
MidiFind: Fast and Effective Similarity
Searching in Large MIDI databases

Tongbo Huang, Guangyu Xia, Yifei Ma
Roger Dannenberg, Christos Faloutsos

School of Computer Science, Carnegie Mellon University
{tongboh,gxia,yifeim,rbd,christos}@andrew.cmu.edu

Abstract. While there are perhaps millions of MIDI files available over
the Internet, it is difficult to find performances of a particular piece
because well labeled metadata and indexes are unavailable. We address
the particular problem of finding performances of compositions for piano,
which is different from often-studied problems of Query-by-Humming
and Music Fingerprinting. Our MidiFind system is designed to search a
million MIDI files with high precision and recall. By using a hybrid search
strategy, it runs more than 1000 times faster than naive competitors,
and by using a combination of bag-of-words and enhanced Levenshtein
distance methods for similarity, our system achieves a precision of 99.5%
and recall of 89.8%.

1 Introduction

As music computing becomes more advanced, we have the opportunity to in-
corporate more data from human performances and to apply machine learning
and music analysis to make computer music systems more musical and more
expressive. Most existing human performances databases, e.g., the CrestMuse
dataset [1] and the ones used in Widmer’s works [21, 22], are collected manually
and take years to build. Moreover, they are either small in scale or not openly
available for research. Potentially, an excellent source of music performance in-
formation is MIDI files on the Internet. There are at least one million MIDI files
online and there are reasons to expect the number to increase. The online MIDI
files are often free and they are also very easily distributed since their size is
about 1000 times smaller than audio files.

However, these files are disorganized and difficult to search by metadata due
to careless or casual labeling. Our goal is to automatically retrieve and organize
these files so that comparative studies of different performances of the same
pieces can be carried out on a large scale. Hence, we need a method to search
on the order of one million MIDI files quickly, in a way that robustly deals
with performance variation, and without using metadata, which would be too
unreliable. Specifically, we aim to solve the following problem:

– Given: A query MIDI file

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 209

2 Tongbo Huang et al

– Find: similar pieces, i.e., different performance versions (including pure quan-
tized versions) of the same composition.

The main challenges to solve these problems are the search quality and scal-
ability. I.e., the system should be both accurate and fast enough to deal with a
database with a million of MIDI files.

The logical structure of our solution is shown in Figure 1. The first step
is to guarantee good search quality by carefully designing different similarity
measurements for different representations. We present novel features for MIDI
data based on a bag-of-words idea and melodic segments, and introduce a new
variation of Levenshtein distance that is especially suitable for music melody.
The second step is to dramatically speed up the search process. We present
different hybrid indexing strategies that combine different representations and
similarity measurements. The final step is to find the ideal thresholds for different
similarity measurements.

To evaluate the system, we use a small and labeled MIDI dataset with 325
files. We also use a large unlabeled dataset that is downloaded and combined
from several smaller datasets which are all free from the Internet. The large
database contains 12,484 MIDI files with around 2,000 similar pieces.

Our MidiFind system is now deployed and hosted on http://midifind.aws.

af.cm. The main contributions of the system are:

– It is effective: it achieve 99.5% precision and 89.8% recall, compared to
pure Levinshtein distance measurement, which achieves 95.6% precision and
56.3% recall.

– It is scalable, with sub-linear complexity for queries, and outperforms naive
linear scanning competitors by more than 1000 times.

The following section describes related work. Section 3 describes feature ex-
traction and search quality. Section 4 discusses various strategies to achieve scal-
ability. Section 5 describes the construction of the MidiFind system. In Section
6, we present experimental results.

2 Related Work

Music Information Retrieval has emerged as an active research area in the past
decade. Much work has been done on music search. Both Music Fingerprint sys-
tems [9, 6] and Query-by-Humming systems [7, 14, 20, 19, 13, 4, 10, 23] are related
to our work.

For Music Fingerprint systems, users record a short period of audio to query
the system and the results are expected to be an exact match, i.e., the query
audio must be a copy of a fragment of the reference audio. These systems are
generally very robust to audio noise but a query of the same song with a slightly
different performance will almost always lead to a failure. On the contrary, our
MidiFind system deals with similar match, i.e., given a query, we aim to find

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 210

MidiFind: Fast and Effective Similarity Searching in Large MIDI databases 3

Fig. 1. The logical structure of Section 3,4,5 of the paper.

different performance versions. Audio noise is out of our consideration since our
query inputs are pure MIDI files.

Query-by-Humming systems share a similar architecture with MidiFind sys-
tem. Most of them store MIDI files as references and they also implement ap-
proximate matching since human performances are not exact. The differences lie
in the query part and the goal of the system. The queries of Query-by-Humming
systems are usually very short audio snippets, while the queries for our Mid-
iFind system are much longer MIDI files. Therefore, we can take advantage of
the discrete nature of MIDI data and the full information contained in the full-
length MIDI query, but at the same time have to deal with larger variations and
a potentially longer matching process for longer sequences. The goals of Query-
by-Humming systems are usually Nearest-Neighbor search, while our MidiFind
system deals with range query, which aims to find out all different performance
versions of the same composition.

Early Query-by-Humming systems [7, 14, 20] used melodic contour (defined
as a sequence of up, down, and same pitch intervals) and string matching to
match similar melodies. Later on, melodic contour was proved unable to distin-
guish melodies in large datasets [19] and researchers started to resort to dynamic
time warping on melody notes [13, 4, 10, 23]. One method studied is a brute-force
fashion of dynamic time warping [13] which is certainly slow due to the O(mn)
complexity (m is the length of query and n is the total length of references)
but serves as a baseline for future research. Different methods have been tested
to speed up the searching process. Two of them [23, 4] are closely related to
our work in that they both use a 2-step pipeline approach to first shrink the
target of candidates and then use dynamic time warping to test the surviving
candidates. However, the first method relies only on dynamic time warping and

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 211

4 Tongbo Huang et al

has a limitation on the length of music. It cannot handle long queries and also
requires segmentation labels on the reference music. The method of [4] has an
innovative idea to combine N-grams with dynamic time warping but the search
performance was poor due to random errors in the queries. Compared to them,
the query of our MidiFind system is longer with few errors, at least at the begin-
ning and ending. This enables us to use bag-of-words and novel clipped melody
features to dramatically shrink the target of candidates and speed up the string
comparison process, respectively.

3 Search Quality

We begin by parsing MIDI files into music note strings. After that, we design two
different representations for each piece of music: the bag-of-words and clipped
melody representation. For the bag-of-words representation, we adopt Euclidean
distance; while for the clipped melody representation, we use enhanced Leven-
shtein distance.

3.1 Euclidean Distance for Bag-of-Words Representation

Inspired by the bag-of-words idea, we create a bag-of-words feature for music.
Every piece of music is treated as a sequence of words, where each note is consid-
ered as a word by ignoring its length and octave. We consider each word as one
of the 12 pitch classes within an octave (in other words, we use the MIDI key
number modulo 12. We can also use modulo 24 and so forth) and consider the
word count as the total number of times that each pitch occurs within the piece
of music. (We actually first tried to incorporate the timing information in the
feature vector but the performance was much worse.) Finally, the word count
is normalized by the total number of pitch occurrences, resulting in a probabil-
ity mass table. In the case of 12 pitch classes, this is equivalent to pitch class
histograms often used in key finding [11].

The similarity of two pieces of music is measured by the Euclidean distance,
as shown in Definition 1, between the corresponding bag-of-words feature vectors.
This method works well, or at least is capable of filtering out most of the different
pieces, since different pieces of music usually have different distributions over the
pitch classes.

Definition 1. The Euclidean distance (ED) between S and T , where |S| = |T |,
is defined as:

ED(S, T) =
√
Σn

i=1(Si − Ti)2

3.2 Enhanced Levenshtein Distance and Melody Representation

Besides the bag-of-words representation, we extract the melody from each piece
of music as in most Query-by-Humming systems [7, 14, 20]. As suggested by
G.Widmer [22], we can simply use the highest pitch at any given time as an

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 212

MidiFind: Fast and Effective Similarity Searching in Large MIDI databases 5

estimate of the melody for each piece of music. The detailed extraction algorithm
is described in Algorithm 1. We then use Levenshtein distance measurement with
different enhancements on the extracted melodies.

Algorithm 1: Melody Extraction Algorithm

Data: Note Strings
Result: Melody Strings
sortedNotes = sort(all notes, prioritize higher pitches);
melodyNotes = empty list;
while sortedNotes is not empty do

note = the note with highest pitch in sortedNotes;
remove note from sortedNotes;
if the period of note is not entirely covered by notes in melodyNotes then

split note into one or more notes of the same pitch named splitNotes,
where each note corresponds to time period that has not been covered;
insert every note in splitNotes into melodyNotes;

end

end
return melodyNotes;

Standard Levenshtein Distance Levenshtein distance (a kind of Dynamic
Time Warping) has been shown empirically to be the best distance measure for
string editing [5], and this is the reason that it is also named string editing dis-
tance as shown in Definition 2. To calculate Levenshtein distance of two melody
strings S and T of length m and n, we construct an m-by-n Levenshtein matrix
where the (ith, jth) element of the matrix is the Levinshtein distance between
the prefix of S of length i and the prefix of T of length j. However, it suffers
high computational complexity, O(mn), which we will discuss in Section 4. For
our melody string distance, we set insertion, deletion, and substitution costs to
be 1. (We actually tried to incorporate the note durations in the melody rep-
resentation and weight the costs by the durations, but the performance turned
out to be much worse.)

Definition 2. The Levenshtein (string editing) Distance [2] between two se-
quences is the minimal number of substitutions, insertions, and deletions needed
to transform from one to the other. Formally, the Levenshtein distance between
the prefixes of length i and j of sequences S and T , respectively, is:

levS,T (i, j) =



max(i, j), if min(i, j) = 0

min


levS,T (i− 1, j) + 1

levS,T (i, j − 1) + 1

levS,T (i− 1, j − 1)

+(Si 6= Tj)

otherwise

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 213

6 Tongbo Huang et al

Enhancement 1: Lev-400 As previously discussed, standard Levenshtein dis-
tance is a good metric for measuring difference between strings. However, it does
have one drawback in that the distance is strongly correlated to the string length.
Unfortunately, melody string lengths vary significantly within our database. Fig-
ure 2 shows the histogram of melody string lengths.

Observation 1 The distribution over the length of melody strings follows a
power law.

0 2000 4000 6000 8000 10000 12000 14000
0

200

400

600

800

Length of melody string

c
o
u
n
t

Fig. 2. Melody string length histogram on larget dataset. Mean: 1303. Standard Devi-
ation: 1240. This follows a power-law pattern.

Such a large variance on the length will cause problems in matching. For
instance, two melody strings S1 and T1 both have length 500, and the other
two melody strings S2 and T2 both have length 1000. If we get a Levenshtein
distance of 100 from both pairs, the first pair is trivially more different from
each other compared to the second pair. This inspires us to find a way to turn
melody strings into equal length and we find a nice property that chopping and
concatenating the first 200 and last 200 notes of long melody strings actually
increases Levenshtein distance accuracy in a large-scale dataset, as in Observa-
tion 2. For melody strings shorter than 400 notes, we do not modify them but
scale up the distances. The reason that this manipulation works is that (1) a
unified length leads to a unified threshold for Levenshtein distance, (2) similar
melodies tend to share more common notes at the beginning and the ending of
the music piece, while performers tend to introduce larger variation in the body
part. We call this enhanced Levenshtein distance Lev-400.

Observation 2 Chopping and concatenating the first 200 and last 200 notes
of long melody strings increases Levenshtein distance accuracy in a large-scale
dataset.

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 214

MidiFind: Fast and Effective Similarity Searching in Large MIDI databases 7

Enhancement 2: Lev-400SC Lev-400 gives us melody strings with l ≤ 400,
where l is length of any string. A by-product of the Levenshtein distance com-
putation is the sequence of notes that is shared by both strings, which can also
be considered the alignment of the strings. By checking how strings align, we
find another property of similar MIDI files: The optimal melody alignment path
stays close to the diagonal in the Levenshtein matrix for similar MIDI files, as
described in Observation 3. The reason for this observation is that we expect the
entire pieces to match without any major insertions or deletions on the notes, so
that the best alignment for similar strings should fall along the diagonal in the
Levenshtein matrix. This property suggests using the Sakoe-Chiba Band, which
constrains the string alignment path by limiting how far it may divert from the
diagonal [16]. An illustration of the Sakoe-Chiba Band is shown in Figure 3.
We propose using a Sakoe-Chiba Band and finding a reasonable band width
to balance the trade off between speed and accuracy. The speed factor will be
discussed in Section 4. We call this enhanced distance metric Lev-400SC.

Observation 3 The melody string alignment path corresponding to the smallest
Levenshtein distance stays close to the diagonal for similar MIDI files in large-
scale datasets.

Fig. 3. The illustration of Sakoe-Chiba Band (between thin diagonal black lines) that
acts as a global constraint on the Levenshtein alignment path of a Levenshtein matrix.

4 Search Scalability

The similarity measurements mentioned in Section 3 lay the ground for accurate
matching between MIDI files. However, since there are at least one million MIDI
files on the internet, to search through all those files and find similar ones for
any query can be very time consuming. That is why we design a set of hybrid
methods (MF-Q, MF-SC, MF) that combine advantages from both similarity
measurements and provide a way to search through the database that is both
fast and accurate.

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 215

8 Tongbo Huang et al

4.1 MF-Q: Combine Euclidean and Lev-400 Distance

We have discussed in Section 3 that using Euclidean distance on the bag-of-
words representation can differentiate MIDI files that are dramatically different.
However, we also need to consider the fact that some MIDI files might share the
same notes but have entirely different orderings. Bag-of-words will not differen-
tiate such MIDI files since mapping them to a low dimension (multiples of 12
depending on number of octaves involved), we lose a big chunk of information.
The parsing step for the Euclidean distance will convert note sequences to low
dimensional vectors. The complexity is linear to the size of MIDI files, and it
only needs to be performed once. However, after finishing the parsing step, the
calculation of Euclidean distance between two files is very fast: proportional to
d, where d is the dimension of the word space.

Levenshtein distance is generally considered to be highly accurate but time
consuming. All calculations are performed on melody strings extracted from
the note strings, as introduced in section 3.2. For two melody strings S and
T with length m and n, the runtime is proportional to m · n. By clipping and
concatenating melody strings to 400 notes, we effectively set an upper bound
on the runtime of Lev-400: min{m, 400} ·min{n, 400} < 400 · 400. As shown in
Figure 2, the average length of melody strings is 1303; therefore, the clipped
melody representation will lead to a speed-up of about 10.

Building on the two representations and similarity measurements, we de-
sign a hybrid method that runs bag-of-word first and then further filters the
result by using Levenshtein distance. This is named MF-Q (short for MidiFind-
Quadratic). The idea is that we want to shrink down the number of possible
similar MIDI candidates by thresholding Euclidean distance. Although the can-
didate set from this step contains high probability of false-positives, they will
be identified and removed by the Levenshtein distance step. The MIDI files re-
turned in the final result has high probability to be either the query itself or
some variation of that same music piece. Assume we retain only a percentage of
p out of total melody strings through bag-of-words thresholding, then the total
runtime needed to find similar pieces (excluding one-time parsing time) will be
proportional to (d+ (400 · 400)p)N , where d is the bag-of-words dimension and
N is the total number of MIDI files. We finally achieve a p as small as 0.025
which leads to a further speed-up of about 40. Therefore, the MF-Q speeds up
the system about 400 times. We will discuss how to choose the p in Section 5
and give detailed experimental results in Section 6.

4.2 MF-SC: Sub-Quadratic Levenshtein Distance with Sakoe-Chiba
Band

MF-Q combines two distance metrics, but the Lev-400 step is still time-consuming.
As mentioned in the Lev-400SC distance metric, we can limit the string editing
path in the Levenshtein matrix. Consider our MIDI dataset and take melody
string S and T with length m and n as an example, we limit the bandwidth to
be

b = max{0.1 ·min{m,n, 400}, 20}

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 216

MidiFind: Fast and Effective Similarity Searching in Large MIDI databases 9

which is at least 20 notes and increases with the actual length. After using Sakoe-
Chiba Band, the complexity of string comparison is sub-quadratic:min{m,n, 400}·
b. We call this method MF-SC (short for MidiFind-Sakoe-Chiba). MF-SC can
achieve an accuracy performance that is close to MF-Q with a speed-up of about
10. We show the experimental results in Section 6.

4.3 MF: Search Using Metric Tree

MF-SC speeds up the Levenshtein distance step. We propose a further speed-
up for the Euclidean distances by adopting the Metric Tree (M-tree), and call
this method MF. An M-tree is constructed with a distance metric and relies on
the triangle inequality for efficient range and k-NN queries. It is very effective
when there is a clear threshold to differentiate close nodes and distant nodes
[3]. However, it is not very effective when overlaps are big among similar and
distant nodes and there is no clear strategy to avoid them. The M-tree has a
hierarchical structure just like other common tree structures (R-tree, B-tree),
and it tries to balance its nodes according to the given metric. Each node has
a maximum and minimum capacity c. When exceeding the maximum capacity,
the node will be split into two nodes according to a given splitting policy. For
MF, we tried using two splitting policies: maximum lower bound on distance
and minimum sum of radii, as in Definition 3 and Definition 4, we also set the
the maximum and minimum capacity of nodes to be 8 and 4.

Definition 3. Let N be the current node and S be the set of N and its children,
then the maximum lower bound on distance is achieved by promoting Si and Sj to
be new center nodes, in which Sj ≡ N , and Si s.t. d(Si, N) = maxj{d(Sj , N)}.
Definition 4. Let N be the current node and S be the set of N and its children,
then the minimum sum of radii is achieved by promoting Si and Sj to be new
center nodes, and assign all nodes in S to Si or Sj, which gives the smallest sum
of radii.

The trade-off is that Minimum Sum of Radii needs to calculate every possible
distance pair in S, but is a better split spatially and ensures minimum overlap.
It is faster while performing range queries but the performance decays as the
threshold increases. The actual data entries in M-trees are all stored in leaf
nodes while non-leaf nodes are duplicates of the leaf nodes. Optimally, M-trees
can achieve O(logc|D|), where c is the maximum capacity of nodes and D is
the dataset. However, the M-tree performance degrades rapidly when there are
overlaps between nodes. By testing different thresholds, we finally achieve a
speed-up of a factor of 2 to compute the Euclidean distances. More detailed
experimental results will be given in Section 6.

5 MidiFind: A Music Query System

In this section, we describe how to build the MidiFind system by taking both
searching quality in Section 3 and searching scalability in Section 4 into consider-
ation. We start by finding ideal thresholds for different similarity measurements,

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 217

10 Tongbo Huang et al

and then formally present the pipeline searching strategy which achieves both
effectiveness and efficiency in similarity search.

5.1 Find Similarity Measurement Thresholds

The goal of threshold setting is to maximize the benefits from both similarity
measurements. We first compute the precisions, recalls, and F-measures as func-
tions of different thresholds. Then, we choose the Lev-400SC distance threshold
(εLev) that leads to the largest F-measure, and choose the Euclidean distance
threshold (εED) that leads to a large recall and a reasonable time cost.

It is important to notice the different roles between εED and εLev. The role of
εED is to not only dramatically shrink the number of target candidates, but also
retain a high recall. In other words, the candidates returned by using εED should
balance the number of false negatives and retained candidates. The role of εLev

is to identify similar MIDI performances accurately. Therefore, we choose εLev

that leads to the highest F-measure. Our final MidiFind system uses εED = 0.1
and εLev = 306.

5.2 MidiFind System Pipeline

Here we formally present the pipeline strategy to find similar MIDI pieces based
on a user-submitted MIDI file query Q to the MidiFind system, as shown in
Algorithm 2.

Algorithm 2: MidiFind System Algorithm

Data: The query melody string Q, and reference melody strings
R = {R1, R2, · · · , R|R|}

Result: The set of similar melody string M
Step1: Within R, do range query on Euclidean distance (M-tree) based on
bag-of-words representation and get a set of candidates SBoW , where the
distance between each element of SBoW and Q is less than εED;
Step2: Within SBoW , do range query on melody Lev-400SC distance (Sequential
Scan) and get M, where the distance between each element of M and Q is less
than εLev ;
return M;

6 Experiments

6.1 Quality Experiments

In these experiments, we examine how well our proposed similarity measure-
ments can find pairs of MIDI performances of the same music composition on
real datasets. In essence, we claim a discovery of a pair if their distance is smaller
than a given threshold. Since truly different performances of a same music com-
position should indeed be very similar at some threshold, our algorithms can
discover these pairs with high precision and recall.

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 218

MidiFind: Fast and Effective Similarity Searching in Large MIDI databases 11

The MIDI files in these experiments come from the Music Performance Ex-
pression Database, which belongs to the CrestMuse Project [1]. There are 325
different MIDI files consisting of 79 unique compositions and 2,289 pairs of MIDI
files sharing the same composition. Our goal is to discover all these 2,289 pairs.

We compared four discovery methods based on the following three feature
sets and their corresponding similarity measurements:

– ED (Section 3.1): Each MIDI file is represented by a 12-dimensional vector
where every element is the proportion of melody notes that is played on this
key at any octave. The ED similarity of two MIDI files corresponds to the
Euclidean distance of their two 12-dim vectors.

– Standard-Lev (Section 3.2): Each MIDI file is represented by a string of
melody pitches without any truncation. The Standard-Lev similarity of two
MIDI files corresponds to the Standard Levenshtein distance.

– Lev-400SC (Section 3.2): Each MIDI file is represented by a string of melody
pitches. The string is then truncated to have the first 200 and the last 200
notes only. The Lev-400SC similarity of two MIDI files corresponds to the
Levenshtein distance with Sakoe-Chiba band of their two length 400 strings.
In the case that a melody string has length smaller than 400, the distance is
scaled up.

The four discovery methods we compare are:

– ED-thresholding: Claiming two MIDI files to be different performances of
the same music composition if their ED distance is below some threshold.

– Lev-400SC-thresholding: Claiming two MIDI files to be different perfor-
mances of the same music composition if their Lev-400SC distance is below
some threshold.

– Standard-Lev-thresholding: Claiming two MIDI files to be different perfor-
mances of the same music composition if their standard Levenshtein distance
is below some threshold.

– MF-thresholding: Claiming two MIDI files to be different performances of
the same music composition if both their ED distance and their Lev-400SC
distance are below some thresholds.

We first consider the precisions, recalls, and F-measures of all methods with
different threshold parameters. The true set of MIDI file pairs is hand labeled.
As can be seen in Figure 4(a),(b),(c)&(d), better precision appears when the
thresholds ε are set smaller, because this eliminates many false positives. On the
other hand, better recall appears when ε is set larger. We can clearly see that
the accuracy of Lev-400SC thresholding dramatically outperforms Standard-Lev
thresholding. The fact that both precision and recall become high at some ε̂, (the
choices and their qualities are in Table 1), and remain high in its neighborhood
indicates that there is a big overlap between the true similar set and the similar
set we found. This fact also give us some flexibility to tune the parameters.

Finally, the best parameter set that optimizes the F-measure for the MF-
thresholding method is (0.18, 306) with F-measure 96.6% whereas our choice of

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 219

12 Tongbo Huang et al

0.033 0.1 0.3
0

50%

100%

pair−wise distance
(a) ED

200 300 400
0

50%

100%

pair−wise distance
(b) Lev-400SC

Precision

Recall

F−measure

50 100 200
0

50%

100%

pair−wise distance
(c) Standard-Lev (d) MF

Fig. 4. (a)(b)(c): Precision, recall, and F-measure of the four methods against various
distance threshold parameters. (d): F-measure of the MF method against different
threshold parameters.

(0.1, 306) which balances quality and scalability achieves an F-measure of 94.4%
(Figure 4(d)).

Table 1. Best thresholds and their qualities

Method Threshold Precision Recall F-measure

ED 0.087 88.6% 88.3% 88.4%

Lev-400SC 302 98.5% 94.3% 96.4%

Standard-Lev 66 95.6% 56.3% 70.8%

MF (our choice) (0.1, 306) 99.5% 89.8% 94.4%

MF (optimal) (0.18, 306) 98.6% 94.7% 96.6%

6.2 Scalability Experiments

The scalability experiments are conducted by using the large dataset which con-
tains 12484 MIDI files. The experiments all run on a 3.06 GHz, 2-core (Intel
Core i3) machine with 4GB Memory, so that users of MidiFind system could
achieve similar performance by using personal computers.

We begin the scalability experiments by testing how much speed we can gain
by using a hybrid searching strategy. Intuitively, more candidates will be filtered

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 220

MidiFind: Fast and Effective Similarity Searching in Large MIDI databases 13

out if a smaller threshold for Euclidean distance (εED in Algorithm 2) is adopted
for bag-of-words features, and vice versa. Figure 5 shows the relationship between
the Euclidean threshold and the fraction of remaining candidates. It is clearly
shown that we can filter out about 97.5% if we adopted a threshold εED = 0.1.

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
0

0.02

0.04

0.06

0.08

ED threshold

F
ra

c
ti
o

n
 o

f
s
u

rv
iv

in
g

 c
a

n
d

id
a

te
s

Fig. 5. The relationship between εED and the fraction of remained candidates.

We then test how much speed we can gain by using different M-tree algo-
rithms mentioned in 4.3. Figure 6 shows the relationship between the Euclidean
threshold εED and the fraction of candidates whose Euclidean distances need
to be checked. It can be seen that the maximum lower bound approach works
better, and with εED = 0.1, we can skip 55% of the candidates when we compute
the Euclidean distance.

Finally, we compare the speed of all mentioned searching strategies based
on how many MIDI files can be searched within in one second. As shown in
Figure 7, the fastest method is MF which only takes less than 0.1 second even
if the dataset size is more than 10, 000. The MF-SC is slightly slower than MF
since MF only speed up the procedure of computing Euclidean distances, which
is less costly than computing Levenshtein distances. MF-Q is about 10 times
slower than MF, while the linear scanning on Lev-400 distances is about 400
times slower. Compared with the naive linear scan competitor (standard-Lev),
our MF method is more than 1000 times faster.

7 Conclusions

We present MidiFind, a MIDI query system for effective and fast searching of
MIDI file databases. The system has the properties we mentioned earlier:

– Effectiveness: it achieves high precision and recall by using novel similarity
measurements based on bag-of-words and melody segments, which outper-
forms standard Levenshtein distance.

– Scalability: our MidiFind system is dramatically faster than the naive stan-
dard Levenshtein distance linear scanning, which is O(mnN), where m and

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 221

14 Tongbo Huang et al

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

0.35

0.4

0.45

0.5

0.55

0.6

0.65

ED threshold

R
a

ti
o

 t
o

 l
in

e
a

r
s
c
a

n

maximum lower bound approach

minimum sum of radii approach

Fig. 6. Search time comparison between M-tree split policies. The y-axis is the fraction
of Euclidean distance calculations compared to linear scan. Minimum sum of radii has
fewer calculations than maximum lower bound on distance, but it takes longer to build
the M-tree. The advantage on search time decreases as threshold increases.

Standard−Lev Lev−400 MF−Q MF−SC MF
10

0

10
2

10
4

10
6

lo
g
(#

 o
f
s
e
a
rc

h
 p

e
r

S
e
c
o
n
d
)

Fig. 7. A comparison of the speed of all searching strategies.

n are lengths of two compared strings and N is the size of the database. By
using melody segments representation, bag-of-words filtering, Sakoe-Chiba
Band, and M-tree, we achieve speed-ups of 10, 40, 10, and 1.05, respectively,
which finally leads to a speed-up of more than 1000 times. Since the methods
scales linearly, we are able to achieve one search within 10 seconds even if
the size of the database is 1 million.

8 Future Work

Potentially, we can improve the MidiFind system by substituting existing rule-
based methods by more machine-learning based approaches. Here, we discuss
the possibilities in terms of both effectiveness and scalability.

Effectiveness: We see a small gap of recall between the optimal threshold
choice and our choice in Table 1. The optimal parameters are not chosen since
it will lead to a very low precision for Euclidean distance, which will create a

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 222

MidiFind: Fast and Effective Similarity Searching in Large MIDI databases 15

very large overhead for the next string matching step. It is possible to learn a
representation from data which could achieve higher precision than the current
bag-of-words representation.

One possibility is to design more “words” based on musical knowledge, and
then use Principle Component Analysis (PCA) [18] to reduce the dimensionality.
The advantage of PCA is that it automatically “groups” the related informa-
tion, so that the final representation contains richer information and pays less
attention to uninformative details. Another possibility is to use Kernel PCA [17]
to directly learn a representation from the strings of various lengths. By using
a string kernel [12, 15], we can also take the structure of the string into account
rather than just counting the times of the words.

We also see that though the melody string matching process is very accurate,
it may rely on the fact that highest pitches are representative enough for piano
pieces. For non-piano pieces, we may need more advanced melody extraction
algorithms.

Scalability: We see a speed-up factor of 2 to compute the Euclidean distance
by using M-tree indexing. It might be possible to increase the speed-up factor
by using locality-sensitive hashing (LSH) [8]. Someone may argue that this step
is not very critical since that the overhead of Euclidean distance computation
is just about 10% of the one of whole computation. However, it is possible that
the fraction of Euclidean distance computation will increase as the data size
increases to 1 million, in which case the Euclidean distance computation step
will become more significant.

We could adopt a k-bit (e.g., 32-bit or 64-bit based on the CPU architecture)
LSH function which could basically perform a query in a constant time. There is
certainly a trade-off between accuracy and speed. As for precision, the LSH can
at least return a rough set of candidates very quickly. After performing LSH,
we can check the true Euclidean distance between the set of candidates and the
query by linear scanning. In other words, LSH will serve as another filter, so that
we end up using a pipeline approach to sequentially filter the candidates by using
LSH, Euclidean distance, and finally the actual string matching. As for recall,
our pipeline approach will unavoidably create some false negatives, though it
has been shown that the false negative probability can be driven very low by
tuning the parameters. However, considering our goal of searching 1 million files,
a small trade-off on recall, we would argue, will not be a big issue.

References

1. Crestmuse. http://www.crestmuse.jp/pedb/
2. Levenshtein distance. http://en.wikipedia.org/wiki/Levenshtein_distance
3. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An effcient access method for similarity

search in metric spaces. In: Proceedings of the 23rd Athens Intern. Conf. on VLDB.
pp. 426–425 (1997)

4. Dannenberg, R.B., Birmingham, W.P., Pardo, B., Hu, N., Meek, C., Tzanetakis,
G.: A comparative evaluation of search techniques for query-by-humming using the
musart testbed. J. Am. Soc. Inf. Sci. Technol. 58(5), 687–701 (Mar 2007)

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 223

16 Tongbo Huang et al

5. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. Proceedings of the VLDB Endowment 1(2), 1542–1552 (2008)

6. Ellis, D., Whitman, B., Jehan, T., Lamere, P.: The Echo Nest Musical Fingerprint
(ENMFP). In: International Symposium on Music Information Retrieval (2010)

7. Ghias, A., Logan, J., Chamberlin, D., Smith, B.C.: Query by humming: musical
information retrieval in an audio database. In: In ACM Multimedia. pp. 231–236
(1995)

8. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings of the 25th International Conference on Very Large Data
Bases. pp. 518–529. VLDB ’99, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1999)

9. Haitsma, J., Kalker, T.: A highly robust audio fingerprinting system. In: Interna-
tional Symposium on Music Information Retrieval (2002)

10. Jang, R., Lee, H.: Hierarchical filtering method for content-based music retrieval
via acoustic input. In: Proc. ACM Multimedia. pp. 401–410. ACM Press (2001)

11. Krumhansl, C.L.: Cognitive Foundations of Musical Pitch. Oxford University
Press, New York (2001)

12. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. J. Mach. Learn. Res. 2, 419–444 (Mar 2002)

13. Mazzoni, D., Dannenberg, R.B.: Melody matching directly from audio. In: Inter-
national Symposium on Music Information Retrieval. pp. 17–18 (2001)

14. Mcnab, R.J., Smith, L.A., Bainbridge, D., Witten, I.H.: The New Zealand Digital
Library MELody inDEX. D-Lib Magazine 3(5), 4–15 (1997)

15. Paass, G., Leopold, E., Larson, M., Kindermann, J., Eickeler, S.: Svm classification
using sequences of phonemes and syllables. In: Proceedings of the 6th European
Conference on Principles of Data Mining and Knowledge Discovery. pp. 373–384.
PKDD ’02, Springer-Verlag, London, UK, UK (2002)

16. Papapetrou, P., Athitsos, V., Potamias, M., Kollios, G., Gunopulos, D.:
Embedding-based subsequence matching in time-series databases. ACM Transac-
tions on Database Systems (TODS) 36(3), 17 (2011)

17. Scholkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In:
Advances in Kernel Methods - Support Vector Learning. pp. 327–352. MIT Press
(1999)

18. Shlens, J.: A tutorial on principal component analysis. In: Systems Neurobiology
Laboratory, Salk Institute for Biological Studies (2005)

19. Uitdenbogerd, A., Zobel, J.: Manipulation of Music for Melody Matching. In: ACM
Multimedia. pp. 235–240 (1998)

20. Uitdenbogerd, A., Zobel, J.: Melodic matching techniques for large music
databases. In: Proceedings of the seventh ACM international conference on Mul-
timedia (Part 1). pp. 57–66. Multimedia ’99, ACM, New York, NY, USA (1999)

21. Widmer, G., Flossmann, S., Grachten, M.: YQX plays Chopin. AI Magazine 30(3),
35–48 (2009)

22. Widmer, G., Tobudic, A.: Playing Mozart by analogy: Learning multi-level timing
and dynamics strategies. Journal of New Music Research 32(3), 259–268 (2003)

23. Zhu, Y., Shasha, D.: Warping indexes with envelope transforms for query by hum-
ming. In: Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. pp. 181–192. SIGMOD ’03, ACM, New York, NY, USA
(2003)

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 224

	Preface
	Foreword
	Chairs of the Conference
	Organizing Committee
	Paper Committee
	Additional Reviewers

	Programme / Table of Contents
	Keynotes
	Jean-Claude Risset - Music: Ars Bene Movandi
	Cathy Craig - Moving Better: How can sound help?
	Marcelo M. Wanderley - Movement, Mapping and Digital Musical Instruments
	Norbert Corsino - The Silences of Dance
	Daniel Deshays - Gesture and Sound

	Oral Session 1: Augmented Musical Instruments and Gesture Recognition
	Investigation of the Harpist/Harp Interaction
	Participatory Workshops: Everyday Objects and Sound Metaphors
	Vibrotactile Augmentation of an Open-air Music Controller
	Automatic Classification of Guitar Playing Modes
	Extracting Commands from Gestures: Gesture Spotting and Recognition for Real-time Music Performance

	Oral Session 2: Music and Emotions: Representation, Recognition, and Audience/Performers Studies
	Formalizing Evaluation in Music Information Retrieval: A Look at the MIREX Automatic Mood Classiﬁcation Task
	The Role of the Singing Acoustic Cues in the Perception of Broad Affect Dimensions
	The Mood Conductor System: Audience and Performer Interaction using Mobile Technology and Emotion Cues

	Oral Session 3: The Art of Sonification
	Making Data Sing: Embodied Approaches to Sonification
	Seismic Sound Lab: Sights, Sounds and Perception of the Earth as an Acoustic Space
	Music with Unconventional Computing: Towards a Platform for Physarum Polycephalum Sound Synthesis

	Oral Session 4: When Auditory Cues Shape Human Sensorimotor Performance (Part 1)
	Evidence of Metrical Information Encoding within Sustained Notes as Coordination Strategy in a Violin-Cello Duet
	Does Running in Synchrony with Sound Improve Endurance Performance and Save Energy?
	Moving with Beats and Loops: the Structure of Auditory Events and Sensorimotor Timing

	Oral Session 5: When Auditory Cues Shape Human Sensorimotor Performance (Part 2)
	Guiding Motion Using a Sound Target
	Synchronizing Gestures with Friction Sounds: Work in Progress
	Handwriting Movement Sonification for the Rehabilitation of Dysgraphia

	Oral Session 6: Music and Sound Data Mining
	MidiFind: Fast and Effective Similarity Searching in Large MIDI Databases
	Discovering Repeated Patterns in Music: State of Knowledge, Challenges, Perspectives
	Fragmentations with Pitch, Rhythm and Parallelism Constraints for Variation Matching
	Predicting Agreement and Disagreement in the Perception of Tempo

	Oral Session 7: Interactive Sound Synthesis
	A Virtual Reality Platform for Musical Creation
	Retexture - Towards Interactive Environmental Sound Texture Synthesis through Inversion of Annotations
	Intonaspacio: A Digital Musical Instrument for Exploring Site-Specificities in Sound

	Oral Session 8: Non-stationarity, Dynamics and Mathematical Modeling
	LTFAT: A Matlab/Octave Toolbox for Sound Processing
	Identifying Novelty and Sound Objects in Texture Sounds by Sparse Adaptation of Gabor Coefficients
	Improved Spectral Analysis Using Waveform-Aligned Adaptive Windows

	Oral Session 9: Image-Sound Interaction
	Changing the Interval Content of Algorithmically Generated Music Changes the Emotional Interpretation of Visual Images
	The Grouping of Sound Movements as Expressive Gestures
	Musical Sonification of Avatar Physiologies, Virtual Flight and Gesture

	Oral Session 10: Auditory Perception and Cognitive Inspiration
	Understanding Coarticulation in Music
	Symbolic Segmentation: A Corpus-Based Analysis of Melodic Phrases
	Using Vocal Imitations for Sound Design
	Characteristics of an Auditory Memory Model for Audio Feature Estimation

	Oral Session 11: Modeling of Sound and Music - Computational Musicology
	Cognitive Similarity Grounded by Tree Distance From the Analysis of K.265/300e
	Modified Group Delay Feature for Musical Instrument Recognition
	A Multiple-Expert Framework for Instrument Recognition
	Syncopalooza: Manipulating the Syncopation in Rhythmic Performances
	108 Cent Filter Banks and its Relevance to Identifying the Main Song in Carnatic Music

	Poster Session 1
	A New State-of-the-Art for Augmented Instruments: Feed-Drum & Skin-Act
	Towards a Hand Skeletal Model for Depth Images Applied to Capture Music-like Finger Gestures
	Combining Musical Tasks and Improvisation in Evaluating Novel Digital Musical Instruments
	Vibrotactile Notification for Live Electronics Performance: A Prototype System
	The Crazy Square: an Interactive Music Learning Environment for Digital Natives
	Constellation: A Tool for Creative Dialog Between Audience and Composer
	GenSession: a Flexible Zoomable User Interface for Melody Generation
	The Effects of Handedness in Percussion Performative Gesture
	An HTML5 Interactive (MPEG-A IM AF) Music Player
	Multi-Modal Music Emotion Recognition: A New Dataset, Methodology and Comparative Analysis
	Dimensional Music Emotion Recognition: Combining Standard and Melodic Audio Features
	Evaluation of the Mood Conductor Interactive System Based on Audience and Performers’ Perspectives
	BCMI Systems for Musical Performance
	Efficient and Simple Algorithms for Time-Scaled and Time-Warped Music Search
	An XML-based Web Interface to Present and Analyze the Music Aspect of Dance
	Study of Chinese and UK Hit Songs Prediction
	Introducing the Jazzomat Project - Jazz Solo Analysis Using Music Information Retrieval Methods
	Groundwork for a Resource in Computational Hearing for Extended String Techniques
	On the Evolution of Bass Strength in Popular Music
	How Much Does Audio Quality Influence Ratings of Overall Listening Experience?
	ESCAPA: Physical Computing and Artistic Human-Robot Interaction Design in Cognitive Musicology and Cognitive Science of Music
	Locomotion-Encoded Musical Patterns in Self-Organizing Structures and Phase Transitions

	Poster Session 2
	SOS: Sonify Your Operating System
	Basing a Toolkit to Support Auditory Display Design on Soundtrack Composition
	Exploring the usability of sound strategies for guiding task: toward a generalization of sonification design
	Influence of Auditory Pitch on Haptic Estimation of Spatial Height
	Strategies for Mapping Control in Interactive Audiovisual Installations
	Interactive Musical Partner: A Modular Human/Computer Duo Improvisation System
	Hand Gesture Recognition in Mobile Devices: Enhancing the Musical Experience
	T.A.S.T.E. Testing Auditory Solutions Towards the Improvement of the Tasting Experience
	Improved Believability in Agent-Based Computer Musical Systems Designed to Study Music Evolution
	Design of a Customizable Timbre Space Synthesizer
	Auditory and Visual Cues for Spatiotemporal Rhythm Reproduction
	Following Tempo on an Exercising Bike With and Without Auditory Feedback
	Expressivity as Time-Dependent Movement for Music Performance: A Statistical Exploration
	Analysis of Ambient Sound Indexing Methods in Sound Libraries
	Comparative Analysis of Kurtosis and Negentropy Principles for Music Elements Separation Using Independent Component Analysis
	Cross Convolution of Live Audio Signals for Musical Applications
	Time-Span Tree Analyzer for Polyphonic Music
	Multiple Instrument Tracking Based on Reconstruction Error, Pitch Continuity and Instrument Activity
	Vibrato Performance Style: A Case Study Comparing Erhu and Violin
	Expandable String Representation for Music Features Using Adaptive-Size Alphabets
	A Music Video Information Retrieval Approach to Artist Identification
	Perception of Material and Shape of Impacted Everyday Objects
	Event-driven Interactive Solid Sound Synthesis
	Continuous Brightness Estimation (CoBE): Implementation and its Possible Applications
	Automatic Quality Assessment of Vocal and Instrumental Performances of Ninth-grade and Tenth-grade Pupils
	It Is Time to Face the Achilles' Heel of Computer Music Regarding Digital Works Preservation and Maintenance
	Perceived Spatial Positioning of Self-footstep Sounds in Three Surround Sound Speaker Setups for Immersive Virtual Reality

	Installations / Demos
	Möbius, Perception of the Loss of Balance in Acoustic Space
	Light Touch
	Seismic Sound Lab Installation: Sights, Sounds and Perception of the Earth as an Acoustic Space
	“Talk to me”, a Digital Art Web Installation
	Sound Aquarium
	HoloPad: an Original Instrument for Multi-touch Control of Sound Spatialisation Based on a Two-stage DBAP
	The Freak Space Framework
	TELEMETA, audio web Content Management System for ethnomusicological sound archives
	An Intuitive Synthesizer of Sustained Interaction Sounds
	A Virtual Reality Platform for Multisensory Manipulation of Virtual Musical Instruments
	Sonification of Light Spectra
	Real-Time Audio Processing in the Large Time Frequency Analysis Toolbox

	Index of Authors

