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Abstract

GID, for Gestural Interface Designer, is an experimental
system for prototyping gesture-based user interfaces. GID
structares an interface as a collection of ‘‘controls’’: ob-
jects that maintain an image on the display and respond to
input from pointing and gesture-sensing devices. GID in-
cludes an editor for arranging controls on the screen and
saving screen layouts to a file. Once an interface is
created, GID provides mechanisms for routing input to the
appropriate destination objects even when input arrives in
parallel from several devices. GID also provides low level
feature extraction and gesture representation primitives to
assist in parsing gestures.

1. Introduction

Gestures, which can be defined as stylized motions that
convey meaning, are used every day in a variety of tasks
ranging from expressing our emotions to adjusting volume
controls. Gestures are a promising approach to human-
computer interaction because they often allow several
parameters to be controlled simultaneously in an intuitive
fashion. Gestures also combine the specification of
operators, operands, and qualifiers into a single motion.
For example, a single gesture might indicate ‘‘grab this
assembly and move it to here, rotating it this much.”
Previous work on gesture based systems [1, 2, 6, 4, 12] has
only begun to explore the potential of gestural input. We
need a better understanding of how to construct gestural
interfaces, and we need systems that allow us to prototype
them rapidly in order to learn how to take advantage of
gestures. Our work is a step toward these zoals.

Building interactive systems based on gesture recognition
is not a simple task. As we designed and implemented our
system, we encountered several problems which do not
arise in more conventional mouse-bascd systems. One
problem is supporting multiple input devices, each of
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which might have many degrees of freedom. Unlike most
mouse-based systems which can only engage in one inter-
action at a time, our system supports, for example, turning
a knob and flipping a switch simultaneously.

Another problem is how to parse input into recognized
gestures, We assume that gestures are specific to various
interactive objects. For example, a switch displays an im-
age of a toggle on the screen and can be *‘flipped”’ by a
fingertip, but only if the finger travels across the image in
the right direction. In this case, finger motion must be
interpreted in the context of the interactive object, and a
path (as opposed to instantaneous positions) defines the
gesture.

Beyond these problems, we were also interested in making
our prototyping environment easy to use, modular and ex-
tensible. Thus, we have been concerned with the issues of
how to combine interactive objects in a screen-based inter-
face, how to edit the layout and appearance of the inter-
face, and how to encapsulate the behaviors of interactive
objects and isolate them from other aspects of the system.

A final issue is the question of debugging support to aid in
the implementation of new interactive objects. We use
input logging to make bugs more reproducible and a com-
bination of interpreted and compiled code to speed
development.

We have completed a system, named GID for Gestural
Interface Designer, in which one can interactively create
and position instances of interactive objects such as menus,
knobs and switches. One can interactively attach semantic
actions to these objects. GID supports input from both a
mouse and a free-hand sensor that can track multiple
fingers. We are far from having the ultimate gesture based
interface support environment, but we have developed in-
teresting new techniques that are applicable to future
gesture-based systems.

In section 2 we describe the structure of our prototyping
system, and section 3 describes the handling of input from
multiple devices. In section 4 we describe our general
technique for processing input in order to recognize ges-
tures. Section 5 describes in greater detail our develop-



ment techniques and the current implementation. Conclu-
sions are presented in section 6 along with suggestions for
future work.

2. The Interface Designer

This project extends an earlier effort called Interface
Designer, or ID. The goal of ID was to provide a small,
practical and portable system for creating screen-based in-
terfaces by direct manipulation. ID was inspired by Jean-
Marie Hullot’s work at INRIA, a precursor to Interface
Builder [5, 9]. A typical use of ID might be the following:
by selecting a menu item, the user creates an instance of an
object which displays a 3-D database. In order to manipu-
late the image, the user creates a few instances of sliders.
A short Lisp expression is typed to supply an action for
each slider, and labels of ‘‘azimuth’’, *‘altitude’” and
““pitch’’ are entered. Now, moving a slider causes a mes-
sage to be sent to the display object and the image is up-
dated accordingly.

The basic internal structure of ID introduces no significant
improvements over other object-oriented event-driven in-
terface systems such as MacApp [11] or Cardelli’s user
interface system [3]. It will be described here, however,
for clarity.

ID represents the screen as a tree of objects. At the root is
a screen object that contains a set of window objects. Each
window object may contain a set of control objects. One
type of control object is the control group, which serves to
collect a set of control objects into an aggregate. Other
types of control objects include sliders, buttons and
switches of various styles. (See figure 2-1.)
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Figure 2-1: An ID control object tree.

In addition to the hierarchy implied by this tree, there is
also a class hierarchy arranged so that classes can inherit
much of their behavior. (See figure 2-2.) The Input-
Control class encapsulates generic behavior of objects that
handle input from the user and manage some sort of image

on the screen, PictureControls, a subclass of Input-
Controls, actually draw images. These include classes
such as Switch and Slider. Another subclass of Input-
Control is ControlGroup, which implements the search for
an input handler. New interactive controls are typically
created by subclassing PictureControl or one of its sub-
classes. Output-only ‘‘controls’” have also been defined as
subclasses of Control. For example, class 3dPict draws a
wire-frame rendering of a 3-D data base which is loaded
from a file.
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Figure 2-2: Interface Designer class hierarchy.

In normal operation, ID has a single main loop that waits
for input and delivers it to the appropriate destination.
Each input event is represented by a window identifier, a
device type (e.g. mouse or keyboard), coordinates (if any),
and other data. This event is passed to the root of the tree
where a search for a recipient begins. Typically, each
node which is not a leaf node (a PictureControl) passes the
event to each of its children until one of them accepts the
input event.

To make this recursive search reasonably efficient, a Con-
trolGroup object rejects mouse input which falls outside of
its bounding box, and windows reject input unless the
event’s window identifier matches. Even with these op-
timizations, it is too inefficient to search the object tree
from the root for each mouse-moved event during a drag-
ging operation, Instead, a context mechanism is used.

In ID, the handler for input is found at the top of a conrext
stack. An object can grab future input events by pushing a
ncw contcxt onto the stack to dircct future input to the
object. For example, a dragging operation would start with
a mouse-down event that would be handled in the normal
way. Upon receiving the mouse-down event, the object
that handles the dragging operation pushes the context
stack and becomes the target of future input. All succes-
sive mouse-move events go directly to the object. When
mouse-up is received, the object pops the current context
to restore input processing to normal.

The context stack has two uses in addition to temporarily
grabbing mouse input. The context stack is used for nested
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pop-up windows and also for implementing an *“‘edit”
mode in which control objects can be created, moved,
copied, and deleted. In edit mode, we want to be able to
select controls without invoking their normal operations.
This is accomplished by pushing a special ‘‘edit context”
which routes all input to an editor that can manipulate the
on-screen objects.

3. Parallel Input Handling

We used ID as the basis for GID, our gesture-based sys-
tem. GID was designed to be used with a Sensor Frame
[7] as the gesture sensing device, The Sensor Frame
tracks multiple objects (normally fingers) in a plane
positioned just above the face of a CRT display. The
““plane’” actually has some thickness, so three coordinates
are used to locate each visible finger. When a finger enters
the field of view, it is assigned a unique identifier called
the finger identifier Each time the finger moves, the new
coordinates of the finger and the finger identifier are trans-
mitted from the Sensor Frame to the host computer.
Ideally, when a finger enters the field of view of the Sen-
sor Frame, it is assigned a number which it retains for the
entire time it remains in view. Since the Sensor Frame
may be tracking multiple fingers in parallel, coordinate
changes for several fingers may be interleaved in time.

In our gesture-based system, we wanted be able to handle
multiple finger gestures acting on a single object, for ex-
ample, turning a knob. We also wanted to allow users to
operate a control with each hand. The stack-based context
mechanism described in the previous section, however,
does not allow inputs to be directed to several objects. We
could simply pass all input to the root of the object tree,
but again, the search overhead would be too high.

Our solution is to maintain a more general mapping from
input events to objects. Each context contains a list of
input templates, each of which has an associated handling
object. Input templates consist of a window identifier,
device type, and finger identifier. If all elements of the
template match corresponding elements of an input event
(the template may have ‘‘don’t care’’ values) then the
event is sent to the indicated handling object. If no
template matches, then input is sent to a default handling
object, also specified in the current context. As a result,
we can have:

e two fingers operating a knob (input from ei-
ther finger is forwarded immediately to the
knob object),

e another finger moving toward a switch (input
from this finger goes to the root of the object
tree as usual. The switch object may change
the current context and take future input
directly when the finger gets close), and

* 3 simultaneous mouse click on a button (this
input would work its way through the object
tree from the root to the button object).

In some cases, one might want to effect a global context
change, such as a pop-up dialog box which preempts all
controls. This is accomplished by pushing a new context
on the stack. This may redirect input from an object with a
gesture in progress. We avoid problems here by sending a
““finger up’” event to the old handling object and a *‘finger
down’’ event to the new handling object whenever a finger
changes windows.

4. Gesture Representation and Processing
Since individual finger coordinates do not convey any
dynamic aspects of gestures, the first stage of processing
Sensor Frame input data is to represent the path of each
finger by a set of features. The features are then inter-
preted by controls. The current set of features includes a
piece-wise linear approximation of the path, the point
where the path first crosses into an ‘‘activation radius’’,
and the cumulative angular change.

4.1. Initial Processing

The x,y,z coordinates are supplied by the Sensor Frame as
integers but are translated to floating point for further
processing. The x,y,z portion of the input data is referred
to hereafter as a Raw Data Point or RDP.

Normally, the default handling object for RDP’s is the root
of the object tree. The tree is searched after each input;
however, when the RDP falls within the bounding box of a
control object, the object responds by putting a template in
the current context that will direct future events with the
same finger identifier to the object. Future matching
cvents will arrive at the object where they are added to a
table associated with both the object and the finger iden-
tifier. This table of RDP’s is called an open vector.

4.2. Path Decomposition

The next step is to lpmcc:ss the open vector of RDP’s to
obtain a segmented” representation. This representation
simultaneously provides data reduction and immunity from
Jitter.

For convenience, we want our approximation to be con-
tinuous; that is, each segment begins where the previous
one ended, and all endpoints coincide with data points
(RDP’s). The algorithm for constructing the approxima-
tion is straightforward: as each RDP is added to the open
vector, and error measure is computed. When the error
measure exceeds a constant threshold, a segment from the
first to the next-to-last point is added to the path and the
open vector is adjusted to contain the last two RDP’s, This
algorithm can be described as ‘‘greedy without
backtracking’’ since we pack as many RDP’s into each
segment as possible (limited by the error threshold) and we

n this discussion, a segment is an ordered pair of points, e.g. RDP's,
and a point is an x, y, z triple.
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never try alternative assignments of RDP’s to segments.

Figure 4-1 illustrates the process. The segment from point
1 to point 3 falls below the error threshold, but a segment
from point 1 to point 4 exceeds the threshold. Therefore,
the segment [point 1, point 3] is added to the path, and a
new open vector [point 3, point 4] is started. This is ex-
tended to point 5 and then to point 6.

N 3
2e

Figure 4-1: Fitting vectors to a set of points.

The error measure is:

error =2\(Y 1D 0 %+ 1D, () D+(3 1D, () )?
i=1 i=1 =1

where D (p) is the x-component of the shortest vector
from an RDP p; to the proposed segment [p,, p,] from
point p, to p,. We elected not to take a sum-of-squares in
the innermost summation to save a bit of computation, and
the resulting path decomposition seems to work well. The
distance from a point to a line can be computed without
trigonometric or square root functions as shown in Appen-
dix I.

4.3. The Activation Volume

Gesture analysis is performed if an open vector passes into
the volume defined by an activation radius and an activa-
tion center. Such processing will continue so long as suc-
ceeding RDP’s remain within that volume.

An activation center is not necessarily static. For example,
the knob on a slider has an activation center that moves
along with it. The value associated with the device class is
in this case a default initial value for the slider location.

Because we are polling the Sensor Frame from the applica-
tion program, we cannot guarantee that we will catch all
(or any) relevant RDP’s within a possibly small activation
volume. This is particularly true if the finger is traveling

quickly. However, by setting the size of the bounding box
large enough, we can guarantee we will at least pick up
endpoints of a path segment that intersects this volume.
The same distance algorithm (see Appendix I) used for
path decomposition is then used to see if the point of
closest approach of the path to the activation center is less
than the activation radius.,

4.4. Gestures
Once an RDP falls within the activation radius, the gesture
features are examined by the corresponding object.
Response to gestures is programmed procedurally for each
type of control.

A toggle switch (or any other control affected by a simple
linear motion), can be moved if the direction of travel of a
finger path (A) matches the preferred axis of travel of the
device (B). We define a maximum angle (6__ ) between

X
the two and see if the actual angle (6, ) is wit?|1ialn bounds.

act
The actual angular error can be found using the definition
of the vector dot product:

A-B=IAlBicos(8,,)
and rearranging to solve for cos(8,,):

cos (6,,.,)=(A-B)/(lAlBBI)
If the inequality:

cos (8,.)<cos(8,,,,)
holds, then the movement of the finger is close enough to
the preferred direction to cause a state change. Note that
cos(9,,,,) is a constant that can be precalculated, thus we
avoid calculating transcendentals at run time by comparing

cosines of angles instead of the angles themselves and by
using the equation:

AB=AB, +AB +AB,

The knob rotation gesture consists of one or two fingers
moving within the activation radius of the knob. Once it is
determined that a finger path crosses the activation radius,
an angle from the center of the knob to the finger is com-
puted and saved. Each location change within the activa-
tion radius results in a recalculation of the angle, and the
angle of the knob is updated by the angular difference.
When there are two fingers within the activation radius,
the knob is updated when either finger moves; the overall
knob rotation is effectively the average rotation of the two
fingers.

5. System Considerations

5.1. Implementation Languages

Our Sensor Frame interface, gesture recognition software,
and graphics primitives are all implemented in the C pro-
gramming language. Graphical and interactive objects, as
well as the top-level input handling routines, are im-
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plemented in XLISP, a lisp interpreter with built-in support
for objects.

Although we would have preferred a compiled lisp, this
work was begun at a time when our workstation environ-
ment was in a state of rapid change. During the course of
the project, we ported XLISP to three machine types and
implemented our graphics interface on two window
managers. The fact that XLISP is a relatively small C
program made it easy to port and to extend with the ad-
ditional graphics and I/O primitives we needed.

5.2. Input Diagnostics

For diagnostic purposes, input of raw position data points
is done through a device-independent module that allows
input to come from a Sensor Frame, to be partially simu-
lated by a mouse, or to be played back from a filc that was
““recorded’’ on a previous run with a mousc or a Sensor
Frame. Bugs that appcar only in long runs can be
reproduced by playing back the log file during a dcbugging
session,

The interface is implemented in such a way that regardlcss
of which device is being used as the pointing device, the
window menu is still available via the mouse. Commands
are available to display cvery RDP as a small box on the
screen; to print the results of every Sensor Frame input to a
diagnostic window; to select a prerecorded file, a mouse or
the Sensor Frame as the source of input; or to begin or end
recording data for futurc playback.

6. Results and Conclusions

In the process of building GID, we have cncountered
several problems which arc worth further study. One
problem is how to organize prototyping software such as
GID to allow controls to be operated in “‘run’” mode and
edited in “‘edit’” mode. It scems inappropriate to imple-
ment editing within cach object (Should a slider contain
code for editing its size, placement, label, ctc?), but a
modular approach is preferable to a monolithic editor that
captures all input in cdit mode. In GID, we divert input
when in “‘edit’”” mode, but we have specific cditing
methods in various subclasses of Control. One alternative
is to implement all interactive behavior outside of control
objects as in Garnet [8].

Another problem is that we have no high-level procedures
for recognizing complex gestures: our recognizers must be
hand-coded using fairly low-level representations, A
promising altcmative is the patiern recognition approach
being pursucd by Dean Rubine [10].

We know of no window managers that support multiple
cursors. Idcally, the window manager should track cach
finger with a cursor and also determine what window con-
tains cach visible finger. Currently, the overhead of cursor
tracking and mapping input to windows from outside of
the window manager (X11) causes significant performance

problems.

The present resolution of the Sensor Frame is only about
160 x 200 points. While this provides plenty of resolution
rclatuve to the size of controls displayed on the screen,
greater resolution is needed in order to accurately measure
the direction of motion and to minimize jitter.

The organization of GID prevents a single gesture from
being received by multiple controls simultaneously. We
do not feel this is a serious limitation, but it could be
avoided by utilizing a more complete mapping from
RDP’s to objects. Rather than searching the object tree
depth first, we could use hashing or a linear search of all
objects to locate potentially overlapping bounding boxes
which contain each RDP. Input events would then be
duplicated and sent to each ‘‘interested’’ object. This
technique was tried in an earlier system and allowed, for
example, two adjacent switches to be flipped by moving a
finger between them,

We note that some window managers might assist in the
implementation of controls: if each control is implemented
as a sub-window, then the search for a handler could be
performed by the window manager. This technique will
not work if we want input to reach multiple controls be-
causc current window managers will map input to only one
window cven if there is overlap. Furthermore, window
managers typically assume a single pointing device, and
extensive modification would be required to handle input
from the Scnsor Frame or some other gesture sensing
device.

In conclusion, we have implemented a system for
prototyping gesture-based user interfaces. The system is
capable of cditing its own interface, and applications are
typically built by extension. The system allows us to ex-
pceriment with screen layout and with multiple input
devices without programming, and the system is extensible
so that new interaction techniques can be integrated and
cvaluated. We have found piccewise linear approxima-
tions to paths to be an appropriate representation for
simple gestures, and our vector software can be reused by
diffcrent control objects.
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I. Minimum Distance Between a Point and
Segment

Ammmmmmmm s Pomm e B

Parameterize equation of AB:
V(k)=(1-k)A+ kB

for 0<k<1, and A<V<B so that V is any point on the
segment between A and B.

Relcase the constraint on k for the time being, and let P be
the point nearest X on AB: P= V(kp).

This gives us Equation 1:
Egn1 P=(1*kp)A +kpB
or, in expanded form:
P=A —k,A+k,B
We want a line normal to AB that passes through X. By

definition the dot product is zero if ZAPX=90°, so for
XPLAP we have:

(P-X)-(P-A)=0

Now substitute for P:
(A—kpA +k,B—X)-(-k,A+k,B)=0
expand terms:
(hytk DA-A) +(k 2 +k kD) (AB) +
(k;)(n-n) +k,(A-X)~k,(BX)=0
divide through by l<p and simplify:
(—1+k ) (A-A) +(—2k +1)(A-B) +
& (B-B)+(A-X)- (BX)=0
arrange terms for easier reduction:
~(1-k )(A-A) + [(-k +1)(A-B) ~k,(A-B)] +
k,(B-B)+(A-X)—(B-X)=0
apply distributive property of dot product:
(1-k,)[A-(B-A)] +k,[(B-A)B] = [X-(B-A)]
collect terms:
k,[[-A-(B-A)] + [(B~A)-B]] + [A-(B-A)] = [X-(B-A)]
apply distributive property of dot product again:
ko[(B-A)-(B-A)] = [(X-A)-(B-A)]
solve for kp:
B-A)-(X-A
Egn?2 k J(TEK%%B—_A%

Note that if k_ < 0, the nearest pointto X is A. Ifk_> 1, it
is B. Otherwise solve Eqn 1 with value of k, from Eqn 2
to get the nearest point.
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