
design.

Most graphical interfaces are created
using toolkits, collections of interaction
techniques (sometimes called “widgets” or
“gadgets”) such as menus, scroll bars, and
buttons. Examples include the Macintosh
Toolbox and Xtk for the X Window Sys-
tem. Unfortunately, these toolkits are often
difficult to use, since they contain literally
hundreds of procedures. Also, many tool-
kits do not help the programmer create the
most important part of the application -
the graphics that appear in the main appli-
cation window. In particular, the applica-
tion must handle all input events (expressed
at a low level as “the left mouse button
went down,” “the mouse is at (30,345),”
etc.), deciding which operation to perform
on objects and drawing objects with the

Garnet helps create
highly interactive user

interfaces by
emphasizing easy

specification of object
behavior, often by
demonstration and

without programming.

underlying graphics package (which usu-
ally supplies operations such as “draw-
line” and “draw-circle”). Furthermore,
modifying or creating toolkit items is usu-
ally difficult or impossible.

Higher level tools such as interface
builders and user interface management
systems] have not adequately addressed
these problems. A conventional interface
builder lets a designer graphically place
user interface components in a window,
thereby creating menus, palettes, and dia-
logue boxes. Examples include Next’s In-

terface Builder, Smethers Barnes’ Proto-
typer for the Macintosh, and UIMX for X
Windows. These programs let a designer
place only preprogrammed interaction
techniques in windows, and they usually
allow only a few parameters to be set.
Often, a designer will type the name of a
procedure to be called when the interaction
technique is executed. Designers cannot
modify or design the interaction techniques
themselves, and the interface builders do
not address application-specific graphics
at all.

A user interface management system
helps a designer handle the dialogue, or
sequencing, aspects of the user interface
- that is, what happens after each user
action. Such systems have generally not
addressed the creation of toolkit compo-
nents (menus, scroll bars, etc.) or the spec-
ification or management of application-
specific graphical objects (the contents of
application windows).

A number of features differentiate Gar-
net from other user interface tools, includ-
ing an emphasis on handling objects’ run-
time behavior (how they change when the
user operates on them) and on handling all
visual aspects of a program’s user inter-
face, including its graphics and the con-
tents of all application-specific windows.

For example, when creating an applica-
tion that lets the user manipulate boxes
connected by arrows (such as a graph edi-

November 1990 001R-91h2iYOil 100-0071$01 00 G 1990 IEEE 71

f Brad A . Myers) f i r a d Uander ZandenT

Figure 1. A simple boxes-and-arrows editor created with Garnet. An arbitrary
number of new boxes and arrows can be added, and their initial position is speci-
fied using the mouse. Any existing box or arrow can also be selected, changed in
position or size, and deleted. This entire editor was implemented in about three
hours using the Garnet Toolkit.

tor or project-planning chart - see Figure
l) , Garnet’s user interface builder lets the
designer draw the boxes and arrows and
demonstrate how they should respond to
the mouse. Menus, palettes, and dialogue
boxes can be generated automatically or
added graphically. Toolkits and interface

builders in other systems might help build
the menus and palettes, but they don’t let
the designer implement and manage the
boxes and arrows themselves. Designers
using those programs must code these ele-
ments directly using the underlying graph-
ics package and input device handlers.

Garnet Othello

comment3 I- Player 2’s m o y e

NixlGlmr

16x16

S t o p

Figure 2. An Othello game created with Garnet.

72

Typically, coding application-specific
graphics requires 10- 100 times more effort
than dealing with menus and buttons, S O

Garnet should save programmers signifi-
cant time.

This article provides an overview of all
parts of Garnet, which stands for “generat-
ing an amalgam of real-time novel editors
and toolkits.” Previous have
concentrated on individual aspects of the
system. (There is also a complete reference
manual for the Garnet Toolkit.6)

Garnet is entirely “look-and-feel inde-
pendent,” which means the designer can
either create user interfaces with an origi-
nal graphical appearance and behavior or
choose from a set of predefined appear-
ances and behaviors.

The system contains both low-level and
high-level tools. The low-level tools, called
the Garnet Toolkit, use a number of mech-
anisms to help implement user interfaces,
including a prototype-instance object sys-
tem, a constraint system (which allows
relationships among objects to be declared
once and then maintained by the system),
automatic graphical object updating (so
that the system refreshes the display when
objects change), and separate specification
of input handling from graphics.

Garnet’s high-level tools include the
Lapidary interface builder; the Jade dia-
logue box creation system, which automat-
ically creates menus and dialogue boxes
from a list of their contents; and the C32
spreadsheet for specifying complex con-
straints. Garnet is implemented in Com-
mon Lisp and uses the X Window System
through the standard CLX interface from
Common Lisp to X Windows. A version
for the Macintosh is also being developed.
Garnet is therefore portable and runs (so
far) on CMU, Lucid, Allegro, Harlequin,
and TI Common Lisps and on many hard-
ware platforms. Garnet does not use the
Common Lisp Object System (CLOS) or
any Lisp or X Windows toolkit (such as
Interviews,’ CLUE, CLIM, or Xtk).

Coverage

Garnet is designed to handle user inter-
faces that let users operate on graphic ob-
jects with the mouse and keyboard. Since
the objects often represent application data,
and since changes made on the screen to
the graphics are translated into changes to
the data, the user has the feeling he or she
is directly manipulating the data. Similar-
ly, the screen reflects changes the applica-
tion makes to the data, possibly in response

COMPUTER

to external events.
Garnet is suitable for

box and arrow diagram editors (see
Figure I) , like Macproject;
conventional drawing programs, such
as MacDraw;
icon manipulation programs, like the
Macintosh Finder;
graphical programming languages in
which computer programs are con-
structed using icons and other pictures,
such as a flowchart;
tree and graph editing programs, in-
cluding semantic networks. neural net-
works, and state transition diagrams:
board games, such as chess or Othello
(see Figure 2);
simulation and process monitoring
programs, in which the user interface
shows the status of the monitored sirn-
dat ion or process and lets the user
manipulate it :
user interface construction tools (we
implemented Garnet using itself); and
some forms of CAD/CAM programs.

Garnet does not have a significant text
editing component, but it does provide
small editable strings that rnight be used as
labels or fields in a table or dialogue box.

Garnet’s primary influence is Peridot,8 a
construction tool that lets users create tool-
kit items without programming. Peridot
lets nonprogrammers create many types of
interaction techniques, including most kinds
of menus, property sheets, buttons, scroll
bars, percent-done progress indicators.
sliders, and iconic and title line window
controls. Like Garnet, Peridot uses con-
straints. However, Peridot lacks a pro-
gramming interface and offers no way to
use existing toolkit items or create applica-
tion-specific graphic objects. (Many sys-
tems, including Thinglab9 and Apogee,*O
have used constraints: see the sidebar.)

Garnet’s Jade dialogue editor, which
automatically constructs dialogue boxes from
high-level specifications, was influenced
by the Interactive Transaction System.”

Xi11 Window System
or Macintosh

The Garnet Toolkit

Common Lisp

Garnet contains a number of different
components grouped into two layers. The
Garnet Toolkit (the lower layer) supplies
the object-oriented graphics system and
constraints, a set of techniques for specify-
ing the objects’ interactive behavior in
response to the input devices, and a collec-
tion of interaction techniques. Designers
using this layer must write procedures. The

C32 spreadsheet I
t

Jade dialog box
creation system

Lapidary graphical
interface builder

Widget set

I

Constraint system

KR object system

Operating system

1

High-level
Garnet tools

1
Garnet Toolkit

Figure 3. The structure of the Garnet system.

higher layer contains tools that let design-
ers draw pictures to show how the interface
should look and behave and to define parts
of the interface at a high level. These tools
automatically create code based on the
user’s specifications.

The toolkit itself is divided into several
components (see Figure 3):

an object-oriented programming sys-

- a constraint system.
a graphical object system,
a system for handling input, and
a collection of gadgets or widgets.

Using the X toolkit’s terminology, the
first four parts of the Garnet Toolkit are
intrinsics (the mechanisms supporting the
implementation) and the fifth is the widget
set (a collection of menus, scroll bars, etc.,
with a prespecified look and feel).

tem,

Object-oriented programming system.
Garnet’s object-oriented programming
system, called KR (for “knowledge repre-
sentation”), supports a prototype-instance
model for objects rather than the conven-
tional class-instance model used by Small-

talk and C++. A prototype-instance model
does not distinguish between instances and
classes; any instance can be a “prototype”
for other instances. All data and methods
are stored in“slots”(sometimes calledfields
or instance variables). Slots that are not
overridden by a particular instance inherit
their values from their prototypes. Actually,
KR does not distinguish between data and
method slots. Any slot can hold any type of
value, and in Common Lisp a function is
just a type of value. Slot names start with
colons and can contain any number of
printing characters (for example, :left, :in-
terim-selected, :obj-over).

An instance can also add any number of
new slots. Unlike conventional class-in-
stance models, this means that the number
of slots in each object is highly variable -
each object can have a different number of
local slots, depending on which properties
i t wants to accept as defaults and which it
wants to override. In fact, the number of
slots can change dynamically. Slots can be
explicitly removed from objects at any
time. If a program sets the value of a slot
that does not exist, then the slot is created
automatically. The advantage of this fea-

November 1990 73

ture is that it is easy to create slots to hold
local data. For example, if a rectangle’s
color represents an application tempera-
ture, the application can create an instance
of a rectangle and a slot in it called :temper-
ature. A disadvantage of this flexibility is
that compile-time or even runtime check-
ing of slot accessing and setting is impos-
sible, since all slot names are legal. Also,
since slots can hold any type of value, there
is no type checking at the KR level.

As an example of inheritance, assume
that a top-level rectangle prototype has

slots containing values for the rectangle’s
left, top, width, height, and color (see Fig-
ure 4). An instance using that rectangle as
a prototype will typically - but not neces-
sarily - override some of the values. A
programmer could create an instance with
a particular color and size, and then create
more instances of that instance (see Figure
4). If a prototype’s slot value changes, all
instances of that prototype that do not
override that slot immediately inherit the
new value. Similarly, if an instance’s slot
is removed, the corresponding slot of its

prototype will be used instead, if it exists.
All objects (prototypes and instances) can
be displayed on the screen.

The methods that implement messages
sent to the objects can also change dynam-
ically, which is not possible in convention-
al object systems like Smalltalk. In Garnet,
the designer need only assign a new proce-
dure to the appropriate slot; the new meth-
od will be used subsequently.

The prototype-instance model is more
dynamic and flexible than the familiar class-
instance model. A high-level tool such as

A constraints primer

Brad Vander Zanden and Brad A. Myers

Any large, complex application contains thousands of inter-
dependent relationships. For example, a graphical application
must deal with the relationships arising from laying out ob-
jects, displaying feedback for input operations, and keeping
views consistent with the underlying data they represent.
These relationships might include keeping text labels cen-
tered in boxes, making feedback objects follow the cursor
during a move operation, and setting the color of an airplane
icon according to whether a flight is early, on time, or de-
layed.

Constraints provide a convenient way to specify relation-
ships and have them automatically maintained at runtime by
a constraint solver. In contrast, a conventional programming
language requires the application to both specify the relation-
ships and do all the bookkeeping to maintain them. For exam-
ple, suppose that an arrow must stay connected to the center
of a box and that a label on the arrow must stay centered on
the arrow. In constraint programming, whenever the applica-
tion changes the box’s position or size, the constraint solver
automatically repositions the arrow and its label. In contrast,
a conventional language forces the designer to write code to
reposition the arrow and the label. This might not seem too
onerous a task, but when an application contains thousands
of such relationships, the bookkeeping needed to maintain
them increases so rapidly that adding new functionality to the
application becomes difficult, and the time required to debug
the changes also increases substantially.

In addition to simplifying the creation of an application and
increasing its robustness, constraints lend themselves to in-
cremental recomputation. When a user changes one or more
parameters in an application, or adds or deletes a number of
constraints, most of the existing constraints remain satisfied
and only a small number must be reevaluated. An incremen-
tal constraint-solving algorithm can automatically identify
which constraints must be reevaluated and limit its solving to
these constraints. Such an algorithm can be used with any
application written for that constraint system. In contrast, a
conventional language requires the designer to create a new
incremental algorithm for each application. Of course, a con-
ventional language also lets the designer take advantage of
any special characteristics of the application, so that he or

she can write a custom algorithm that might be faster than a
general-purpose constraint solver.

Types of constraints

Constraints can be either one-way or multiway. One-way con-
straints let the constraint solver change only one object in the
constraint to satisfy it; multiway constraints allow any object to
change. For example, the arrow in Figure 5 (in the main text) is
connected to the circle and the box by one-way constraints. If ei-
ther the box or the circle moves, the arrow also moves to resatis-
fy the constraints. However, if the arrow moves, neither the box
nor the circle moves -the constraints that tie the arrow to the
box or circle are violated or removed. If these constraints were
multiway, then the constraint solver would move the box or circle
when the arrow moved, thus satisfying the constraints.

Multiway constraints are obviously more powerful than one-
way constraints, but this increased expressiveness comes at a
price. One-way constraint solving algorithms only have to evalu-
ate constraints, making them simpler to implement and more effi-
cient than multiway constraint solvers that must also choose
which variable in a constraint should be modified.

Multiway constraints can also introduce ambiguity at the de-
sign level. For example, suppose we have the constraint A - B -
C = 0. If A changes, the constraint solver must choose whether
to change B, C, or both. In this case, we should adhere to the
principle of least astonishment - a user’s editing operation
should change the result in a way consistent with the user’s ex-
pectations.’,’ One approach to eliminate this ambiguity - con-
straint hierarchies2 - divides constraints into hierarchies or pri-
ority levels. The constraint solver then tries to satisfy as many
constraints as possible, solving the highest priority constraints
first, then the next highest, and so on. One issue that constraint
hierarchies do not address is how to specify that multiple values
should change (for example, when both B and C should change
when A changes).

Constraint solving

Constraints can be solved in either a lazy or eager fashion.
Lazy evaluation evaluates a constraint only if it affects a result

74

__

COMPUTER

the Garnet interface builder can display a
prototype on the screen and let the user edit
it. All instances of that prototype automat-
ically reflect these edits. For example, if a
designer changes the standard look and
feel of a menu prototype, all menus in the
system immediately change accordingly.
In most class-instance systems, changing
the class structure when instances exist is
either very expensive or makes the instanc-
es invalid.

A potential disadvantage of the proto-
type-instance model is that getting a slot's

value could require a search up the entire
inheritance hierarchy, since slots must be
inherited from the prototypes if they are
not present in an object. Garnet alleviates
this problem by keeping local caches of
inherited values. Another efficiency prob-
lem is that, since new slots can be added at
any time, a fixed storage scheme like a
structure or record cannot be used. Rather,
adynamic list of slot names and slot values
must be kept. Garnet addresses this prob-
lem by keeping the most commonly ac-
cessed slots in a Lisp record structure so

they can be accessed quickly, and by keep-
ing any new slots in a list.

The efficiency of Garnet's object sys-
tem is actually better than other Lisp object
systems, such as CLOS. For example, on a
Sun 3/60 workstation running Allegro
Common Lisp, the simplest slot accessing
function takes 49.8 microseconds in Port-
able Common Loops (an implementation
of CLOS). but only 27.3 microseconds in
KR. Creating an instance in CLOS (1 6,160
microseconds) takes about 15 times longer
than in Garnet (1,117 microseconds).

that the user requests; eager evaluation evaluates a constraint
immediately when values change. Thus, a lazy-evaluation sys-
tem can contain variables whose values are out of date. Lazy
evaluation avoids unnecessary work if relatively few values are
needed to compute the result the user requests. For example, if
portions of a drawing are off screen, they might not have to be
recalculated. However, lazy evaluation also introduces extra
bookkeeping, since the constraint solver must keep track of out-
of-date variables. In addition, lazy evaluation can result in potential
delays when the values of out-of-date variables are demanded. Lazy
evaluation is most effective in applications where the user wants to
view only a limited portion of the application's data and where
changes are occurring to all parts of the application's data. Oth-
erwise, eager evaluation is preferable, since it is conceptually
cleaner than lazy evaluation (everything is always up to date).

Constraint systems

Examples of graphical systems that use constraint technology
a b ~ u n d . ~ Sketchpad4 pioneered the use of graphical constraints
in a drawing editor in the early 1960s. Thinglab' took constraints
a step further and introduced them into the realm of graphical
simulation, More recently, Thinglab has been refined to aid in the
generation of user interfaces.2 Both Sketchpad and Thinglab pro.
vide multiway constraints. However, most user interface devel-
opment systems use one-way constraints because of their sim-
plicity and efficiency; Grow,5 Peridot,6 and Apogee7 are three
examples. Grow was the first comprehensive user interface de-
velopment system to use constraints. Peridot was the first to try
to infer constraints. Apogee was the first to employ lazy evalua-
tion. Constraint8 provided a user interface development environ-
ment that used multiway constraints and introduced a new con-
straint-solving algorithm that made multiway constraints efficient
enough to be solved in real time.

The Garnet way

Garnet currently provides one-way constraints and uses lazy
evaluation. Whenever a user changes a variable, all constraints
that directly or indirectly depend on that variable are marked as
out of date. When a user requests the value of an out-of-date

variable, the constraint solver demands the values of all vari-
ables that this constraint depends on. If these variables are
out of date, their constraints will in turn be evaluated, and so
on. Eventually, the constraint solver reaches variables whose
values are either atomic (that is, not computed by a con-
straint) or up to date, at which point the constraint solver can
work its way back to the originally requested variable.

Future versions of Garnet will probably provide a limited
form of multiway constraints and eager evaluation. We have
found that almost all constraints in interfaces created with
Garnet have to be reevaluated when the display is updated;
thus lazy evaluation does not avoid the evaluation of enough
constraints to justify the increased bookkeeping it requires.
Also, the preliminary design for the new multiway algorithm
seems to be very efficient.

References

1. A. Borning, "The Programming Language Aspects of Thinglab: A
Constraint-Oriented Simulation Laboratory," AGM Trans. Pro-
gramming Languages and Systems. Vol. 3, No. 4, Oct. 1981, pp.
353-387.

2. B.N. Freeman-Benson, J. Maloney, and A. Borning, "An Incre-
mental Constraint Solver," Comm. ACM, Vol. 33, No. 1, Jan.

3. A. Borning and R. Duisberg, "Constraint-Based Tools for Building
User Interfaces," ACM Trans. Graphics, Vol. 5, No. 4, Oct. 1986,

4. I.E. Sutherland, "Sketchpad: A Man-Machine Graphical Commu-
nication System," AfIPS Spring Joint Compufer Conf., 1963, pp.

5. P. Earth, "An Object-Oriented Approach to Graphical Interfaces,"
ACM Trans. Graphics, Vol. 5, No. 2, Apr. 1986, pp. 142-172.

6. B.A. Myers, Creating User Interfaces by Demonstration, Academ-
ic Press, Boston, 1988.

7. T.R. Henry and S.E. Hudson, "Using Active Data in a UIMS,"
Proc. ACM SIGGraph Symp. User Interface Software, Oct. 1988,

8. B. Vander Zanden, "Constraint Grammars - A New Model for
Specifying Graphical Applications," Proc. Conf. Human factors in
Computing Systems (SIGCHI 69), Apr. 1989, pp. 325-330.

1990, pp. 54-63.

pp. 345-374.

329-346.

pp. 167-178.

November 1990 75

Rectangle
Left: 0
Top: 0
Width: 10
Height: 10
Color: black

3
My Rectangle

Width: 50
Height: 60
Color: gray

A
Rectl Rect2

Top: 200 Left: 300
Extra: “foo” Top: 100

Width: 80

Figure 4. Inheritance in a prototype-
instance model. Rectl and Rect2 are
instances of MyRectangle, which is an
instance of Rectangle. MyRectangle in-
herits the left and top of Rectangle.
Rectl inherits all the values of
MyRectangle except top, which it over-
rides. It also adds a new slot. If the left
of Rectangle changes, then the lefts of
MyRectangle and Rectl immediately
change also. Even though they may be
prototypes for other objects, all of
these are “real” objects in that they
can he displayed on the screen.

Constraint system. A constraint is a
relationship among objects that is main-
tained when any of the objects changes.
Constraints are a natural way to express
common relationships in graphical user
interfaces. For example, in an editor that
supports boxes attached by arrows, the
designer could specify a constraint that the
arrows must stay attached to the boxes.
Then, when the boxes are moved by a
program or the mouse, the system automat-
ically moves the arrows as well. (The side-
bar discusses constraints and their imple-
mentation in more detail.)

Coral’ was an early version of Garnet’s
constraints, but it was abandoned because
it wasn’t fast or flexible enough. Con-
straints are now integrated with the KR
object system.

Constraints in Garnet are arbitrary Com-
monLispexpressions, stored in object slots.
When a program accesses a slot, it cannot
tell whether the slot contains a simple val-

I
(create-instance ’myline arrow-line

(:XI (formula (gv circlel :right)))
(:yl (formula (gv circlel :center-y)))
(:x2 (formula (gv box1 :left)))
(:y2 (formula (gv box 1 :center-y))))

Figure 5. The line stays attached to the box and circle even when they move. Be-
low the graphic is the code to define the constraints on the line.

ue (like a number) or a constraint that
calculates the value. Within constraints,
references to other objects’ slots use the
form “(gv other-object slot-name),” where
“gv” stands for “get value.” Whenever the
value of the referenced slot changes, the
formula is reevaluated. For example, the
code in Figure 5 could be used to keep an
arrow attached to two objects.

These formulas are one-way constraints;
if the other object changes, the object with
the formula is reevaluated, but not vice
versa. For example, when the circle or box
in Figure 5 moves, the line also moves;
however, if the line moves, the circle and
box do not move. This type of constraint is
also used in Peridot,8 Apogee,“’ and many
other constraint-based user interface sys-
tems. As a special case, Garnet can handle
cycles in the constraint dependencies (so
object A can depend on B , and B can de-
pend on A) , in which case Garnet goes
around the loop exactly once.

Other systems have used more powerful
multiway constraints, which we might add
to Garnet later. The primary advantage of
the current scheme, however, is that con-
straint evaluation is very efficient. Garnet
can reevaluate more than 3,500 constraints
per second on the IBM RT PC implemen-
tation, which means that many objects with
dozens of constraints can be updated in
real time as objects are dragged with the
mouse. Of course, Garnet ensures that for-
mulas whose values do not change are not
reevaluated, so user interfaces can contain
many thousands of constraints.

An interesting and novel feature of Gar-
net’s constraints is that the object refer-
enced in the constraint can be accessed
indirectly through a variable. For example,
a feedback object in a menu might be con-
strained to be the same size as whatever
object i t is on top of. A slot would hold the
object that the feedback should appear over.
Whenever this slot changes, Garnet auto-
matically reevaluates the formulas that
depend on the slot, thus moving the feed-
back object. To make indirection easy, the
gv function can be passed a list of slots to
use as indirect references. For example,
(gv :SELF :other-obj :left) means: “Look
in this object’s :other-obj slot. The contents
of the slot will be another object. Go to that
object and get its left.” Since this form is
common, (gv-indirect . . .) can be used
instead of (gv :SELF. . .).

As an example of indirection, the re-
verse video rectangle in Figure 6 moves
whenever the value of the :obj-over slot
changes. This mechanism lets designers
keep the input-handling specification in-
dependent of the graphics. For example,
the interactor object that handles menu
behavior (described in the “Input handling”
section) simply sets the :obj-over slot to
the object that the mouse is over, and the
constraints ensure that the graphics that
handle feedback change appropriately. The
interactor does not need to know anything
about the appearance of the graphics.

Because any slot of any object can con-
tain constraints, the use of constraints in
Garnet is not limited to the position and

76 COMPUTER

size of graphical objects. Constraints are
used throughout the system to control many
kinds of behaviors. For example, a con-
straint can be used to set the mode to
determine whether an object will change
size or grow based on which mouse button
is pressed:

(:grow-the-object
(formula (eq (gv-indirect :which-button)

:rightdown)))
; grow if'righr button is pressed,
: otherwise m o w

Constraints can also be used to connect
graphical objects to application-specific
objects. For example, the value of a gauge
displayed on the screen could be constrained
to a temperature data value in the applica-
tion.

Graphical object system. Opal, Gar-
net's graphical object system, is designed
to make creating and editing graphical ob-
jects easy. Opal provides default values for
all object properties, so simple objects can
be drawn by specifying only the necessary
parameters. For example, to create a rect-
angle at (10,20) with size 30 by 40, a
designer need only write:

(create-instance 'myrect rectangle
(:left 10) (:top 20) (:width 30)
(:height 40))

The object system is integrated with the
constraint system, so that any object property
can be specified with formulas instead of
numbers, as shown in the code in Figure 5 .

Opal also automatically handles object
drawing and erasing. If any object property
changes, Opal automatically refreshes the
screen and redraws that object. If that ob-
ject overlaps others on the screen, Opal
ensures they are also redrawn correctly
(see Figure 7). In addition, if the modifica-
tions change other objects due toconstraints,
these other objects are also redrawn auto-
matically.

Rather than simply redrawing all the
objects, Opal tries to minimize the number
of objects that are erased and redrawn. This
is very important for complex scenes. For
example, moving one object through a
window containing 200 other objects takes
25.6 milliseconds per move (39 moves per
second) rather than the 568 milliseconds
(1.76 moves per second) i t would take if
Opal redrew all the objects.

Because Opal knows where all objects
are, it can also handle window refresh
(when the window is uncovered). Opal's

~~~~ 

Computer 

Byte 

CACM 

IEEE Spectrum 

Computer 

Byte 

IEEE Software 

IEEE Spectrum 

[create-instance 'feedback-box Rectangle 
(:obj-over NIL) ; The object that should be 

; highlighted 
(:visible (formula (gv-indirect :obj-over))) ; I am visible ifthere is an object 

; in :ohj-over 
(:left (formula (gv-indirect :obj-over :left))) ; The size and position is the same 

; as whatever- I am over 
(:top (formula (gv-indirect :obj-over :top))) 
(:width (formula (gv-indirect :obj-over :width))) 
(:height (formula (gv-indirect :obj-over :height))) 
(:draw-function :xor)) ; XOR this rectangle 

Figure 6. Setting the :obj-over slot of the feedback-box rectangle makes it appear 
over that object because of the constraints on the size and position. 

clients never have to worry about the win- 
dow system's refresh events. In fact, Opal 
and the interactors completely hide all 
window system functions. 

To make an object appear in Opal, the 
designer only has to add it to an Opal 
window. Removing the object from the 
window makes the object disappear. To 
change an object's color or size, the de- 
signer sets the appropriate slots. There- 
fore, the programmer never calls the draw 
or erase methods on objects directly; these 
methods are only called from internal Opal 
routines. In this respect, Opal departs sig- 
nificantly from other graphical object sys- 
tems. 

An important aspect of Opal is its ability 
to group graphical objects into collections 
called aggregates. When an aggregate is 
used as a prototype, its instances contain 
copies of the entire collection of objects. 
Thus, there is an instance for each compo- 
nent of the aggregate as well as for the 
aggregate itself (see Figure 8). Changes to 
the aggregate are immediately reflected in 

I B 

E 

Figure 7. Opal lets graphics overlap 
opaquely and automatically refreshes 
damaged parts. If C is erased, B, D, 
and E will need to be redrawn. Opal 
uses a clipping region so that only the 
parts of B, E, and D that overlap C are 
affected, and so that A does not have 
to be redrawn. B is drawn with the OR 
drawing function, E is drawn with 
XOR, and the others are drawn with 
COPY. 

November 1990 77 



D 
‘ E  

Agg2 

Labe l  

F 

Figure 8. A, B, and C are components of the aggregate Aggl. Making an in- 
stance of Aggl automatically makes instances of each of its components. The 
dark lines are component links, and the arrow lines are instance links. If Aggl 
or any of its components change, Agg2 and its components would change auto- 
matically. 

(a) 
..................... 

(b) 

(create-instance ’colorlist AggreList 
(:left 150)(:top 10) 
(:Item-Prototype My-Roundtangle-Prototype) 
(:Items ‘(“Yellow” “Orange” “Magenta” “Green” “Blue” “Red”)) 
(:direction :horizontal) 
(:h-align :center) 
(:rank-margin 3) 
(:fixed-width-p T)) 

; Center the objects in the field 
; Go to next line after 3rd object 
; All fields have same width 

(Cl a ,ij ::...... ............................... 

Protogpe 
://:: ................................... ::? 

Figure 9. A prototype for the menu items (a) and a two-dimensional aggrelist us- 
ing instances of that prototype for each element (b). The actual code to display 
the menu is shown in (c). If the prototype is subsequently edited to add a drop 
shadow and change the font (d), all instances immediately inherit the new values 
and structure (e). 

all instances, including when components 
are added or deleted from the prototype, in 
which case the corresponding components 
are immediately added or deleted from all 
instances. Previous implementations of the 
prototype-instance model have not support- 
ed such structural changes to instances. 

As an example, consider a graphical tool 
that lets the user design menus. The user 
might draw a prototype button (Figure 9a) 
and then create many instances of that 
button in the interface (Figure 9b). If the 
prototype is subsequently edited -perhaps 
to add a drop shadow and change the text 
font (Figure 9d) - Opal insures that all 
instances immediately inherit the changes 
(Figure 9e). This requires that Opal add a 
new object for the shadow to each instance. 

Of course, each instance can override 
any of the slots, making it easier to build 
prototypes for complex, composite objects 
like menus and scroll bars. The prototype 
contains example values for slots (like the 
text strings in the menu), and the instances 
override these values. 

A special form of aggregate is an ag- 
g r e h t ,  which is used to lay out a list or 
table of elements. An aggrelist contains a 
single prototype for all the elements, and 
each element uses a different value for 
some value of that prototype. For example, 
menus are usually implemented as an ag- 
grelist with a single prototype for the items 
but with a different string value displayed 
in each item. The prototype in Figure 9a is 
an aggregate containing the two rounded 
rectangles (one grey and one white) and the 
example string “Prototype.” Aggrelists al- 
low the items to be displayed horizontally, 
vertically, and in multiple rows, or the 
programmer can specify a layout (as for the 
gauge labels shown later in Figure 12f). 
We are also working on the implementa- 
tion of aggregraphs and aggretrees to lay 
out graphs and trees. 

Input handling. One of the most diffi- 
cult tasks when creating highly interactive 
user interfaces is handling the mouse, key- 
board, and other input devices. Window 
managers and user interface toolkits typi- 
cally provide only a stream of device-de- 
pendent mouse positions and keyboard 
events, and they require that the program- 
mers handle all interactions themselves. 
Garnet provides significantly more help 
through the use of interactors, which are 
encapsulations of input device  behavior^.^ 

There are few distinct behaviors in user 
interfaces. For example, although graphics 
can vary significantly and the specific mouse 
buttons can change, all menus operate in 

78 COMPUTER 



essentially the same manner. Another ex- 
ample is the way objects move when being 
dragged with the mouse. The interactors 
capture these common behaviors in a cen- 
tral place while still allowing a high degree 
of customizing by application programs. 

Other advantages of the interactors are: 

They are entirely look independent; 
any graphics can be attached to a particular 
feel (see Figures 10 and 11). 

They let designers separate the details 
of object behavior from the application and 
the graphics (long a goal of user interface 
software design). 

They support multiple input devices 
operating in parallel. 

They let users operate on any of a 
number of different applications running 
in separate windows in the same Lisp pro- 
cess and same address space, thereby 
supporting a form of multiprocessing. 

Opal and the interactors hide the com- 
plexities of X Windows graphics and event 
handling, making Garnet easier to use than 
X Windows and allowing Garnet to be 
ported to other graphics packages, such as 
Macintosh Quick Draw or Display Post- 
script, without changing Garnet applica- 
tions. 

There are only six types of interactors in 
Garnet, and these cover all the kinds of 
interactions used in graphical user inter- 
faces: 

Menu-Interactor. For choosing one or 
more items from a set, or for a single stand- 
alone button. 

Mo~,e-GioM~-lnter.actor. For moving or 
changing the size of an object or one of a 
set of objects using the mouse. This inter- 
actor can be used for one- or two-dimen- 
sional scroll bars and horizontal and verti- 
cal gauges, and for moving or growing 
application objects in a graphics editor. 

New-Point-Interactor. For entering one, 
two, or an arbitrary number of new points 
using the mouse; for example, for creating 
new lines or rectangles in an editor. 

Angle-Interactor. For calculating the 
angle at which the mouse moves around 
some point. It can be used for circular 
gauges or for rotating objects. 

Trace-Interactor. For capturing all the 
points the mouse goes through between 
start and end events, as needed for free- 
hand drawing. 

Text-String-Intel-rctor. For inputting a 
small (optionally multiline) string of text. 

Each interactor is parameterized in var- 
ious ways, so the programmer can control 
the mouse or keyboard events that make it 

24 

34 

75 

I 
Figure 10. The same type of interactor can handle different graphic looks. Here, 
move-grow-interactors for the indicators and menu-interactors for the arrow 
buttons handle scroll bars that look like those in the Macintosh, Open Look, 
Next, and OSFlMotif environments. 

start and stop and the optional application 
procedures to be called on completion. The 
most significant parameters, however, are 
the objects where the interactor operates 
and the (optional) objects to handle feed- 
back. Each type of interactor controls the 

graphics with a well-defined protocol. For 
example, the menu interactor sets the :obj- 
over slot of the feedback object. Therefore, 
to turn the list of items in Figure 9b into a 
menu using the feedback object from Fig- 
ure 6, we need only the following code: 

GARHET MENL Elm 

Basket Weame 

Mode is :  B i g  T e x t  S t r i n g  

Figure 11. The menu-interactor can handle menus with many different looks and 
feels. The items in (c) simulate floating by moving when the mouse is over them. 
The items in (e) change to italic when the mouse is over them; the final selection 
is bold. 

November 1990 79 



L e f t  s c r - t r i l l - p  

page- trr11-p Center 

m d i c a t o r -  tex t-p 

mt-feedback-p 

(e) 
Undo 4 

4 0  

30 1 
5 0  

1 160 

180 
Temp e rature 

60 000 
(0 

Title: 

Figure 12. Some of Garnet’s gadgets: (a) floating buttons, (b) a number slider, 
(c) a menu, (d) floating radio buttons, (e) floating check boxes, (0 a semicircular 
gauge, (g) an arrow-line, (h) a scroll bar, (i) a labeled text entry field, and ti) a 
number entry field. 

(create-instance ’color-selector 
menu-interactor 

(:start-where ’(:element-of colorlist)) 
; Colorlist is defined in Figure 9c 

(:feedback-obj feedback-box)) 
; Feedback-box is defined in Figure 
; 6 and M l i l l  appear over M3hichever 
; of the items the mouse is over 

The feedback can be a set of objects, for 
example, the selection handles in Figure 1. 
As shown in Figure 11, the feedback does 

not even have to be a separate object. 
Instead, some property of the object itself 
can change in response to the mouse. If the 
:feedback-obj is not supplied, the menu 
interactor sets the :interim-selected slot of 
the object the mouse is over and the :select- 
ed slot of the item the mouse ends up on. 
The menu in Figure l l c  has constraints 
that change the position of the object under 
the mouse, based on whether the value of 
:interim-selected is T or NIL (true or false). 
The menu in Figure 1 le decides whether to 

r! 
Figure 13. The graphics selection gadget shows control handles around the se- 
lected object. Pressing on a white handle moves the object, and pressing on a 
black one changes the object’s size. When a line is selected, only three control 
points are shown: the black ones change the end points and the white one moves 
the line, keeping the same length and slope. 

use a Roman, bold, italic, or bold-italic 
font based on the values of both :interim- 
selected and :selected. 

An important feature of interactors is 
that a single interactor can handle a set of 
objects. For example, there is a single in- 
teractor for each menu, rather than one for 
each menu item. Similarly, a single move- 
grow interactor can be used for an entire set 
of objects that can be moved with the 
mouse (as in Figure 1). The interactor will 
choose which object to move based on 
where the mouse button is pressed. 

The interactors are based on Smalltalk’s 
Model-View-Controller.” In Garnet, the 
application objects correspond to the mod- 
el, the Opal graphical objects correspond 
to the view, and the interactors correspond 
to the controller. In Smalltalk, however, if 
a programmer wants a new style of object, 
he or she usually has to write code for all 
three parts. In Garnet, programmers almost 
never need to create new forms of interac- 
tors, even for application-specific objects: 
it is sufficient to create an instance of one 
of the supplied types of interactors and 
then supply appropriate parameters to 
achieve the desired behavior. New types of 
interactors would be needed in Garnet only 
for radically different types of behaviors, 
such as gesture recognition or new kinds of 
physical input devices (such as a 3D joy- 
stick). Constraints in Garnet connect the 
models, views, and controllers. 

Gadgets. On top of Opal and the interac- 
tors is a collection of interaction tech- 
niques - called gadgets - that provide a 
starting point for applications. There are 
gadgets for menus, scroll bars, buttons, 
gauges, etc. Figure 12 shows some of the 
gadgets supplied with Garnet (more are 
being created). These can be used by de- 
signers who do not want their applications 
to have a custom look and feel. Most of the 
gadgets have a number of parameters to let 
designers vary many aspects of the appear- 
ance and behavior. 

In some toolkits, such as Xtk and Inter- 
views, each gadget is a window. This sig- 
nificantly limits what gadgets can do. In 
Garnet, however, gadgets are not windows, 
so there is a gadget, for example, that is a 
line with an attached arrowhead (Figure 
12g). An even more sophisticated gadget 
in Garnet handles object selection (see Fig- 
ure 13). It displays selection handles around 
the selected object and lets the user move 
or grow the object by pressing on the han- 
dles. Therefore, to support graphical ob- 
ject selection, adesigner using Garnet need 
only create an instance of an object-selec- 

80 COMPUTER 



abject: garnet-gadgets:SCROLLING-MENU 

Arrow-2023-2955 
a Top -Ar r owhead- 184 3 - 2 9 6 1 

Bot-Arrowhead-1861-2980 

Feedback-Ob]-3107 

Figure 14. A browser that will show either the components of an aggregate or the instances of a prototype. We created this 
with the Garnet Toolkit, and it can be used to debug Garnet code. 

tion gadget (assuming he or she finds the 
Garnet look and feel acceptable). 

Since creating new gadgets with Garnet 
is easy, we expect many designers to create 
their own gadgets rather than use the sup- 
plied ones. By using Lapidary (detailed in 
the next section) or by programming using 
Opal and interactors, programmers can 
create new styles of menus and buttons in 
minutes. 

Debugging tools. Defining user inter- 
faces with constraints and interactors is 
natural and effective, but it can be difficult 
to find bugs in the code. Since with con- 
straints, a bad value in one place can cause 
many different objects to have bad values, 
the effects of a bug are not local. 

Garnet provides a large and growing 
number of debugging tools to help with 
program implementation. These tools pro- 
vide tracing mechanisms to show how a 
slot got its current value, where objects 
are on the screen or why they are not 
visible, and what happens when the mouse 
or keyboard is used. The tools also provide 
extensive checking for legal values of 
graphics slots and convenient ways to 
inspect objects, including browsers (see 
Figure 14). 

The interface builder 
Lapidary. On top of the Garnet Toolkit 

layer are a number of tools to make creat- 
ing user interfaces easier. The most impor- 
tant is the Lapidary interface builder.4 
Lapidary provides a graphical front end to 
most of the underlying toolkit features, so 

that a program’s graphical aspects can be 
specified pictorially. In addition, the be- 
havior of these objects at runtime can be 
specified using dialogue boxes and by 
demonstration. 

In particular, Lapidary lets the designer, 
who does not have to be a programmer, 
draw pictures of application-specific 
graphical objects that the application will 
create and maintain at runtime. These ob- 
jects include the graphical entities the end 
user will manipulate (such as the compo- 
nents of the picture), the feedback showing 
which objects are selected (such as small 
squares that serve as handles on the sides 
and corners of an object), and the dynamic 
feedback objects (such as hairline boxes to 
show where an object is being dragged). 
The designer creates prototypes of the ob- 
jects in Lapidary, and the application pro- 
gram then creates instances of the proto- 
types as needed. 

In addition, Lapidary supports the con- 
struction and use of gadgets, such as menus, 
scroll bars, buttons and icons. Lapidary 
therefore supports both the use of a pre- 
defined library of gadgets and the defini- 
tion of new gadgets with a unique look and 
feel. Both types can even be combined in 
the same application. The designer can 
specify the runtime behavior of these 
objects in a straightforward way using 
constraints and abstract descriptions of 
their interactive response to the input de- 
vices. Lapidary generalizes from the spe- 
cific example pictures to let the designer 
specify the graphics and behaviors by 
demonstration. 

The designer can specify the behavior of 
objects in various ways. Graphical con- 

straints can be attached to objects using 
iconic menus (see Figure 15). If an object 
should move with the mouse, it can be 
selected and declared a feedback object. 
Lapidary will automatically generalize the 
constraints on the feedback object so that 
they refer to whatever graphical object the 
mouse is over. For example, in Figure 15b 
the check mark is constrained to the Stop 
button, but Lapidary generalizes this con- 
straint to use a variable (like the :obj-over 
slot of Figure 6) so that the check mark can 
appear next to any of the buttons. 

Also, if an object should change based 
on some user action, the designer can spec- 
ify this by demonstration. The designer 
draws one state, then another, and Lapi- 
dary automatically constructs the constraints 
to change the object between the two states. 
The menus of Figures 1 I C  and 1 le can be 
defined in this way. 

Consider how a designer might create 
the boxes and arrows for a graph editor. 
First, the designer draws a picture of the 
boxes, say, using rounded rectangles (Fig- 
ure 16a). Then, he or she creates an exam- 
ple text label and uses the iconic constraint 
menus to center it at the top (Figure 16b). 
This will serve as the prototype for the 
boxes the application will create, so the 
designer selects the entire group and saves 
i t  as a named prototype. Lapidary asks the 
designer for the object parameters, so the 
designer specifies the position and size 
of the box and the string for the label. 
Lapidary then writes this prototype to a 
file and defines it in memory (in case the 
application is running concurrently with 
Lapidary). 

Next, the designer creates a copy of the 

November 1990 81 



Choice ofltems Interactor 
Intexamor Name /othdo-mmu-mteractor 1 

Intenm Feedback 

(e 

Figure 15. Lapidary in action. The  work window (b) contains a prototype and three buttons made from it. The  check mark  
icon is the primary selection (indicated by black squares) and the center button is the secondary selection (indicated by white 
squares). The  iconic constraint menu (a) shows that the primary selection is constrained to be 10 pixels to the right of the 
secondary selection and centered by it vertically. Window (c) contains the main Lapidary commands. The  menus on the right 
determine the type of the next object to be created (f), the line style (d), and  the fill style (g). The  large window in the center 
(e) is a dialogue box for specifying the behavior of the menu being created; it shows that the check mark  icon will be the final 
feedback to show which item is selected when the left mouse button is pressed. This dialogue box was created using Jade. 

box, draws an arrow-line (Figure 16c), and 
uses the line constraint menu to specify 
that the ends of the line should be centered 
in the boxes (Figure 16d). Then the design- 
er selects only the line and saves it as a 
prototype. Lapidary notes that the proto- 
type has constraints to objects that are not 
being saved, so it asks the designer if the 
objects are to be parameters of the line 
prototype. The designer specifies that the 
parameters should be called from-obj and 
to-obj. Now the application can create in- 
stances of the lines, supplying the objects 
for the from-obj and to-obj slots, and new 
lines will appear in the application win- 

dow. The application knows nothing about 
the graphics used for the lines, and the 
designer did not have to write any graphics 
code. This entire design session takes about 
four minutes. 

Jade. It is sometimes easier to list the 
contents of a dialogue box or menu than to 
meticulously draw it. The Jade dialogue 
box creation system automatically creates 
a dialogue box or menu from a specifica- 
tion of its  content^.^ In addition to being 
simple to work with, the specification passed 
to Jade has the additional advantage of 
being independent of any particular look 

and feel. The textual specification has a 
Lisp-like syntax and lists only the string 
labels to appear in the dialogue box, the 
type of input required (such as the choice 
of one item of a set, or of a number in a 
range). When Jade is given a particular 
look and feel (Macintosh, Motif, Garnet 
standard, etc.), it can choose the correct 
interaction techniques, which themselves 
can be designed using Lapidary. The heu- 
ristic rules that determine the placement of 
various parts of the interface are specific to 
a particular look and feel. For example, the 
set of buttons that make a dialogue box go 
away (“OK,” “Cancel,” etc.) will be at the 

82 COMPUTER 



Figure 16. A sequence from the creation of application-spe- 
cific graphics for a graph editor using Lapidary: (a) draw- 
ing an example box, (b) centering the text label using the 
iconic menus, (c) drawing the arrow line, and (d) constrain- 
ing the second endpoint of the line to be centered in a box. 

- t o p  I 

I 

right for a Macintosh-like dialogue box 
and at the top for a Xerox Star-like one. 
Jade created the dialogue box in Figure 15e 
automatically. 

The heuristics for placing objects in di- 
alogue boxes attempt to create an attractive 
display based on graphic arts principles. 
If the designer is not happy with the dialogue 
box, however, he or she can edit it in 
Lapidary, adding decorations (such as ex- 
tra rectangles and lines) and moving parts 
around. These changes are saved in an 
exceptions file so they can be reapplied 
even if the original textual specification is 
edited and the dialogue box regenerated. 

C32 spreadsheet. Although many de- 
sired constraints can be specified using 
Lapidary’s iconic menus, designers occa- 
sionally need more powerful constraints. 
The C32 spreadsheet program in Garnet 
lets designers enter arbitrary Lisp con- 
straint expressions. It provides many of the 
advantages for graphics that financial 
spreadsheets provide for business. In par- 
ticular, C32 lets the designer monitor and 
debug interfaces by watching spreadsheet 
values while the user interface is running. 
It also provides extensible commandmenus, 
automatic generation of appropriate object 
references from mouse clicks in graphics 

windows, and automatic generalizations of 
example constraints so they can be used in 
multiple formulas. Figure 17 shows a typ- 
ical C32 session. 

he Garnet Toolkit is operational 
and has many local and external T users. More than 80 companies 

and universities are licensed to use Garnet. 
(Garnet is available free from Carnegie 
Mellon University. Designers interested in 
using Garnet should contact Myers at the 
CMU address listed after the biographies.) 
We are working to increase the toolkit’s 

November 1990 83 



I I 

I20 I 
:Width 

H: Height 

Formula for hYRECT2, left 

(+ ( g v  MYRECT1 left) 
10 

119. MYRECTl w i d t h ) )  

Figure 17. Viewing two objects in the Garnet C32 spreadsheet. At the top of the 
window is a set of pull-down menus. Each object has its own set of columns. The 
slot names of the objects are at the left of each column, along with the current 
values. If the value is computed by a formula, an icon with an “F” is shown. In- 
herited values are in italics and marked with a different icon. At the bottom is a 
formula display window for the selected slot. When the user clicks on a slot or an 
object in a graphics window, a reference to that object is inserted into the formula. 

functionality and performance and to find 
new ways to support the design and imple- 
mentation of application user interfaces. 
We hope the toolkit will be widely dis- 
tributed and used in the Common Lisp 
community. Lapidary is working but is not 
yet releasable. Jade is partially working 
and has been used to generate the Lapidary 
dialogue boxes. The C32 system is just 
now being implemented. 

We plan to work on allowing more of the 
interface to be specified by demonstration 
rather than through dialogue boxes and 
coding. For example, Lapidary could infer 
graphical constraints and mouse depen- 
dencies from the user’s drawing, in a man- 
ner similar to Peridot.8 We also hope to 
extend Garnet to handle other input and 
output technologies, such as physical dials 
and switches, speech input and output, and 
gesture recognition. 

Finally, we plan to provide a high-level 
graphical editor framework that provides 
many of the operations common in systems 
that let the user create and manipulate 
graphical objects. These might include 
support for a palette of object types; select- 
ing objects; changing object size, position, 
and other properties; deleting objects; au- 

tomatically laying out objects as a list, 
table, graph, or tree; saving and restoring 
objects to a file; printing; and undoing. For 
many programs, this subsystem will pro- 
vide most of the standard functionality, 
and designers will need to specify only the 
application-specific parts. 

Garnet has only been working for a short 
time, but it has already demonstrated that it 
makes the creation of graphical, highly 
interactive user interfaces easier. For ex- 
ample, in an informal experiment, creating 
a simple graphical editor like that in Figure 
1 took various people two to four hours 
with the Garnet Toolkit but 10-20 hours 
with other toolkits such as Apple’s MacApp 
and Sun’s Open Look. When Lapidary and 
the other high-level tools are released, we 
expect programmer productivity to increase 
even more. W 

Acknowledgments 
In addition to the authors, others who have 

helped design and implement Garnet include 
Pedro Szekely, Pavan Reddy, Jake Kolojejchick, 
and Lynn Baumeister. Amy Moormann Zarem- 

ski and Pedro Szekely were brave early users of 
the Garnet ‘Toolkit and helped us debug it .  Ber- 
nita Myers, Amy Moormann Zaremski and the 
referees provided helpful comments on this ar- 
ticle. 

This research was sponsored in part by the 
Defense Advanced Research Projects Agency, 
under contract F33615-87-C-1499, ARPA Or- 
der No. 4976, Amendment 20, monitored by the 
Avionics Laboratory, Air Force Wright Aero- 
nautical Laboratories, Aeronautical Systems 
Division (AFSC), Wright-Patterson AFB, Ohio 
45433-6543. 

References 

1. B.A. Myers, “User Interface Tools: Intro- 
duction and Survey,” IEEE S o f t u w ~ ,  Vol. 
6 ,  No. I, Jan. 1989, pp. 15-23. 

2. P.A. Szekely and B.A. Myers, “A User In- 
terface Toolkit Based on Graphical Objects 
and Constraints,” Proc. ACM Conf. Ohject- 
Oriented Programming, Systems LanguaR- 
es, antl,4pplicutions in SIGPlan Notices, Vol. 
23, No. 11 ,  Nov. 1988, pp. 36-45. 

3. B.A. Myers, “Encapsulating Interactive 
Behaviors,” Proc. Conj: Human Factors in 
Computing Systems (SIGCHI89), Apr. 1989, 
pp. 319-324. 

4. B.A. Myers, B. Vander Zanden, and R.B. 
Dannenberg, “Creating Graphical Objects 
by Demonstration,’’ Proc.  ACM SICGraph 
Symp. User Interface Software and Tech- 
n o h g y .  Nov. 1989, pp. 95-104. 

5 .  B. Vander Zanden and B.A. Myers, “Auto- 
matic, Look-and-Feel-Independent Dialogue 
Creation for Graphical User Interfaces,”Proc. 
Conf. Human Factors in Computing Sys- 
tems (SIGCHI 90),  Apr. 1990, pp. 27-34. 

6. B.A. Myers et al., “The Garnet Toolkit Ref- 
erence Manuals: Support for Highly Inter- 
active, Graphical User Interfaces in Lisp,” 
Tech. Report CMU-CS-90-117, Carnegie 
Mellon University, Computer Science De- 
partment, Mar. 1990. 

7.  M.A. Linton, J.M. Vlissides, and P.R. Calder, 
“Composing User Interfaces with Inter- 
views,” Compurer, Vol. 22, No. 2, Feb. 1989, 
pp. 8-22. 

8. B.A. Myers, Creating User Interfaces hy 
Demonstration, Academic Press, Boston, 
1988. 

9.  A. Borning, “Thinglab - A Constraint- 
Oriented Simulation Laboratory,” Tech. 
Report SSL-79-3, Xerox Palo Alto Research 
Center, July 1979. 

10. T.R. Henry and S.E. Hudson, “Using Active 
Data in a UIMS,” Proc. ACM SIGGraph 
Symp. User Interjace Softuare, Oct. 1988, 
pp. 167.178. 

84 COMPUTER 



1 I .  C .  Wiecha et al.. “Generating User Interfac- 
es to Highly Interactive Applications,”Proc. 
Cor$ Human Factors in Computrng Sys- 
t e m  (SICCHI 891, Apr. 1989, pp. 277-282. 

12. G.E. Krasner and S.T. Pope, “A Description 
of the Model-View-Controller User Inter- 
face Paradigm in the Smalltalk-80 System,’’ 
J .  Ohjec.r-Ori~ntrrlPio,~ia~in~iii,~, Vol. 1, No. 
3 ,  Aug. 1988, pp. 26-49. 

Roger B. Dannenberg is a research computer 
scientist at Carnegie Mellon University. His 
research interests include programming language 
design and implementation and the application 
of computer science techniques to the genera- 
tion. control, and composition of computer music. 

Dannenberg received a BA from Rice Univer- 
sity in 1977. an MS from Case Western Reserve 
University in 1979, and a PhD from Carnegie 
Mellon in 1982. He is a member of Phi Beta 
Kappa, Sigma Xi. Tau Beta Pi. Phi Mu Alpha, 
the ACM. SIGCHI. and the Computer Music 
Association. 

Edward Pervin is a research programmer at 
Camegie Mellon University, where he is work- 
ing on Garnet. Pervin received his MS and BSc 
degrees in mathematics from Carnegie Mellon. 

Brad A. Myers i \  a research computer scientist 
at Carnegie Mellon University, where he is the 
principal investigator for Garnet. His research 
interests include user interface development 
systems, user interfaces, programming by ex- 
ample, visual programming, interaction tech- 
niques, window management, programming 
environments. debugging, and graphics. 

Myers received the MS and BSc degrees from 
the Massachusetts Institute of Technology, and 
he received a PhD in computer science at the 
University of Toronto, where he developed the 
Peridot user interface management system. He 
is a member of the IEEE, the Computer Society. 
the ACM. SIGGraph, and SIGCHI. 

Brad Myers can be reached at the School of 
Computer Science, Carnegie Mellon Universi- 
ty, Pittsburgh, PA IS2 13-3890. Electronic mail 
can be sent to garnet@cs.cmu.edu. 

Dario A. Giuse is a senior computer scientist at 
Carnegie Mellon University. His research inter- 
ests include user interface development envi- 
ronments, constraint satisfaction. graphics, 
knowledge representation systems, tutoring 
systems for foreign languages. medical infor- 
matics, and interactive knowledge acquisition 
systems. 

Giuse received the Dr.Ing. degree (summa 
cum laude) in computer science from the Po- 
litecnico di Milano, Italy, in 1979. He is a 
member of the IEEE Computer Society, the 
ACM, the AAAI, and the Mathematical Associ- 
ation of America. 

Brad Vander Zanden is an assistant professor 
at the University of Tennessee and an active 
participant in the Garnet project. He was a post- 
doctoral fellow at Carnegie Mellon University 
for two years. His interests include user interface 
development systems. user interfaces, constraint 
systems, incremental constraint satisfaction. 
programming environments, and graphics. 

Vander Zanden received his BS degree from 
Ohio State University, and his MS and PhD 
degrees from Cornell University. He is a mem- 
ber of the IEEE, the Computer Society, the 
ACM, SIGGrdph. and SIGPlan. 

Andrew Mickish received a BS degree from 
Carnegie Mellon University, where he worked 
on the Garnet project as an undergraduate. He  
plans to enter graduate school to pursue interests 
in user interfaces and artificial intelligence. 

David S. Kosbie is a graduate student at Carn- 
egie Mellon University, where he is amemberof 
the Garnet project. His research interests in- 
clude user interface development systems, user 
interfaces. and methods for simplifying graphi- 
cal programming. Kosbie received the BA de- 
gree from Harvard University in 1987. He is a 
member of the IEEE and the Computer Society. 

Philippe Marchal is a member of the Human- 
Computer Interaction group of the European 
Computer-Industry Research Center in Munich. 
He is a former visiting scientist at Carnegie 
Mellon University, where he was a researcher in 
the Garnet project. His research interests in- 
clude user interfaces, user interface manage- 
ment systems, interaction techniques, human 
factors, graphics, and object-oriented program- 
ming. Marchal graduated from the University of 
Grenoble. France. 

November 1990 85 

mailto:garnet@cs.cmu.edu



