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Abstract 

Multimedia streams usually require prefetching and 
buffering to  ens’ure steady, glitch-fnee d e h e r y  to  audio 
and video displays, but buffering ca’uses undesirable 
latency. This  latency may be manifested as startup 
delays, glitches, dropouts, and loss of synchroniza- 
tion. I n  interactive media presentations .where there 
are a small number of choices, alternative streams 
can be prefetched to  reduce latency. This technique 
is supported b y  the Tactus system, which manages the 
computation and synchronization of multimedia data. 
Tactus offers a systematic approach to prefetching, 
precomputation, choice points, and synchronous c,uts. 
Tactus consists of an object-oriented client toolkit for  
media generation and a synchronization seruer for  me- 
dia presentation. 

KEY WORDS: interface , toolkit, multimedia, syn- 
chronization, interactive, prefetch, real-time 

1 Introduction 

Multimedia systems that display continuous media 
such as audio and video are, for the most part, based 
on the stream paradigm in which data is continuously 
moved from source t o  sink. Along the way, data is 
buffered to prevent temporary disruptions in compu- 
tation or communication from affecting the output. 
This is an appropriate model when media is “canned,” 
that is, prepared in advance. However, one of the pri- 
mary adva.ntages of digital media is the possibility to 
control and compute media interactively. 

Consider applications such as surrogate travel, 
help systems, hypermedia systems, and video editors. 
Stream-oriented media delivery systems work against 

interactivity in these applications because buffers im- 
pose delays. If a user’s action should result in a change 
in the presentation, two responses are possible. In 
one, the system stops the current stream, creates a 
new one, prefetches data into the buffers, and starts 
the new stream. This causes an unwanted break or 
“glitch” in the presentation as well as a small delay. 
Another response is to splice the new data in a t  the 
source. Assuming the new stream is spliced cleanly, 
there will be no glitch, but there is still a long delay 
while the data moves through buffers from source to 
display. 

To improve this situation, data can be prefetched 
before the user has an opportunity to make a choice. 
When the choice is made, the data will already be 
available, and the alternative presentation can be used 
without delay. This st,rategy works because the cut 
is made “close” to the presentation hardware where 
latency is low and buffering is minimal. 

This arrangement imposes the burden of additional 
complexity on the application developer but results 
in lower latency and glitch-free presentations. In a 
system with infinite compute power and zero-latency 
storage devices, these techniques are unnecessary, but 
for now, the techniques are advantageous wherever 
computing, network, and disk latencies are significant 
considerations. Example sources of latency are CD- 
ROM-based video storage, network storage servers, 
operating system scheduling, graphics rendering, net- 
work transmission, database queries, path planning, 
search, garbage collection, and image processing. 

We have designed the Tactus system to sup- 
port prefetching, precomputing, low-latency cuts, and 
choice points. Our main contributions are: 

1. Showing how precomputation and temporal me- 
dia can be supported by an interactive graphical 
application framework; 
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Devices 2 Related Work 

A number of systems have proposed and imple- 
mented precomputation or prefetching with time- 
stamping to solve latency problems [2, 3, 4, 5, 61. Un- 
doubtedly, these techniques are also used within com- 
mercial systems such as QuickTime [7] and MPC [8]. 
One of the features of our work is that it facilitates the 
computation of multimedia streams as opposed to  sim- 
ply playing canned media or scripts. Our system hides Figure ’: The System inc’udes an Object- 

Oriented toolkit to manage the “putation Of streams many programming details such as scheduling and in- 
terleaving computation, timestamping data, syncllro- 

Of messages. The are de- nizing media, and recovery from glitches, but without 
livered to a Sewer where they are buffered for syn- also hiding the computation steps that actually gen- 
chronous delivery to various devices. erate the media. 

Providing a generic synchronization server that  
handles both computed and “canned” media, 
eliminating complex synchronization code from 
application programs; 

A study of “cuts” as a general mechanism for 
speculative precomputing and prefetching to re- 
duce latency in interactive multimedia; and 

An implementation of a general cut facility. 

The first two contributions have been previously de- 
scribed [l], so we will concentrate on the last two. 

Tactus (see Figure 1) includes an object-oriented 
toolkit to help client programs compute multimedia 
streams and a synchronization server to manage the 
synchronized presentation of multimedia data. As the 
client sends data to the server, the data is marked 
with timestamps for synchronization and choice points 
indicating potential cuts. The data is buffered in the 
Tactus server, which can make last-minute decisions to  
carry out synchronous cuts on behalf of the client. The 
“client/server” terminology here is analogous to that 
used with X11; the client is the application program, 
and the server delivers output to a display and other 
media. 

The next section describes related work, and Sec- 
tion 3 presents the basic architecture of Tactus in 
greater detail. Then we discuss a taxonomy of cut 
types, outlining the parameters that clients use to 
specify alternatives to  the Tactus server. Section 5 
describes how prefetching, cuts, and choice points are 
supported in Tactus, and Section 6 is a step-by-step 
description of a cut. Section 7 describes more details 
and future work, then Section 8 describes the current 
status, and Section 9 presents our conclusions. 

In speculative prefetching, data  is fetched before it 
is known whether the data is actually needed. Specu- 
lative prefetching has been used in file systems, mail 
readers, and even CPUs. Speculative prefetching 
of data at  choice points and branches to eliminate 
glitches has been used in several contexts. Multi-deck 
analog video editing consoles preroll and synchronize 
video decks to make clean electronic edits. We have 
heard of CD-Rom-based video games that pre-buffer 
data for a branching path in order to hide seek time. 
The DEMON project [5] supports prefetching of al- 
ternate paths through stored multimedia documents. 
To our knowledge, Tactus is the first system to pro- 
vide and support a generalized flexible mechanism for 
precomputation and prefetching to reduce latency at  
discrete edit or choice points in interactive multimedia 
presentations. 

3 Tactus 

The Tactus system is intended to support interac- 
tive multimedia software. A central focus of Tactus is 
to hide the problems of latency and synchronization 
from the client, making it easier to develop multime- 
dia software. The general idea is that clients compute 
multimedia data in time order, and client computa- 
tions are scheduled slightly ahead of real time. Pre- 
computed or prefetched data is sent from the client t o  
the server with timestamps indicating the desired dis- 
play time. Once data reaches the server, it is buffered 
until the indicated time. Then, it is delivered to out- 
put devices such as audio interfaces, video decompres- 
sion devices, and graphics displays. 
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3.1 Clients 

Client programs are supported by an object- 
oriented toolkit that includes special objects for tem- 
poral media. The programmer’s basic niodel is that 
the system has no buffers or latency, and so computa- 
tions are performed only a t  the instants output is re- 
quired. In reality, computations are performed ahead 
of time and output is buffered. Computations are per- 
formed by various subclasses of class Active. An ac- 
tive object computes media for a given instant in  time, 
then schedules itself to perform another computation 
in the future [9]. Active objects generate continuous 
media by running at  fixed or variable time intervals. 

The programming interface for active objects 
is simple. To indicate that the next out- 
put should occur at  LogicalTime, the method 
RequestKickAt(ActiveObj, LogicalTime) is called 
(usually by ActiveObj). At the requested (logical) 
time, the method Kick(ActiveObj, LogicalTime) is 
called by Tactus. This method is overridden to create 
subclasses of active objects for various purposes. For 
example, we have a software video active object whose 
Kick method is roughly as follows: 
Kick(self, time) { 

if (read(InputFile, Buffer, Imagesize)) { 
XPutImage( ..., Buffer, . . .) ;  
RequestKickAt (self, 

time + InterFrameTime); 
1 

In this example, XPutImage is the standard X11 
call to display a raster image, but it is implemented 
by a special library that appends a timestamp and 
sends the message to the Tactus Server. The mes- 
sage is buffered in t,he server, and at the proper time, 
the message will be forwarded to X11 for display. By 
fetching arid displaying a new frame at  regular inter- 
vals, a simple but effective software video system is 
realized. 

Active objects are organized int,o a structure called 
the “clock tree” (see Figure 2). The time at  which 
an active object asks to ruii is recursively mapped by 
clocks on the path from the active object (a leaf) to 
the real-time object at  the root of the clock tree. Thus, 
a set of active objects can run in a convenient logical 
time system that is mapped into real time by clock 
objects. Using clocks, the programmer can vary the 
rate and offset of logical time with respect to real time. 

On every path from a leaf to the root, there must 
be one and only one Stream object. Thus, each ac- 
tive object (leaf) is associated with a single stream 

1 

* 
Connection to 
Tactus Server 

Figure 2: A clock tree: leaves are active objects that 
perform computation and output data to a multimedia 
stream. Clock nodes serve to map from logical to real 
time, Stream is a subclass of Clock which manages 
an interprocess connection to the Tactus Server, and 
the Real Time Clock object interfaces the clock tree 
to the operating system timer facility. 

object. When an active object outputs data, it is de- 
livered to the Tactus server on a connection managed 
by this stream object. The data receives a timestamp 
based on the req,uested kick time, so all output gener- 
ated by an activation of a Kick method receives the 
same timestamp. Data from many active objects may 
be interleaved in a single stream, and the clock tree 
schedules computations so that timestamps are mono- 
tonically increasing within a stream. The stream ob- 
ject (a subclass of Clock) also shifts logical time ahead 
of real time so its active objects are scheduled early 
by a fixed amount, Latency, set by the application. 

The programmer is supported in several ways. 
First, the clock tree allows the programmer to sched- 
ule many active objects. Computation is automati- 
cally scheduled in timestamp order. The clock tree 
also allows the programmer to express event times 
in any convenient logical time system and automat- 
ically maps this time to real time. The stream ob- 
jects advance the logical time seen by active objects so 
that data will automatically be precomputed. Finally, 
the data computed by active objects is automatically 
timestamped before being sent to the Tactus server. 
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3.2 The Tactus Server 

The Tactus Server buffers media streams from one 
or more clients and presents them synchronously to 
various multimedia devices, including a window server 
( X l l ) ,  an audio server, and a MIDI server (see Fig- 
ure 1). The Tactus Server runs on the machine with 
the multimedia devices (this may be different from the 
machine running the client). The local buffering in the 
Tactus Server allows continuous media output in the 
face of momentary delays in computation and network 
communication. The server is well placed to make 
decisions supporting stream startup and synchroniza- 
tion. For example, the Tactus Server can be instructed 
to output multimedia data as soon as buffers reach a 
low-water mark. Synchronization failures can be han- 
dled entirely by the Tactus Server, eliminating com- 
plex recovery code in the client. 

Cut to Y i n g  
of Secon ry Stream 

Media Streams 

==I 

Cut to a Secondary 
Stream in Progress 

Media sbeams 
I 

Figure 3: Cuts can be made to the beginning of a 
stream or to a stream already in progress. 

the server and client destroy the primary stream and 
the other secondary streams. 

3.3 Tactus and Cuts 
4 A Cut Taxonomy 

In this section, we present an overview of how cuts 
work in Tactus. First, note that clients are always 
computing ahead of real (presentation) time. In a 
surrogate travel application, for example, the client 
will reach an intersection before the intersection is 
displayed. When the client reaches the intersection, 
it is fairly easy to “fork” multiple streams repre- 
senting “turn left,” (‘go straight,” and “turn right.” 
As the new streams are being started, the user sees 
an approaching intersection and may select a right 
turn. The client processes this input and sends a re- 
quest to the Tactus server to cut from the primary 
(“go straight”) stream to the secondary (“turn right”) 
stream. The Tactus Server makes a precise cut at  the 
intersection so that the user sees a smooth uninter- 
rupted display. Because the “turn right” data is pre- 
buffered as the user approaches the intersection, the 
turn can be implemented with very low latency. 

In general, a cut proceeds in three stages. First, the 
cut is created when a stream reaches a point where the 
presentation might branch. The stream becomes the 
primary stream of the cut, and additional secondary 
streams, representing alternate presentations, are cre- 
ated, added to  the cut, and begin to generate media. 
Next, a decision to branch to a secondary stream is 
made, usually in response to user input. The client ap- 
plication requests that  the secondary stream be taken. 
The branch to the secondary presentation may not 
happen immediately, because the secondary stream 
may not yet be ready, or the cut has been restricted 
to particular choice points. Finally, when conditions 
are right, the cut to the secondary stream occurs, and 
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Cuts are a general mechanism for speculative 
prefetching and precomputing. Cuts separate the act 
of buffering multimedia data from the decision t o  ac- 
tually present the data t o  output devices. Effectively, 
this decouples a number of mechanisms for fetching, 
buffering, and synchronization that are normally bun- 
dled into one. Cuts allow presentation decisions to be 
deferred, leading to a faster system response and thus 
greater interactivity. 

Sevcral attributes are used to specify details of the 
cut. When a secondary stream is created, an attribute 
indicates whether or not the cut is to the beginning 
of the new stream (see Figure 3). If the cut is to the 
beginning, then the secondary stream starts at  the mo- 
ment the cut occurs. In the surrogate travel example, 
a “turn” stream would be of this type. In contrast, 
if the cut is not to the beginning, then the secondary 
stream is started and synchronized with the primary 
stream. The secondary stream data is discarded until 
the cut occurs, at which time the secondary stream 
data is directed to output devices. Cuts to live video 
illustrate this type. 

The “start synched” cuts potentially have higher 
overhead, since until the cut is made two (or more) 
streams must run simultaneously, possibly for a long 
time. By contrast, a secondary stream in a cut “to 
beginning” runs until enough of the presentation has 
been buffered to ensure a smooth transition, and is 
then blocked. The stream is resumed only if the cut 
to it actually occurs. 

Whew a request to take a secondary stream is is- 



Cut AI Choice Point I CutAnywhere 

ASAP = false I ASAP = true 

Figure 4: Cuts may be restricted to choice points or 
allowed anywhere. Either way, the cut may occur at 
some time later than the requested cut time. 

sued, the ASAP attribute describes whether the cut 
can take place at  any time or only at  discrete choice 
points (see Figure 4). Choice points indicate where a 
cut may take place from the primary stream to a sec- 
ondary stream. The client can insert any number of 
choice points into a stream, and choice points can in- 
dicate which secondary streams are allowable targets 
for the cut. Choice points can be used to  place cuts on 
musical phrase boundaries and at intersections in sur- 
rogate travel. Another attribute indicates whether a 
cut should be delayed until the primary stream would 
have sent its next packet to a specified device. This 
allows cuts to take place on video frame boundaries, 
maintaining a constant video frame rate. 

Another attribute (specified when the take is re- 
quested) indicates the urgency of the cut. Normally, 
cuts will not take place unless the secoridary strcairi 
has been prebuffered up to a low-water mark. An ur- 
gent cut will cut to a secondary stream even if the low- 
water condition is not met. This risks an underflow, 
but underflow may be more desirable than missing the 
cut altogether. 

5 Cuts in Tactus 

Cuts involve new objects and code in both the client 
toolkit and the Tactus Server. On the client side, a 
Cut object serves as a placeholder in the clock tree. 
One child of the cut object is the primary stream, antl 
the other children are secondary streams. Figure 5 
illnstrates a clock tree with a cut object. 

When the cut object is created, it establishes a 
“shadow object” in the Tactus Server, and when chil- 
dren (secondary streams) are added to the cut, object, 
analogous links are made in the Tactus Server. Thus, 
the portion of the clock tree structure relating streams 
and cut objects is replicated in the Tactus Server. 
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Figure 5: A clock tree with a cut object: only one 
secondary stream is shown, but multiple secondary 
streams are possible. 

As implied by the tree structure, cuts are recursive 
in that descendants of the cut object may themselves 
be cut objects, with their own secondary streams. 
Consider again the surrogate travel example, antl 
imagine that after the right turn there is a fork in 
the road (see Figure 6). As the (secondary) right turn 
stream is prebuffered, the fork will cause another cut 
object to be created. Figure 6 illustrates the clock tree 
for this situation. Note that if the user turns right, 
prebuffering the two choices a t  the fork will have al- 
ready started. If the user docs not turn  right, the 
secondary stream (including both choices a t  the fork) 
can be deleted. 

To request a cut to a secondary stream, the method 
TakeStream(Cut, Targetstream, I D ,  Flags) is sent to 
the cut object, which then sends a message to the Tac- 
tus Server. The server notes that a cut is now pencl- 
ing, and delays the cut if necessary until the following 
conditions are met: 

0 A choice point from the primary to secondary 
stream is reached OR the ASAP flag is true. 

The secondary stream has reached its low-water 
mark OR the Urgent flag is true OR the choice 
point’s GoForIt flag is true (see Section 5.1). 

As mentioned previously, the cut might be further 
delayed so that it occurs on a video frame or audio 
buffer boundary. 

If a Takestream message misses an intended choice 
point, it may be prefera.ble not to leave the request 
pending. Consider Figure 7, which could represent 
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Figure 6: A recursive cut structure: in a surrogate 
travel application, the user is approaching a right turn, 
but the client has computed ahead. The right turn 
forked into two paths, resulting in a two-level cut struc- 
ture. The objects labeled "Right Turn" and "Fork are 
Cut objects. If the Right Turn is not taken, the entire 
Fork subtree can be deleted. 

paths for surrogate travel or a musical vamp with sev- 
eral exit points. If a requested cut arrives too late 
to be acted upon, the cut remains in effect and will 
be taken on the next lap around the oval. This may 
be undesirable, so two mechanisms are provided to  
avoid this problem. First, there is an UnTakeStream 
message that cancels a previously issued Takestream. 
Second, the Takestream may specify a choice point 
identifier (ID). Identifiers are unique, so the cut can 
only apply to  a particular choice point. A special ID 
value matches any choice point. 

When all conditions are met, the cut is performed 
and a message is sent from the server to the client 

Figure 7: A looping path illustrating a single cut with 
two choice points. If acut request arrives too late to be 
acted upon, the request may be canceled. Otherwise, 
the cut will be taken on the next lap. 
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describing the cut. This message is handled by the 
corresponding cut object, which typically destroys the 
primary stream and other secondary streams and then 
removes itself from the clock tree. 

5.1 Choice Points 

Choice points are generated by active objects and 
sent as ordinary timestamped stream messages to the 
Tactus Server. A choice point specifies a cut object, 
a target stream (or Anystream), a choice point iden- 
tifier, and a GoForIt flag. The identifier gives the 
choice point a unique name that can be specified in 
€he Takestream request. GoForIt indicates that a 
requested cut should be made even if the secondary 
stream's low-water mark condition is not met. Essen- 
tially, this flag says it is better to risk a glitch than 
to miss the cut altogether. This has the same effect 
as the Urgent flag in the Takestream message, but in 
this case the flag can be specified on a per-choice-point 
basis. 

Whenever a choice point is encountered by the 
server, a message is returned to the client indicating 
that a cut was or was not taken. If taken, the target 
stream is indicated; otherwise, the reason for not tak- 
ing the cut is indicated. This information allows the 
client to destroy secondary streams that are no longer 
useful. 

A special case is the last choice point to a particular 
stream. If a cut is not taken at this choice point, a cut 
to the secondary stream will never be taken, so it can 
be destroyed. A special LastChoicePoint method is 
provided so that the application program can easily in- 
form Tactus which is the last choice point. The default 
Tactus behavior is to destroy secondary streams when 
their last choice point is not taken, and to destroy cut 
objects when there are no more remaining secondary 
streams. Thus, stream cleanup is fairly automatic. 

5.2 Time and Synchronization 

A key to making clean predictable cuts is the idea 
that all media data is timestamped. Timestamps, 
sometimes combined with offsets, provide a specifi- 
cation of when data should be presented. Because of 
the need to precompute data and timestamps, Tactus 
must deal with a number of different time systems. 
There are two time offsets that are used: 

0 Laiency is the (per-stream) amount of real time 
by which client data is precomputed. A typical 
value is 2 seconds. 



0 Glitches is the (per-stream) amount of time by 
which the presentation has fallen behind due to 
startup delays and buffer underflow. 

There are three basic “types of time” or time systems 
used in Tactus: 

0 StampTime is used for the timestamps on mes- 
sages sent to the Tactus Server. StampTime + 
Glitches is the real time at  which data should be 
presented to the user. Note that timestamps start 
at  the current time, not at  zero. 

0 RunTime is the ideal real time at  which data is 
computed, that is, the time at  which a Kick mes- 
sage is sent to an active object. RunTime is typi- 
cally earlier than StampTime to achieve precom- 
putation. 

0 Ir‘ickTime is the time an active object “thinks” 
it is. It is specified in RequestKickAt mes- 
sages and passed in the corresponding Kick mes- 
sages (ignoring the mapping to local time units). 
Above streams, the IiickTime corresponds to 
RunTime, that is, the requested time specifies 
real time. Below streams, IiickTime corresponds 
to StampTime, meaning that Kick messages are 
delivered early to support precomputation. 

Using these definitions, we can now describe how 
the client and server use timestamps for synchroniza- 
tion and cuts. We will ignore the additional complex- 
ity of logical time systems created and managed by 
clock objects. In practice, logical times are simply 
the composition of linear mappings that can be easily 
inverted. 

The first problem is, given timestamped data, when 
should the data be displayed by the Tactus Server? 
Ideally, the display time exactly matches the times- 
tamp. In practice, the stream will take some time to 
start, and underflows may occur, causing delays. The 
cumulative delay of a stream is called Glitches, and the 
presentation time is therefore StampTime + Glitches. 

The second problem is: when an active object has 
requested a kick at  StampTime, when should the Kick 
message be sent? The formula is: 

RunTime = (StampTime + Glitches) - Latency 

Since StanipTime + Glitches is the presentation time, 
this formula precomputes the data by Latency. 

Now consider a cut to the beginning of a secondary 
stream. By convention, the first timestamp of the sec- 
ondary stream will be the time a t  which the stream is 
created; call it t2. Now suppose a cut is taken from 

timestamp t l  in the primary stream, whose Glitches 
value is 91. We want to adjust Glitches of the sec- 
ondary stream, g2, such that its beginning will be pre- 
sented at  the time of the cut, i.e. t l  + g1 = t2 + 9 2 .  
Solving for g 2 ,  we obtain 92 = t l  + gl - t2. 

To perform a cut to a stream in progress, the 
two streams must have matching timestamps. This 
is achieved by setting the Glitches parameter of the 
secondary stream to Glitches of the primary stream. 
Whenever the primary stream glitches, both the pri- 
mary and secondary streams are updated with the new 
value of Glitches so that they remain in lock-step. 

6 An Example 

Let us return to the surrogate travel example shown 
at the left of Figure 3. Initially, there would be one 
stream, perhaps with video and audio active objects. 
When the right turn is reached, the client creates a 
cut object as shown in Figure 5. A secondary stream 
representing the right turn is created and linked to the 
cut object as shown. A choice point is sent as part of 
the primary stream to indicate a possible cut to the 
secondary stream a t  the road intersection. 

Tactus will now be buffering two independent 
streams. Suppose the user indicates a right turn. The 
client processes the user input and sends a Takestream 
message to Tactus. If the message arrives before 
the choice point is reached, Tactus will continue out- 
putting the primary stream until the choice point is 
encountered. Then, it will check that the secondary 
stream has filled to its low-water mark. If so, the cut 
is taken, and data is presented from the secondary 
stream buffer. 

A message is returned to the client indicating that 
the secondary stream started and sets the Glitches 
value for that stream. By default, the client run- 
time system destroys the cut object and the primary 
stream, leaving the secondary stream immediately be- 
low the real time clock object, ready for the next 
choice. 

If the cut is not taken, a “choice not taken” message 
is returned when the choice point is encountered. The 
client may destroy the secondary stream or leave it in 
place for use later. 

7 Further Issues and Future Work 

Some device drivers such as video decompression 
systems introduce additional latency, and drivers for 
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time-critical data such as MIDI may offer an addi- 
tional layer of buffering of timestamped data. For 
these devices, it is desirable for the Tactus Server to 
dispatch data to the devices ahead of the display time. 
The Tactus Server maintains a separate time offset for 
each device. 

Once data is dispatched to a device by the Tac- 
tus Server, it cannot be revoked. In the case of MIDI 
data, that  data is timestamped and sent in advance, 
with the MIDI driver itself responsible for accurately- 
timed final dispatch. Thus, much like a Tactus client, 
the main loop of the Tactus server dispatches some 
packets in advance of real presentation time. An out- 
put thread in the server then dispatches packets early 
to  those devices, like MIDI, that accept timestamped 
data. (The output thread, which runs at a higher pri- 
ority than the rest of the Tactus Server, also dispatches 
data a t  its designated time to  devices that respond im- 
mediately.) One noticeable effect of advance dispatch 
in the server is that there is a time interval, equal to 
the maximum amount of time that the server will dis- 
patch data early, during which the server is committed 
to  a presentation before it is displayed. Currently, in- 
put within 100 milliseconds of a choice point cannot 
cause a cut to be taken at  that  choice point. 

Cuts from one aggregate stream to another re- 
quire some correspondence between the two aggregate 
streams. For example, when cutting between stereo 
audio streams, the left and right channels must be 
preserved rather than swapped. In our current sys- 
tem, this problem is solved by sending each channel 
to a specific device, but systems with logical devices 
may require a more elaborate scheme. 

I t  is up to the client (application) to initiate cuts 
based on user input. This causes some difficulty be- 
cause when the user responds to a presentation at  time 
T ,  the client is already computing the presentation for 
time T + Latency. Consider the problem of mapping 
mouse coordinates to moving targets. By the time 
mouse input arrives at  the client, the objects will have 
moved and may no longer even exist. 

In general, the client must keep a data structure 
that reflects history in order to deal with input. When 
the user selects “turn right,” the client must know 
which intersection is being approached on the display. 
Graphical user interfaces commonly maintain a two- 
dimensional map from screen space to graphical ob- 
jects. Buffered temporal media require the client to 
consider the time dimension as well. Tactus helps by 
timestamping incoming events. Although a complex 
“hot-spot temporal history” mechanism could be de- 
veloped, we think that in practice most control but- 

tons and icons will be static, and the mapping problem 
will not be difficult. 

For example, we implemented an application (de- 
scribed below) that allows the user to click on moving 
objects in a video clip. For each moving object, the 
path of an invisible moving button was specified as 
timestamped updates in a multimedia scripting lan- 
guage. A simple lookup operation on the script en- 
abled the positions of the buttons at  a given time in 
the past to be determined. 

When a cut takes place, it may be desirable to out- 
put some (re)initialization messages to devices, espe- 
cially when cutting to a stream in progress. Initial- 
ization messages could be treated as an independent 
stream. 

When secondary 
streams are computed, we do not want the additional 
resource utilization to cause glitches in the primary 
stream. While the primary stream must keep up with 
real time, secondary streams do not have this require- 
ment in the cut-to-beginning case. It is only necessary 
for the secondary stream to be sufficiently buffered by 
the time the cut takes place. A promising scheduling 
policy is to give highest priority to primary streams, 
although other policies might be desirable to avoid 
starving secondary streams. A global policy module 
could compute which Kick message to send next based 
on the stream and timestamp associated with the re- 
quest. 

A related topic concerns network requirements be- 
tween client and server. While Tactus is perfectly ca- 
pable of utilizing networks that give no guarantees on 
packet transfer time (at the cost of an occasional glitch 
when buffers underflow), it can certainly benefit from 
protocols that  allow network resources to be reserved 
(e.g. [lo]). However, traffic between Tactus client and 
server may be bursty. In particular, at  stream startup 
time, as well as when sending secondary streams for a 
cut, clients become temporarily compute bound, send- 
ing packets as fast as possible. It would be unfortu- 
nate if a real-time network protocol was unable to give 
clients spare network capacity when available, given 
the benefits to the user (such as faster startup time) 
that result. 

In our current model, client applications send to 
the Tactus server timestamped packets of uninter- 
preted data, which the server forwards at the cor- 
rect time. We have found that this model makes 
it difficult to provide some kinds of immediate feed- 
back in response to user input. For example, in the 
case of surrogate travel, it would be desirable to re- 
flect the user’s choice in the video as the intersection 

Another issue is scheduling. 



approaches. This would be relatively easy to do if 
the system allowed graphics to be superimposed over 
video. Barring that, it is difficult to affect the video 
already cued for the primary stream. Assuming the 
secondary streams all begin at  the intersection, the 
application cannot indicate the user’s choice before 
the intersection is reached. 

One solution is the use of “start synclied” secondary 
streams, each illustrating a different choice as the in- 
tersection approaches. The various streams containing 
alternatives begin to run several seconds before the in- 
tersection, and the cut occurs immediately after the 
user chooses, before the intersection is reached. This 
gives the desired effect, although multiple streams of 
nearly identical video merely to given more rapid feed- 
back seems like excessive overhead. In our solution, 
the primary stream contains a command to blit the 
contents of an off-screen window over the video after 
each frame. Normally, the off-screen window is clear 
and the blit has no effect. When user input is received, 
graphics are sent immediately (without buffering) to 
the offscreen window, which is copied to the video out- 
put to provide feedback. A more general model, which 
allowed the buffered device data to be parameterized, 
and allowed changes to the parameters to affect data 
already buffered, would make it easier to provide im- 
mediate feedback. 

Tactus is a flexible system, but it is only useful to 
programmers. Further work is needed to build higher 
level tools such as scripts, interface builders, and new 
authoring tools for temporal interfaces. 

8 Current Status 

At present, the Tactus server runs under RT Mach, 
Mach 3.0,  and AIX, and the Tactus Client Toolkit is 
an extension to the Andrew Toolkit [ll]. Tactus sup- 
ports interactive software video, graphical animation, 
audio, and MIDI. Client toolkit objects have been im- 
plemented, as have three prototype applications that 
demonstrate cuts. 

One application (see Figure 8) shows a spreadsheet- 
like display in which each column represents a section 
(e.g. verse, chorus, bridge) of a piece of music. In the 
absence of user input, the currently playing section 
will keep repeating itself. For each section, the user 
can choose which instruments are used, what parts 
they play, accompanying animations, and other pa- 
rameters. After specifying these, the user clicks to 
indicate the section that will be played next. A cut 
is cued for the new section, and occurs when the cur- 
rently playing section reaches an appropriate choice 
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Figure 8: One window of an application that allows 
parameters of each of four musical sections to be 
specified, and cuts to each section cued. 

point. Among other things, the choice point mecha- 
nism makes it simple to indicate that the places in the 
verse where a chorus is allowed to begin are different 
than the places where the bridge is allowed to begin. 

Another application, mentioned above, allows the 
creation of interactive hypermedia, in which the user 
may click on moving objects in a video to cause 
branches in  the presentation. Each stream (contain- 
ing video, audio, and other media) is described in a 
simple scripting language. During authoring, the user 
may draw a rectangle over an object in the video dis- 
played by a script (the primary stream), and move 
and resize the rectangle, representing an invisible but- 
ton, to follow that object as it moves. Slow playback 
(implemented easily via Tactus clocks) allows easy oh- 
ject tracking. A secondary script is specified for each 
button created. The primary script is automatically 
modified to include the rectangle motion commands, 
and references to the secondary scripts. The Tactus 
cut mechanism ensures that when one of the invisible 
moving rectangles is clicked upon, the presentation of 
the appropriate secondary stream is fast and glitch 
free. 

9 Summary and Conclusions 

Our research is aimed at  computation-oriented in- 
teractive multimedia systems. We have implemented 
an object-oriented framework that helps program- 
mers schedule and create timestamped multimedia 
data streams. Data can be a mixture of computed 
and “canned,” discrete and continuous information. 
The I‘nctus Server buffers and synchronizes multi- 
ple stw;ims. Because computation and communica- 
tion loails vary in practice, data is precomputed and 
buffered I O  avoid glitches in presentations. 



Given that  a certain amount of buffering (and 
therefore delay) is necessary, we have designed a mech- 
anism to enhance interactivity and reduce latency. 
The mechanism is based on identifying discrete choice 
points, precomputing or prefetching alternative pre- 
sentations (choices), and making synchronous cuts 
from one media stream to another. Our primary con- 
tributions are the use of cuts as a general mechanism 
for speculative precomputation and the specification 
and implementation of a cut facility within Tactus. 

We believe the techniques described here are useful 
for an interesting class of multimedia systems. Ap- 
plications include simulations, surrogate travel, help 
systems, music, games, and interactive fiction. These 
techniques are specifically useful for reducing the ob- 
served latency of local disks, remote video servers, and 
discrete computations. , 

The use of these techniques does not necessarily im- 
ply greater buffering or latency than that seen in more 
convedtional systems. For example, even video tele- 
conferencing systems, optimized for low latency, can 
exhibit appreciable delays, and similar timestamping 
and buffering techniques have been used [12]. The la- 
tency between computation and presentation in our 
system should be only as long as the worst-case com- 
putation or data access time that the system needs to 
hide. We expect this to be roughly in the range of 0.1 
to 5 seconds. Below 0.1 seconds, precomputation is 
not likely to  provide substantial benefits. As latency 
becomes very high, these techniques break down be- 
cause more and more resources are needed for specu- 
lative computation. 
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