The CMU MIDI Toolkitl

Roger B. Dannenberg

Computer Science Department and
Center for Art and Technology
Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

Copyright (C) 1985 Roger B. Dannenberg

Abstract

The CMU MIDI Toolkit is a collection of programs for experimental computer music education,
composition, performance, and research. The programs are intended to allow low-cost
commercial synthesizers to be used in experimental and educational applications. The CMU
MIDI Toolkit features a text-based score language and translator, a real-time programming
environment, and it supports arbitrary tuning and rhythm.

1. Introduction and Overview

The CMU MIDI Toolkit (CMT) is a software package designed for experimental computer
music education, composition, performance, and research. CMT includes a compiler for a
simple, text-based music language, and software for recording, playing, and computing MIDI
data in real time. CMT has three major attractions: the flexibility of an open-ended design, the
availability of source code, and low system cost. What does CMT do? The major components
and their functions are described below:

Adagio is a language and an associated compiler. In Adagio, a note is represented by a line of
text that specifies attributes such as pitch, duration, and loudness. Adagio is quite flexible and is
compatible with several different ways of thinking about scores. For example, ‘‘Q’’ stands for a
quarter note, but duration can also be indicated by ‘“U87°’, which means 0.87 seconds. Adagio
also supports arbitrary tuning systems.

Transcribe reads input from a MIDI keyboard or other MIDI controller and produces an
Adagio score. The score can be played back using Adagio, or it can be edited with a text editor
to make alterations. Since Transcribe output is at least somewhat readable by people, it can also
be used for performance analysis.

IPublished as: Dannenberg, ‘“The CMU MIDI Tookit,”’ in Proceedings of
the 1996 International Computer Music Conference, International
Computer Music Association, (October 1996), pp 53-56.



Record is a combination of Adagio and Transcribe. It plays an existing Adagio score while
transcribing a performance. Thus, complex compositions can be created one part at a time as if
using a multi-track tape recorder.

DXGet and DXPut are programs for recording and replaying MIDI system exclusive
messages. These programs are typically used to save and restore synthesis parameters for a
digital synthesizer.

Moxc is a real-time programming environment that is ideal for writing interactive music
programs. Moxc is an extension of the C programming language and is based on Douglas
Collinge’s Moxie language.

Also provided are routines (in C) that allow direct production of MIDI output. Other routines
are available to read MIDI data from a circular input buffer and to get the current time with 0.01
second resolution.

Required hardware and software. CMT runs on an IBM-XT or IBM-AT with a Roland
MPU-401 MIDI interface and IBM-PC interface adapter. You should also have a screen-based
text editor. To use Moxc, you will need a Lattice C compiler.

Other details. CMT is distributed by the CMU Center for Art and Technology, Carnegie-
Mellon University, Pittsburgh, PA, 15213. We hope that users will contribute new software to
the system and enhance the existing software in various ways. We will encourage this by
helping to integrate and document new software and by distributing software updates to CMT
users.

Below, we will provide more specific descriptions of selected components of CMT, followed
by some general comments.

2. Adagio

Adagio is a small compiler for note-oriented scores. It has its roots in the score languages of
Music V and related computer music synthesis programs, but Adagio is easier to use and more
portable. Adagio also has the capability of expressing (sampled) continuous functions although
work is needed to make this feature more useful.

A note is described in Adagio by a set of attributes, and any attribute not specified is
“‘inherited’” from the previous note. Attributes may appear in any order and must be separated
by one or more blanks. An attribute may not contain any blanks. The attributes are: time, pitch,
loudness, voice number, duration, and timbre.

Adagio has been used to program a variety of hardware and software synthesizers, and the
Adagio compiler can be easily adapted to new environments [2]. Although not originally
intended for MIDI, Adagio works quite well as a representation for MIDI scores. The MIDI
version of Adagio currently uses the timbre attribute to select a MIDI ‘‘program’’ (synthesizer
preset). Adagio has been extended to allow MIDI controller data such as modulation wheels,
pitch bend, and volume.



3. Nonstandard Tunings

Tuning in MIDI is normally twelve-tone equal temperment. MIDI has no provisions to change
this except by using the pitch bend control. In general, a different setting of pitch bend is needed
for each pitch in a scale. Needless to say, this can be very tedious to program explicitly;
however CMT has a way to automate the use of pitch bend to obtain the desired scale. The
tuning mechanism in CMT is quite simple: whenever a program (Adagio, Record, Transcribe,
Moxc, etc.) goes to play a note, the note’s pitch is used as an index into a table of (pitch, pitch
bend) pairs. The pitch bend is sent, followed immediately by the pitch from the table. Using the
table, it is possible to translate every specified pitch into an arbitrary pitch and pitch bend.

Tuning, transposition, and pitch permutation are all just special cases of this general scheme.
An interesting exercise is to map pitches according to some permutation (say, C to F#, C# to F,
etc.) and to play a fugue with Adagio. Whenever the fugue theme is repeated at the octave, the
permuted theme is also repeated, and rhythms are preserved throughout. In other respects, the
pitch material is radically altered.

The use of this tuning mechanism is completely optional. If no tuning is specified, then notes
are not translated and no pitch bend commands are sent.

4. Moxc

Moxc is based on the language MOXIE [1]. The best way to describe Moxc is to present a
program that illustrates its features. The following program plays a sequence of notes with
diminishing velocities to simulate an echo. The sequence is triggered by a pressing a synthesizer
key and arbitrarily many sequences can be started by pressing multiple keys.

#define delay 15

echo (chan,pitch,vel) {
vel = vel - 5;
if (vel > 0) {
midi note (chan,pitch,vel);
cause (delay, echo, chan,pitch,vel);
} else midi note(chan,pitch,0);

}

keydown (chan,pitch,vel) {
cause (delay, echo, chan,pitch,vel);

}

mainscore () {
cause (1000, mainscore) ;

}

This program is executed in an environment that continually polls for input from either the
computer keyboard or from the MIDI interface. When input is found, the environment makes a
call to a routine specified by the user. One of these routines is keydown, which is defined above.
The keydown routine schedules the echo routine to run after a short delay by calling cause.

The cause routine is the heart of MOXC. Its first argument is a delay (in hundredths of
seconds) and its second argument is the name of a routine. The cause routine schedules a call to
the specified routine after the given delay. Any other parameters to cause are saved and passed
to the specified routine when it is called.



Thus, the echo routine will be called 0.15 seconds after keydown. The echo routine begins by
decrementing its velocity parameter. If the velocity parameter is still greater than zero, echo
plays the given note and uses cause to schedule another call to echo. This will decrease the
velocity further, play another note, and schedule yet another call. This process will repeat until
the velocity goes to zero or below, at which time echo sends a note-off command and terminates.

Moxc is striking in its simplicity; parallelism is achieved with very little effort on the
programmer’s part, MOXC does not require any extra compilation steps beyond those of
ordinary C programs, and the system is capable of running many concurrent activities on a
personal computer.

5. Interface design issues

A few words about the overall design of this interface are in order. To begin with, CMT is
neither a complete interface to the MPU-401 nor to MIDI. Instead, CMT is an attempt at
providing the intended community of users with a rational interface that supports experimental,
real-time computer music functions. One of the reasons CMT comes with source code is so that
if you disagree with these design decisions, you are free to modify or extend the system to meet
your requirements.

The main areas in which CMT deviates from the ‘‘conventional’’ are the absence of *‘tracks’’,
the way in which time is handled, pitch specification, and the lack of external synchronization.
Tracks are a concept implemented in the MPU-401 whereby several sequences of MIDI data can
be merged in real-time. In CMT, the Adagio compiler sorts its data, so tracks are not needed to
play multiple sequences together. For example, to play two Adagio scores simultaneously, one
can normally just concatenate the files together and run Adagio on the new file.

Timing in CMT is probably the most radical departure from MIDI. Whereas MIDI sequencers
normally tend to talk about time in terms of beats, CMT measures time in units of 0.01 seconds.
This is roughly the smallest rhythmic time deviation we can perceive. The rationale behind this
decision is that not all music is measured in beats, and some music has several tempi going
simultaneously. If everything is converted to time in seconds, then one can freely combine
scores with different tempi and meters as well as scores with timing notated directly in seconds.
Another timing issue is that the MPU-401 was designed to allow the host computer to send data
in advance of its actual use. This is not very suitable for interactive real-time programs in which
one normally wants output to occur immediately after data is sent to the MPU-401.

Pitch in CMT is based on earlier computer music systems in which middle C is represented by
the number 48. Therefore, CMT pitch numbers are 12 less than the corresponding MIDI pitch
numbers. CMT also allows users to redefine the interpretation of pitch numbers as described in
Section 3.

Finally, CMT at present has no means for external synchronization and cannot now be used
with other sequencers or drum machines to achieve a synchronized performance. This is partly a
consequence of the fact that CMT does not measure time in beats, while sequencers synchronize
by sending MIDI messages to mark beats and their subdivisions.



6. Applications

CMT is quite practical for realizing computer music compositions. The composition ‘‘Jimmy
Durante Boulevard,”’ presented at this conference, is implemented using CMT. CMT is also
useful as a vehicle for introducing programming to musicians [3]. The CMT manual documents
a subset of C that is adequate for simple compositional work, and the system is used in computer
music courses at CMU.

Another application of CMT is to supplement an existing computer music installation.
Adagio, Transcribe, and Record can be used to prepare and fine tune scores before subjecting
them to a relatively slow realization using software synthesis. Although software synthesis is not
a part of CMT, it is a simple matter to modify the Adagio compiler to output scores in your
favorite language. Alternatively, you can modify your favorite composing program to output
Adagio scores and use CMT to play them on MIDI synthesizers. Thus, CMT can help bridge the
gap between MIDI equipment and a software synthesis environment.

7. Conclusions
CMT was implemented because no other system offered the sort of flexibility and portability
we needed. In particular, CMT differs from existing MIDI software in the following ways:

1. CMT attempts to avoid dependencies on MIDI; CMT has been used with non-
MIDI synthesizers and software synthesis.

2. CMT offers a flexible approach to time and pitch, supporting polyrhythms,
multiple tempi, and arbitrary tunings.

3. CMT is open-ended. The use of readable and editable text-files to encode MIDI
data, and the availability of source code for CMT programs makes the system very
flexible. Adagio has become a standard medium of exchange between many
programs at CMU because of its simplicity, and new applications are relatively
easy to write because of Moxc.

Currently, CMT runs on IBM-PC, IBM-AT, and compatible computers using a Roland
MPU-401 or compatible interface. The system is written in Lattice C. Work is in progress to
port CMT for use with other compilers and other machines, and the author invites anyone
interested to join in this effort.

8. Acknowledgments

Many people have contributed to CMT which grew out of earlier computer music systems
used in the CMU Computer and Electronic Music Studio. Dean Rubine wrote the first MPU-401
interface routines with help from Dale Amon. Joe Newcomer ported this first version to his
IBM-AT and helped clear up many of our interrupt problems. Aaron Wohl wrote routines to use
the PC timer and made many good suggestions for improvements. Michael Cressman wrote the
original tuning software. Most of the development work was done on the IBM-XT in the CMU
Computer and Electronic Music Studio. This machine was part of a grant from IBM.

I also wish to acknowledge support from CMU through the Music Department, the Computer
Science Department, the Center for the Design of Educational Computing, and especially the
Center for Art and Technology.



[1]

[2]

[3]

References

Collinge, D. J.

MOXIE: A Language for Computer Music Performance.

In W. Buxton (editor), Proceedings of the International Computer Music Conference
1984, pages 217-220. International Computer Music Association, 1985.

Dannenberg, Roger B., Paul McAvinney, and Marilyn T. Thomas.

Carnegie-Mellon University Studio Report.

In W. Buxton (editor), Proceedings of the International Computer Music Conference
1984, pages 281-286. International Computer Music Association, 1984.

Dannenberg, F. K., R. B. Dannenberg, and P. Miller.

Teaching Programming to Musicians.

In D. Mansfield (editor), Proceedings Fourth Symposium on Small Computers in the
Arts, pages 114-122. IEEE Computer Society, Washington, D.C., October, 1984.



