
Low-Latency Interaction through Choice-Points,
Buffering, and Cuts in Tactus

Dean Rubine, Roger B. Dannenberg, David B. Anderson, and Tom Neuendorffer
Information Technology Center

School of Computer Science
Ca.rnegie Mellon University
Pittsburgh, PA 15213 USA

Email: { dandb+ ,rbd+ ,dba+, t pn+ } @andreW. cmu.edu

Abstract

Multimedia streams usually require prefetching and
buffering to ens’ure steady, glitch-fnee d e h e r y to audio
and video displays, but buffering ca’uses undesirable
latency. This latency may be manifested as startup
delays, glitches, dropouts, and loss of synchroniza-
tion. I n interactive media presentations .where there
are a small number of choices, alternative streams
can be prefetched to reduce latency. This technique
is supported b y the Tactus system, which manages the
computation and synchronization of multimedia data.
Tactus offers a systematic approach to prefetching,
precomputation, choice points, and synchronous c,uts.
Tactus consists of an object-oriented client toolkit for
media generation and a synchronization seruer for me-
dia presentation.

KEY WORDS: interface , toolkit, multimedia, syn-
chronization, interactive, prefetch, real-time

1 Introduction

Multimedia systems that display continuous media
such as audio and video are, for the most part, based
on the stream paradigm in which data is continuously
moved from source t o sink. Along the way, data is
buffered to prevent temporary disruptions in compu-
tation or communication from affecting the output.
This is an appropriate model when media is “canned,”
that is, prepared in advance. However, one of the pri-
mary adva.ntages of digital media is the possibility to
control and compute media interactively.

Consider applications such as surrogate travel,
help systems, hypermedia systems, and video editors.
Stream-oriented media delivery systems work against

interactivity in these applications because buffers im-
pose delays. If a user’s action should result in a change
in the presentation, two responses are possible. In
one, the system stops the current stream, creates a
new one, prefetches data into the buffers, and starts
the new stream. This causes an unwanted break or
“glitch” in the presentation as well as a small delay.
Another response is to splice the new data in a t the
source. Assuming the new stream is spliced cleanly,
there will be no glitch, but there is still a long delay
while the data moves through buffers from source to
display.

To improve this situation, data can be prefetched
before the user has an opportunity to make a choice.
When the choice is made, the data will already be
available, and the alternative presentation can be used
without delay. This st,rategy works because the cut
is made “close” to the presentation hardware where
latency is low and buffering is minimal.

This arrangement imposes the burden of additional
complexity on the application developer but results
in lower latency and glitch-free presentations. In a
system with infinite compute power and zero-latency
storage devices, these techniques are unnecessary, but
for now, the techniques are advantageous wherever
computing, network, and disk latencies are significant
considerations. Example sources of latency are CD-
ROM-based video storage, network storage servers,
operating system scheduling, graphics rendering, net-
work transmission, database queries, path planning,
search, garbage collection, and image processing.

We have designed the Tactus system to sup-
port prefetching, precomputing, low-latency cuts, and
choice points. Our main contributions are:

1. Showing how precomputation and temporal me-
dia can be supported by an interactive graphical
application framework;

0-8186-5530-5194 $3.00Q 1994 IEEE
224

*Published as: Dean Rubine, Roger B. Dannenberg, David B. Anderson, and Tom Neuendorffer, “Low-Latency Interaction Through Choice-Points, Buffering, and Cuts in Tactus,” in
 Boston, MA, May 1994. Boston, MA: IEEE Computer Society Press, 1994. pp. 224-233.

 Proceedings of the International Conference on Multimedia Computing and Systems,

*

Devices 2 Related Work

A number of systems have proposed and imple-
mented precomputation or prefetching with time-
stamping to solve latency problems [2, 3, 4, 5, 61. Un-
doubtedly, these techniques are also used within com-
mercial systems such as QuickTime [7] and MPC [8].
One of the features of our work is that it facilitates the
computation of multimedia streams as opposed to sim-
ply playing canned media or scripts. Our system hides Figure ’: The System inc’udes an Object-

Oriented toolkit to manage the “putation Of streams many programming details such as scheduling and in-
terleaving computation, timestamping data, syncllro-

Of messages. The are de- nizing media, and recovery from glitches, but without
livered to a Sewer where they are buffered for syn- also hiding the computation steps that actually gen-
chronous delivery to various devices. erate the media.

Providing a generic synchronization server that
handles both computed and “canned” media,
eliminating complex synchronization code from
application programs;

A study of “cuts” as a general mechanism for
speculative precomputing and prefetching to re-
duce latency in interactive multimedia; and

An implementation of a general cut facility.

The first two contributions have been previously de-
scribed [l], so we will concentrate on the last two.

Tactus (see Figure 1) includes an object-oriented
toolkit to help client programs compute multimedia
streams and a synchronization server to manage the
synchronized presentation of multimedia data. As the
client sends data to the server, the data is marked
with timestamps for synchronization and choice points
indicating potential cuts. The data is buffered in the
Tactus server, which can make last-minute decisions to
carry out synchronous cuts on behalf of the client. The
“client/server” terminology here is analogous to that
used with X11; the client is the application program,
and the server delivers output to a display and other
media.

The next section describes related work, and Sec-
tion 3 presents the basic architecture of Tactus in
greater detail. Then we discuss a taxonomy of cut
types, outlining the parameters that clients use to
specify alternatives to the Tactus server. Section 5
describes how prefetching, cuts, and choice points are
supported in Tactus, and Section 6 is a step-by-step
description of a cut. Section 7 describes more details
and future work, then Section 8 describes the current
status, and Section 9 presents our conclusions.

In speculative prefetching, data is fetched before it
is known whether the data is actually needed. Specu-
lative prefetching has been used in file systems, mail
readers, and even CPUs. Speculative prefetching
of data at choice points and branches to eliminate
glitches has been used in several contexts. Multi-deck
analog video editing consoles preroll and synchronize
video decks to make clean electronic edits. We have
heard of CD-Rom-based video games that pre-buffer
data for a branching path in order to hide seek time.
The DEMON project [5] supports prefetching of al-
ternate paths through stored multimedia documents.
To our knowledge, Tactus is the first system to pro-
vide and support a generalized flexible mechanism for
precomputation and prefetching to reduce latency at
discrete edit or choice points in interactive multimedia
presentations.

3 Tactus

The Tactus system is intended to support interac-
tive multimedia software. A central focus of Tactus is
to hide the problems of latency and synchronization
from the client, making it easier to develop multime-
dia software. The general idea is that clients compute
multimedia data in time order, and client computa-
tions are scheduled slightly ahead of real time. Pre-
computed or prefetched data is sent from the client t o
the server with timestamps indicating the desired dis-
play time. Once data reaches the server, it is buffered
until the indicated time. Then, it is delivered to out-
put devices such as audio interfaces, video decompres-
sion devices, and graphics displays.

225

3.1 Clients

Client programs are supported by an object-
oriented toolkit that includes special objects for tem-
poral media. The programmer’s basic niodel is that
the system has no buffers or latency, and so computa-
tions are performed only a t the instants output is re-
quired. In reality, computations are performed ahead
of time and output is buffered. Computations are per-
formed by various subclasses of class Active. An ac-
tive object computes media for a given instant in time,
then schedules itself to perform another computation
in the future [9]. Active objects generate continuous
media by running at fixed or variable time intervals.

The programming interface for active objects
is simple. To indicate that the next out-
put should occur at LogicalTime, the method
RequestKickAt(ActiveObj, LogicalTime) is called
(usually by ActiveObj). At the requested (logical)
time, the method Kick(ActiveObj, LogicalTime) is
called by Tactus. This method is overridden to create
subclasses of active objects for various purposes. For
example, we have a software video active object whose
Kick method is roughly as follows:
Kick(self, time) {

if (read(InputFile, Buffer, Imagesize)) {
XPutImage(..., Buffer, . . .) ;
RequestKickAt (self,

time + InterFrameTime);
1

In this example, XPutImage is the standard X11
call to display a raster image, but it is implemented
by a special library that appends a timestamp and
sends the message to the Tactus Server. The mes-
sage is buffered in t,he server, and at the proper time,
the message will be forwarded to X11 for display. By
fetching arid displaying a new frame at regular inter-
vals, a simple but effective software video system is
realized.

Active objects are organized int,o a structure called
the “clock tree” (see Figure 2). The time at which
an active object asks to ruii is recursively mapped by
clocks on the path from the active object (a leaf) to
the real-time object at the root of the clock tree. Thus,
a set of active objects can run in a convenient logical
time system that is mapped into real time by clock
objects. Using clocks, the programmer can vary the
rate and offset of logical time with respect to real time.

On every path from a leaf to the root, there must
be one and only one Stream object. Thus, each ac-
tive object (leaf) is associated with a single stream

1

*
Connection to
Tactus Server

Figure 2: A clock tree: leaves are active objects that
perform computation and output data to a multimedia
stream. Clock nodes serve to map from logical to real
time, Stream is a subclass of Clock which manages
an interprocess connection to the Tactus Server, and
the Real Time Clock object interfaces the clock tree
to the operating system timer facility.

object. When an active object outputs data, it is de-
livered to the Tactus server on a connection managed
by this stream object. The data receives a timestamp
based on the req,uested kick time, so all output gener-
ated by an activation of a Kick method receives the
same timestamp. Data from many active objects may
be interleaved in a single stream, and the clock tree
schedules computations so that timestamps are mono-
tonically increasing within a stream. The stream ob-
ject (a subclass of Clock) also shifts logical time ahead
of real time so its active objects are scheduled early
by a fixed amount, Latency, set by the application.

The programmer is supported in several ways.
First, the clock tree allows the programmer to sched-
ule many active objects. Computation is automati-
cally scheduled in timestamp order. The clock tree
also allows the programmer to express event times
in any convenient logical time system and automat-
ically maps this time to real time. The stream ob-
jects advance the logical time seen by active objects so
that data will automatically be precomputed. Finally,
the data computed by active objects is automatically
timestamped before being sent to the Tactus server.

226

3.2 The Tactus Server

The Tactus Server buffers media streams from one
or more clients and presents them synchronously to
various multimedia devices, including a window server
(X l l) , an audio server, and a MIDI server (see Fig-
ure 1). The Tactus Server runs on the machine with
the multimedia devices (this may be different from the
machine running the client). The local buffering in the
Tactus Server allows continuous media output in the
face of momentary delays in computation and network
communication. The server is well placed to make
decisions supporting stream startup and synchroniza-
tion. For example, the Tactus Server can be instructed
to output multimedia data as soon as buffers reach a
low-water mark. Synchronization failures can be han-
dled entirely by the Tactus Server, eliminating com-
plex recovery code in the client.

Cut to Y i n g
of Secon ry Stream

Media Streams

==I

Cut to a Secondary
Stream in Progress

Media sbeams
I

Figure 3: Cuts can be made to the beginning of a
stream or to a stream already in progress.

the server and client destroy the primary stream and
the other secondary streams.

3.3 Tactus and Cuts
4 A Cut Taxonomy

In this section, we present an overview of how cuts
work in Tactus. First, note that clients are always
computing ahead of real (presentation) time. In a
surrogate travel application, for example, the client
will reach an intersection before the intersection is
displayed. When the client reaches the intersection,
it is fairly easy to “fork” multiple streams repre-
senting “turn left,” (‘go straight,” and “turn right.”
As the new streams are being started, the user sees
an approaching intersection and may select a right
turn. The client processes this input and sends a re-
quest to the Tactus server to cut from the primary
(“go straight”) stream to the secondary (“turn right”)
stream. The Tactus Server makes a precise cut at the
intersection so that the user sees a smooth uninter-
rupted display. Because the “turn right” data is pre-
buffered as the user approaches the intersection, the
turn can be implemented with very low latency.

In general, a cut proceeds in three stages. First, the
cut is created when a stream reaches a point where the
presentation might branch. The stream becomes the
primary stream of the cut, and additional secondary
streams, representing alternate presentations, are cre-
ated, added to the cut, and begin to generate media.
Next, a decision to branch to a secondary stream is
made, usually in response to user input. The client ap-
plication requests that the secondary stream be taken.
The branch to the secondary presentation may not
happen immediately, because the secondary stream
may not yet be ready, or the cut has been restricted
to particular choice points. Finally, when conditions
are right, the cut to the secondary stream occurs, and

227

Cuts are a general mechanism for speculative
prefetching and precomputing. Cuts separate the act
of buffering multimedia data from the decision t o ac-
tually present the data t o output devices. Effectively,
this decouples a number of mechanisms for fetching,
buffering, and synchronization that are normally bun-
dled into one. Cuts allow presentation decisions to be
deferred, leading to a faster system response and thus
greater interactivity.

Sevcral attributes are used to specify details of the
cut. When a secondary stream is created, an attribute
indicates whether or not the cut is to the beginning
of the new stream (see Figure 3). If the cut is to the
beginning, then the secondary stream starts at the mo-
ment the cut occurs. In the surrogate travel example,
a “turn” stream would be of this type. In contrast,
if the cut is not to the beginning, then the secondary
stream is started and synchronized with the primary
stream. The secondary stream data is discarded until
the cut occurs, at which time the secondary stream
data is directed to output devices. Cuts to live video
illustrate this type.

The “start synched” cuts potentially have higher
overhead, since until the cut is made two (or more)
streams must run simultaneously, possibly for a long
time. By contrast, a secondary stream in a cut “to
beginning” runs until enough of the presentation has
been buffered to ensure a smooth transition, and is
then blocked. The stream is resumed only if the cut
to it actually occurs.

Whew a request to take a secondary stream is is-

Cut AI Choice Point I CutAnywhere

ASAP = false I ASAP = true

Figure 4: Cuts may be restricted to choice points or
allowed anywhere. Either way, the cut may occur at
some time later than the requested cut time.

sued, the ASAP attribute describes whether the cut
can take place at any time or only at discrete choice
points (see Figure 4). Choice points indicate where a
cut may take place from the primary stream to a sec-
ondary stream. The client can insert any number of
choice points into a stream, and choice points can in-
dicate which secondary streams are allowable targets
for the cut. Choice points can be used to place cuts on
musical phrase boundaries and at intersections in sur-
rogate travel. Another attribute indicates whether a
cut should be delayed until the primary stream would
have sent its next packet to a specified device. This
allows cuts to take place on video frame boundaries,
maintaining a constant video frame rate.

Another attribute (specified when the take is re-
quested) indicates the urgency of the cut. Normally,
cuts will not take place unless the secoridary strcairi
has been prebuffered up to a low-water mark. An ur-
gent cut will cut to a secondary stream even if the low-
water condition is not met. This risks an underflow,
but underflow may be more desirable than missing the
cut altogether.

5 Cuts in Tactus

Cuts involve new objects and code in both the client
toolkit and the Tactus Server. On the client side, a
Cut object serves as a placeholder in the clock tree.
One child of the cut object is the primary stream, antl
the other children are secondary streams. Figure 5
illnstrates a clock tree with a cut object.

When the cut object is created, it establishes a
“shadow object” in the Tactus Server, and when chil-
dren (secondary streams) are added to the cut, object,
analogous links are made in the Tactus Server. Thus,
the portion of the clock tree structure relating streams
and cut objects is replicated in the Tactus Server.

228

[Real
Time

Connections to
Tactus Server

Figure 5: A clock tree with a cut object: only one
secondary stream is shown, but multiple secondary
streams are possible.

As implied by the tree structure, cuts are recursive
in that descendants of the cut object may themselves
be cut objects, with their own secondary streams.
Consider again the surrogate travel example, antl
imagine that after the right turn there is a fork in
the road (see Figure 6). As the (secondary) right turn
stream is prebuffered, the fork will cause another cut
object to be created. Figure 6 illustrates the clock tree
for this situation. Note that if the user turns right,
prebuffering the two choices a t the fork will have al-
ready started. If the user docs not turn right, the
secondary stream (including both choices a t the fork)
can be deleted.

To request a cut to a secondary stream, the method
TakeStream(Cut, Targetstream, I D , Flags) is sent to
the cut object, which then sends a message to the Tac-
tus Server. The server notes that a cut is now pencl-
ing, and delays the cut if necessary until the following
conditions are met:

0 A choice point from the primary to secondary
stream is reached OR the ASAP flag is true.

The secondary stream has reached its low-water
mark OR the Urgent flag is true OR the choice
point’s GoForIt flag is true (see Section 5.1).

As mentioned previously, the cut might be further
delayed so that it occurs on a video frame or audio
buffer boundary.

If a Takestream message misses an intended choice
point, it may be prefera.ble not to leave the request
pending. Consider Figure 7, which could represent

w RbM

Figure 6: A recursive cut structure: in a surrogate
travel application, the user is approaching a right turn,
but the client has computed ahead. The right turn
forked into two paths, resulting in a two-level cut struc-
ture. The objects labeled "Right Turn" and "Fork are
Cut objects. If the Right Turn is not taken, the entire
Fork subtree can be deleted.

paths for surrogate travel or a musical vamp with sev-
eral exit points. If a requested cut arrives too late
to be acted upon, the cut remains in effect and will
be taken on the next lap around the oval. This may
be undesirable, so two mechanisms are provided to
avoid this problem. First, there is an UnTakeStream
message that cancels a previously issued Takestream.
Second, the Takestream may specify a choice point
identifier (ID). Identifiers are unique, so the cut can
only apply to a particular choice point. A special ID
value matches any choice point.

When all conditions are met, the cut is performed
and a message is sent from the server to the client

Figure 7: A looping path illustrating a single cut with
two choice points. If acut request arrives too late to be
acted upon, the request may be canceled. Otherwise,
the cut will be taken on the next lap.

229

describing the cut. This message is handled by the
corresponding cut object, which typically destroys the
primary stream and other secondary streams and then
removes itself from the clock tree.

5.1 Choice Points

Choice points are generated by active objects and
sent as ordinary timestamped stream messages to the
Tactus Server. A choice point specifies a cut object,
a target stream (or Anystream), a choice point iden-
tifier, and a GoForIt flag. The identifier gives the
choice point a unique name that can be specified in
€he Takestream request. GoForIt indicates that a
requested cut should be made even if the secondary
stream's low-water mark condition is not met. Essen-
tially, this flag says it is better to risk a glitch than
to miss the cut altogether. This has the same effect
as the Urgent flag in the Takestream message, but in
this case the flag can be specified on a per-choice-point
basis.

Whenever a choice point is encountered by the
server, a message is returned to the client indicating
that a cut was or was not taken. If taken, the target
stream is indicated; otherwise, the reason for not tak-
ing the cut is indicated. This information allows the
client to destroy secondary streams that are no longer
useful.

A special case is the last choice point to a particular
stream. If a cut is not taken at this choice point, a cut
to the secondary stream will never be taken, so it can
be destroyed. A special LastChoicePoint method is
provided so that the application program can easily in-
form Tactus which is the last choice point. The default
Tactus behavior is to destroy secondary streams when
their last choice point is not taken, and to destroy cut
objects when there are no more remaining secondary
streams. Thus, stream cleanup is fairly automatic.

5.2 Time and Synchronization

A key to making clean predictable cuts is the idea
that all media data is timestamped. Timestamps,
sometimes combined with offsets, provide a specifi-
cation of when data should be presented. Because of
the need to precompute data and timestamps, Tactus
must deal with a number of different time systems.
There are two time offsets that are used:

0 Laiency is the (per-stream) amount of real time
by which client data is precomputed. A typical
value is 2 seconds.

0 Glitches is the (per-stream) amount of time by
which the presentation has fallen behind due to
startup delays and buffer underflow.

There are three basic “types of time” or time systems
used in Tactus:

0 StampTime is used for the timestamps on mes-
sages sent to the Tactus Server. StampTime +
Glitches is the real time at which data should be
presented to the user. Note that timestamps start
at the current time, not at zero.

0 RunTime is the ideal real time at which data is
computed, that is, the time at which a Kick mes-
sage is sent to an active object. RunTime is typi-
cally earlier than StampTime to achieve precom-
putation.

0 Ir‘ickTime is the time an active object “thinks”
it is. It is specified in RequestKickAt mes-
sages and passed in the corresponding Kick mes-
sages (ignoring the mapping to local time units).
Above streams, the IiickTime corresponds to
RunTime, that is, the requested time specifies
real time. Below streams, IiickTime corresponds
to StampTime, meaning that Kick messages are
delivered early to support precomputation.

Using these definitions, we can now describe how
the client and server use timestamps for synchroniza-
tion and cuts. We will ignore the additional complex-
ity of logical time systems created and managed by
clock objects. In practice, logical times are simply
the composition of linear mappings that can be easily
inverted.

The first problem is, given timestamped data, when
should the data be displayed by the Tactus Server?
Ideally, the display time exactly matches the times-
tamp. In practice, the stream will take some time to
start, and underflows may occur, causing delays. The
cumulative delay of a stream is called Glitches, and the
presentation time is therefore StampTime + Glitches.

The second problem is: when an active object has
requested a kick at StampTime, when should the Kick
message be sent? The formula is:

RunTime = (StampTime + Glitches) - Latency

Since StanipTime + Glitches is the presentation time,
this formula precomputes the data by Latency.

Now consider a cut to the beginning of a secondary
stream. By convention, the first timestamp of the sec-
ondary stream will be the time a t which the stream is
created; call it t2. Now suppose a cut is taken from

timestamp t l in the primary stream, whose Glitches
value is 91. We want to adjust Glitches of the sec-
ondary stream, g2, such that its beginning will be pre-
sented at the time of the cut, i.e. t l + g1 = t2 + 9 2 .
Solving for g 2 , we obtain 92 = t l + gl - t2.

To perform a cut to a stream in progress, the
two streams must have matching timestamps. This
is achieved by setting the Glitches parameter of the
secondary stream to Glitches of the primary stream.
Whenever the primary stream glitches, both the pri-
mary and secondary streams are updated with the new
value of Glitches so that they remain in lock-step.

6 An Example

Let us return to the surrogate travel example shown
at the left of Figure 3. Initially, there would be one
stream, perhaps with video and audio active objects.
When the right turn is reached, the client creates a
cut object as shown in Figure 5. A secondary stream
representing the right turn is created and linked to the
cut object as shown. A choice point is sent as part of
the primary stream to indicate a possible cut to the
secondary stream a t the road intersection.

Tactus will now be buffering two independent
streams. Suppose the user indicates a right turn. The
client processes the user input and sends a Takestream
message to Tactus. If the message arrives before
the choice point is reached, Tactus will continue out-
putting the primary stream until the choice point is
encountered. Then, it will check that the secondary
stream has filled to its low-water mark. If so, the cut
is taken, and data is presented from the secondary
stream buffer.

A message is returned to the client indicating that
the secondary stream started and sets the Glitches
value for that stream. By default, the client run-
time system destroys the cut object and the primary
stream, leaving the secondary stream immediately be-
low the real time clock object, ready for the next
choice.

If the cut is not taken, a “choice not taken” message
is returned when the choice point is encountered. The
client may destroy the secondary stream or leave it in
place for use later.

7 Further Issues and Future Work

Some device drivers such as video decompression
systems introduce additional latency, and drivers for

230

time-critical data such as MIDI may offer an addi-
tional layer of buffering of timestamped data. For
these devices, it is desirable for the Tactus Server to
dispatch data to the devices ahead of the display time.
The Tactus Server maintains a separate time offset for
each device.

Once data is dispatched to a device by the Tac-
tus Server, it cannot be revoked. In the case of MIDI
data, that data is timestamped and sent in advance,
with the MIDI driver itself responsible for accurately-
timed final dispatch. Thus, much like a Tactus client,
the main loop of the Tactus server dispatches some
packets in advance of real presentation time. An out-
put thread in the server then dispatches packets early
to those devices, like MIDI, that accept timestamped
data. (The output thread, which runs at a higher pri-
ority than the rest of the Tactus Server, also dispatches
data a t its designated time to devices that respond im-
mediately.) One noticeable effect of advance dispatch
in the server is that there is a time interval, equal to
the maximum amount of time that the server will dis-
patch data early, during which the server is committed
to a presentation before it is displayed. Currently, in-
put within 100 milliseconds of a choice point cannot
cause a cut to be taken at that choice point.

Cuts from one aggregate stream to another re-
quire some correspondence between the two aggregate
streams. For example, when cutting between stereo
audio streams, the left and right channels must be
preserved rather than swapped. In our current sys-
tem, this problem is solved by sending each channel
to a specific device, but systems with logical devices
may require a more elaborate scheme.

I t is up to the client (application) to initiate cuts
based on user input. This causes some difficulty be-
cause when the user responds to a presentation at time
T , the client is already computing the presentation for
time T + Latency. Consider the problem of mapping
mouse coordinates to moving targets. By the time
mouse input arrives at the client, the objects will have
moved and may no longer even exist.

In general, the client must keep a data structure
that reflects history in order to deal with input. When
the user selects “turn right,” the client must know
which intersection is being approached on the display.
Graphical user interfaces commonly maintain a two-
dimensional map from screen space to graphical ob-
jects. Buffered temporal media require the client to
consider the time dimension as well. Tactus helps by
timestamping incoming events. Although a complex
“hot-spot temporal history” mechanism could be de-
veloped, we think that in practice most control but-

tons and icons will be static, and the mapping problem
will not be difficult.

For example, we implemented an application (de-
scribed below) that allows the user to click on moving
objects in a video clip. For each moving object, the
path of an invisible moving button was specified as
timestamped updates in a multimedia scripting lan-
guage. A simple lookup operation on the script en-
abled the positions of the buttons at a given time in
the past to be determined.

When a cut takes place, it may be desirable to out-
put some (re)initialization messages to devices, espe-
cially when cutting to a stream in progress. Initial-
ization messages could be treated as an independent
stream.

When secondary
streams are computed, we do not want the additional
resource utilization to cause glitches in the primary
stream. While the primary stream must keep up with
real time, secondary streams do not have this require-
ment in the cut-to-beginning case. It is only necessary
for the secondary stream to be sufficiently buffered by
the time the cut takes place. A promising scheduling
policy is to give highest priority to primary streams,
although other policies might be desirable to avoid
starving secondary streams. A global policy module
could compute which Kick message to send next based
on the stream and timestamp associated with the re-
quest.

A related topic concerns network requirements be-
tween client and server. While Tactus is perfectly ca-
pable of utilizing networks that give no guarantees on
packet transfer time (at the cost of an occasional glitch
when buffers underflow), it can certainly benefit from
protocols that allow network resources to be reserved
(e.g. [lo]). However, traffic between Tactus client and
server may be bursty. In particular, at stream startup
time, as well as when sending secondary streams for a
cut, clients become temporarily compute bound, send-
ing packets as fast as possible. It would be unfortu-
nate if a real-time network protocol was unable to give
clients spare network capacity when available, given
the benefits to the user (such as faster startup time)
that result.

In our current model, client applications send to
the Tactus server timestamped packets of uninter-
preted data, which the server forwards at the cor-
rect time. We have found that this model makes
it difficult to provide some kinds of immediate feed-
back in response to user input. For example, in the
case of surrogate travel, it would be desirable to re-
flect the user’s choice in the video as the intersection

Another issue is scheduling.

approaches. This would be relatively easy to do if
the system allowed graphics to be superimposed over
video. Barring that, it is difficult to affect the video
already cued for the primary stream. Assuming the
secondary streams all begin at the intersection, the
application cannot indicate the user’s choice before
the intersection is reached.

One solution is the use of “start synclied” secondary
streams, each illustrating a different choice as the in-
tersection approaches. The various streams containing
alternatives begin to run several seconds before the in-
tersection, and the cut occurs immediately after the
user chooses, before the intersection is reached. This
gives the desired effect, although multiple streams of
nearly identical video merely to given more rapid feed-
back seems like excessive overhead. In our solution,
the primary stream contains a command to blit the
contents of an off-screen window over the video after
each frame. Normally, the off-screen window is clear
and the blit has no effect. When user input is received,
graphics are sent immediately (without buffering) to
the offscreen window, which is copied to the video out-
put to provide feedback. A more general model, which
allowed the buffered device data to be parameterized,
and allowed changes to the parameters to affect data
already buffered, would make it easier to provide im-
mediate feedback.

Tactus is a flexible system, but it is only useful to
programmers. Further work is needed to build higher
level tools such as scripts, interface builders, and new
authoring tools for temporal interfaces.

8 Current Status

At present, the Tactus server runs under RT Mach,
Mach 3.0, and AIX, and the Tactus Client Toolkit is
an extension to the Andrew Toolkit [ll]. Tactus sup-
ports interactive software video, graphical animation,
audio, and MIDI. Client toolkit objects have been im-
plemented, as have three prototype applications that
demonstrate cuts.

One application (see Figure 8) shows a spreadsheet-
like display in which each column represents a section
(e.g. verse, chorus, bridge) of a piece of music. In the
absence of user input, the currently playing section
will keep repeating itself. For each section, the user
can choose which instruments are used, what parts
they play, accompanying animations, and other pa-
rameters. After specifying these, the user clicks to
indicate the section that will be played next. A cut
is cued for the new section, and occurs when the cur-
rently playing section reaches an appropriate choice

232

Figure 8: One window of an application that allows
parameters of each of four musical sections to be
specified, and cuts to each section cued.

point. Among other things, the choice point mecha-
nism makes it simple to indicate that the places in the
verse where a chorus is allowed to begin are different
than the places where the bridge is allowed to begin.

Another application, mentioned above, allows the
creation of interactive hypermedia, in which the user
may click on moving objects in a video to cause
branches in the presentation. Each stream (contain-
ing video, audio, and other media) is described in a
simple scripting language. During authoring, the user
may draw a rectangle over an object in the video dis-
played by a script (the primary stream), and move
and resize the rectangle, representing an invisible but-
ton, to follow that object as it moves. Slow playback
(implemented easily via Tactus clocks) allows easy oh-
ject tracking. A secondary script is specified for each
button created. The primary script is automatically
modified to include the rectangle motion commands,
and references to the secondary scripts. The Tactus
cut mechanism ensures that when one of the invisible
moving rectangles is clicked upon, the presentation of
the appropriate secondary stream is fast and glitch
free.

9 Summary and Conclusions

Our research is aimed at computation-oriented in-
teractive multimedia systems. We have implemented
an object-oriented framework that helps program-
mers schedule and create timestamped multimedia
data streams. Data can be a mixture of computed
and “canned,” discrete and continuous information.
The I‘nctus Server buffers and synchronizes multi-
ple stw;ims. Because computation and communica-
tion loails vary in practice, data is precomputed and
buffered I O avoid glitches in presentations.

Given that a certain amount of buffering (and
therefore delay) is necessary, we have designed a mech-
anism to enhance interactivity and reduce latency.
The mechanism is based on identifying discrete choice
points, precomputing or prefetching alternative pre-
sentations (choices), and making synchronous cuts
from one media stream to another. Our primary con-
tributions are the use of cuts as a general mechanism
for speculative precomputation and the specification
and implementation of a cut facility within Tactus.

We believe the techniques described here are useful
for an interesting class of multimedia systems. Ap-
plications include simulations, surrogate travel, help
systems, music, games, and interactive fiction. These
techniques are specifically useful for reducing the ob-
served latency of local disks, remote video servers, and
discrete computations. ,

The use of these techniques does not necessarily im-
ply greater buffering or latency than that seen in more
convedtional systems. For example, even video tele-
conferencing systems, optimized for low latency, can
exhibit appreciable delays, and similar timestamping
and buffering techniques have been used [12]. The la-
tency between computation and presentation in our
system should be only as long as the worst-case com-
putation or data access time that the system needs to
hide. We expect this to be roughly in the range of 0.1
to 5 seconds. Below 0.1 seconds, precomputation is
not likely to provide substantial benefits. As latency
becomes very high, these techniques break down be-
cause more and more resources are needed for specu-
lative computation.

Acknowledgments

This work was sponsored by the IBM Corporation.
Joe Newcomer was a valuable contributor to the Tac-
tus and cut mechanism design. We would also like to
thank J im Zelenka and Kevin Goldsmith for work on
Tactus.

References

[1] R. B. Dannenberg, T . Neuendorffer, J . M. New-
comer, D. Rubine, and D. Anderson, “Tactus:
Toolkit-level support for synchronized interactive
multimedia,” Multimedia Systems J o u r i d , vol. 1,
no. 2, pp. 77-86, 1993.

[2] D. P. Anderson and R. Kuivila, “Accurately
timed generation of discrete musical events,”

Computer Music Journal, vol. 10, pp. 48-56, Fall
1986.

[3] D. P. Anderson and G. Homsy, “A continuous
media i/o server and its synchronization mecha-
nism,” Computer, pp. 51-57, October 1991.

[4] T . D. C. Little and A. Ghafoor, “Spatio-temporal
composition of distributed multimedia objects
for value-added networks,” Computer, pp. 42-50,
October 1991.

[5] D. New, J . Rosenberg, G. Cruz, and T . Judd,
“Requirements for network delivery of stored in-
teractive media,’’ in Third International Work-
shop on Network and Operating System Support
For Digital Audio And Video, pp. 147-153, IEEE
Computer and Communication Societies, Novem-
ber 1992.

[6] L. A. Rowe and B. C. Smith, “A continuous me-
dia player,” in Third International Workshop on
Network and Operating System Support For Dig-
ital Audio And Video, pp. 334-344, IEEE Com-
puter and Communication Societies, November
1992.

[7] P. Wayner, “Inside QuickTime,” Byte, vol. 16,
p. 189, December 1991.

[8] T . Yager, “The multimedia PC: High-powered
sight and sound on your desk,’’ Byte, vol. 17,
p. 217, Feb. 1992.

[9] K. Kahn, “Director guide,” Tech. Rep. MI‘r AI
Laboratory Memo 482B, MIT, December 1979.

[lo] D. Ferrari, A. Banerjea, and H. Zhang, “Net-
work support for multimedia: A discussion of the
Tenet approach,” Tech. Rep. TR-92-072, Com-
puter Science Division, University of California
at Berkely, November 1992.

[ll] A. J . F. Palay, M. Hansen, M. Kazar, M. Sher-
man, M. Wadlow, T . Neuendorffer, Z. Stern,
M. Bader, and T . Peters, “The Andrew toolkit
- an overview,” in Proceedings USENIX Techni-
cal Conference, pp. 9-21, USENIX, Winter 1988.

[12] K. Jeffay, D. L. Stone, T . Talley, and F. D. Smith,
“Adaptive, best-effort delivery of digital audio
and video across packet-switched networks,” in
Third International Workshop on Network and
Operating System Support For Digital Audio And
Video, pp. 1-12, IEEE Computer and Communi-
cation Societies, November 1992.

233

