
An Online Interactive Course on Computer Music 
 

Roger B. Dannenberg Jesse Stiles Yuezhang Li Qiao Zhang 
 

Carnegie Mellon University 
rbd@cs.cmu.edu 

Carnegie Mellon University 
jessestiles@cmu.edu 

Peking University 
lyzmusic@pku.edu.cn 

Tsinghua University 
qiaozhang0429@gmail.com 

 

ABSTRACT 
We have developed a highly interactive, online course to 
teach Introduction to Computer Music. The course is in-
tended for students with a basic knowledge of programming 
and teaches principles and techniques of sound synthesis 
and algorithmic composition using a hands-on, project-
oriented approach. The course contains an extensive set of 
short video lectures complemented by about 80 interactive, 
web-based exercises. Data indicates that students are able 
to complete the online exercises on their own and that stu-
dents are highly motivated to perfect their online solutions, 
which offer immediate feedback through automatic grading. 
The online course is complemented by in-class music listen-
ing and discussion, and our intention is to offer a complete-
ly online version of the course in the near future. 

1. INTRODUCTION 
Computer Music is an increasingly popular subject among 
college engineering and science students. Students are at-
tracted by an almost universal interest in music, technical 
fascination with computing and signal processing, popular 
applications for novice music making, and the increasing 
use of laptops and electronics in popular music making. 
Many students are excited by the chance to engage in a 
more formal study of Computer Music. 

At Carnegie Mellon, enrollment in our Introduction to 
Computer Music class has reached nearly 100 students, and 
a new concentration area in Integrative Design, Arts, and 
Technology (IDeATe) promises to attract even more stu-
dents. In addition, the IDeATe curriculum needs a course 
offering every year rather then every other year as in the 
past. With limited staff to teach growing numbers of stu-
dents more frequently, we have turned toward a technologi-
cal solution: creating an online course on Computer Music.  

The new course combines online lectures, numerous in-
teractive exercises that are graded automatically, and a set 
of open-ended projects with classroom discussion, listening 

and analysis sessions, and some manual assessment. Our 
goal is to offer the course remotely in the future to interested 
students and to make the material available to other instruc-
tors. 

In the following section, we describe the prerequisites 
and learning objectives and content for the class. In Section 
3, we describe the technological components including in-
teractive exercise generation and grading. In Section 4, we 
present our current structure for delivering the course. Then, 
we describe some preliminary results and experience in Sec-
tion 5. In Section 6, we describe future work and present 
conclusions. 

2. COURSE PREREQUISITES, 
 LEARNING OBJECTIVES AND CONTENT 

Our Introduction to Computer Music is offered by the Com-
puter Science Department and is taught as a computer sci-
ence subject. The goals of the course include learning  

• “what every computer scientist should know” about au-
dio signal representation and sampling theory, 

• how unit generators are combined to create and control 
musical sound, 

• basic synthesis methods including AM, FM, granular 
synthesis, voice synthesis and subtractive models, phys-
ical models, and spectral processing, 

• algorithmic composition techniques including random 
generation of events, control strategies, score represen-
tation and manipulation, and pattern-based parameter 
generation. 

In addition to these goals, we try hard to encourage stu-
dents to be more open-minded about sound and music, ex-
posing them to new ways of thinking about and listening to 
music. Contemporary music practice might be well under-
stood or at least familiar to any musician or composer at-
tending an International Computer Music Conference, but is 
often quite foreign to a typical engineering and science stu-
dent, even those with some traditional musical training. 
Since one of the attractions of computation in music is the 
ability to explore new sonic worlds, we feel it is important 
to point out that these worlds exist. Without this frame of 
mind, the techniques that we teach are difficult to motivate 

Copyright: © 2015 Roger B. Dannenberg et al. This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
credited. 

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 28 –

Proceedings of Looking Back, Looking Forward: 41st International Computer Music Conference

*

*Published as: Roger B. Dannenberg, Jesse Stiles, Yuezhang Li, and Qiao Zhang, “An Online Interactive Course on 
Computer Music,” in 
 Denton, Texas USA, September 2015, pp. 28-33.



and even confusing to someone who only knows popular 
music. 

2.1 Programming, Not Music, as Prerequisite 

Because we offer Introduction to Computer Music as a 
computer science subject, we assume that students know at 
least one programming language at the level of an introduc-
tory programming course. Most of our students have had at 
least a second semester learning about computer science, 
programming, and algorithms. 

On the other hand, we do not assume any music theory or 
other music prerequisite, which would be useful but imprac-
tical in our case. As mentioned above, we devote considera-
ble time to introduce students to works of contemporary 
computer music under the assumption that the contemporary 
music vocabulary will be quite foreign. 

2.2 The Nyquist Programming Language 
The course is based on the sound synthesis and music 

composition language Nyquist. There are of course many 
alternatives and certainly more popular languages and sys-
tems for work in computer music, so we offer our perspec-
tive and rationale for Nyquist.  

Nyquist is a text-based algorithmic language. Students 
who have been programming in Python, C, or Java should 
find much of the syntax and semantics at least recognizable. 
Nyquist also offers a full-featured language and environ-
ment where motivated students can create complex pro-
grams without limitation. Nyquist is free, open-source, 
cross-platform, and includes an interactive development 
environment. 

A major advantage of Nyquist for our online course is 
that we can easily run Nyquist in a web server to evaluate 
student exercises. When running on the web server, we have 
the option of disabling audio output or even capturing in-
tended output for analysis and grading purposes. We can 
also place limits on file access, memory usage, and run time 
to prevent “rogue” or malicious code submissions from 
hogging resources or even compromising the server’s files 
and software. 

An alternative to Nyquist might be a visual programming 
language, i.e. Max [4] or Pd [9]. These are popular plat-
forms, especially for real-time sound processing. For musi-
cians and artists lacking a background in computer science 
the graphical environment presents a paradigm that may be 
more readable and intuitive than a text-based environment. 
To develop an online course with automatic grading for 
these platforms, however, would be an enormous undertak-
ing.  Furthermore, working in a visual programming lan-
guage would be a poor choice for computer science students 
who wish to advance their text-based programming skills. 

Supercollider [7], a text-based platform that is partly in-
fluenced by Nyquist, is another popular language for work 

in computer music. It would be a good choice for us, but we 
think Nyquist has a simpler and easier-to-learn syntax. 
ChucK, another text-based language emphasizes real-time 
programming, which is a strong point, but does so at the 
expense of providing almost no support for data structures 
[12]. In contrast, Nyquist is a more open-ended and general-
purpose language (it has an entire Lisp programming envi-
ronment as a subset), but has minimal support for real-time 
interaction. 

Nyquist was originally designed to bring the concepts of 
Music N languages (unit generators, scores, orchestras, in-
stantiation of instruments at given times and durations) into 
a more general programming language framework. Since 
then, csound has introduced many linguistic improvements 
such as expression parsing and function definition, but it is 
still a long way from offering a general programming envi-
ronment where the user can explore algorithmic composi-
tion, score generation, synthesis algorithms, and manipulat-
ing sound files all within one language. 

Any choice of language is going to be new to most stu-
dents and will have to be taught. We use Nyquist to teach 
general principles such as music representations, algorithms, 
signal processing, and unit generators in the hope that these 
principles can be applied later, whether the student is writ-
ing low-level C code in an embedded system or working 
with some other high-level music system. 

2.3 Course Content 
The course covers the subjects listed in Table 1, devoting 

roughly one week to each unit. The subjects are approached 
through a combination of theory and practice. On the theory 
side, we introduce concepts, explaining for example the 
basics of sampling theory or the model of unit generators. 
On the practical side, students implement and apply synthe-
sis models and algorithmic composition techniques using 
Nyquist, producing short but musical compositions. 

Unit 1: Introduction and Nyquist 
Unit 2: Unit Generators, Score Processing 
Unit 3: Sampling Theory, Amplitude Modulation 
Unit 4: Frequency Modulation 
Unit 5: Algorithmic Composition 
Unit 6: Granular Synthesis 
Unit 7: Sampling and Filters 
Unit 8: FFT and Spectral Processing 
Unit 9: Source-Filter Models and Voice Synthesis 
Unit 10: Audio Perception, Effects, Reverberation 
Unit 11: Physical Models 
Unit 12: Spectral Models, Spatial Sound 
Unit 13: Audio Compression 
Unit 14: Music Understanding 

Table 1. Overview of the content of  
Introduction to Computer Music. 

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 29 –



We currently use Roads’ The Computer Music Tutorial 
[10] for material on sound synthesis and other topics, and 
Simoni and Dannenberg’s Algorithmic Composition [11] for 
its material on Nyquist and algorithmic composition. Stu-
dents are also directed to the Nyquist Reference Manual [5], 
over 200 pages of reference material on Nyquist. 

3. ONLINE INSTRUCTIONAL  
TECHNOLOGY 

The online component of the course consists mainly of vid-
eo lectures and interactive exercises. The video lectures are 
based on slides used previously in a more typical classroom 
lecture setting, but the lectures are mostly divided into short 
presentations lasting 5 to 10 minutes. At the conclusion of 
each lecture, the student is asked to demonstrate understand-
ing through programming exercises or multiple-choice ques-
tions. These must receive a passing grade before the next 
lecture becomes accessible. 

3.1 Programming Exercises 

We extended ATutor [1], a learning management system 
(LMS), with the ability to present and automatically grade 
Nyquist-based exercises. We will describe how the exercis-
es are implemented because they are the most innovative 
aspect of the course technology. Then we will describe how 
ATutor is used. The implementation of exercises consists of 
question generation, code execution and question grading. 
These three aspects are described in sequence. 

3.2 Question Generation 

Developing interactive exercises (typically small program-
ming problems) requires a significant effort. Once problems 
are presented to students, it seems inevitable that some 
problems and answers will be copied and shared. We want 
to discourage this kind of cheating, so we generate ques-
tions, or at least the details, resulting in dozens of potential 
questions. Even if an answer is published, a student hoping 
to simply copy the answer will find it necessary instead to at 
least understand and adapt the answer by changing variable 
names, function names, and parameter values. 

Questions are designed by filling in an online form avail-
able only to ATutor “instructors.” The form has a field for 
instructions (the problem statement), and a field for “starter 
code” – typically a partial solution containing Nyquist code 
that the student should modify or complete. These fields can 
use parameters denoted by %1, %2, etc. which are replaced 
by randomly selected values. Values for these parameters 
are computed or selected according to expressions that are 
entered into additional fields of the online form. A small 
library is included to perform common functions such as 
selecting a value from a list, generating a random value 
within some range and selecting a random pitch. 

3.3 Code Execution 

When presented with an exercise, students can edit Nyquist 
code directly in a browser form. The code can be evaluated 
by clicking an “Evaluate” button. This sends the code to the 
server, which copies the code into a file and interprets the 
code with Nyquist. The text output of Nyquist is captured 
and returned to the browser. If Nyquist generates a sound, 
the sound is stored in a file, and the result page is created 
with a sound file player object to play the sound. 

Nyquist is a general purpose programming language that 
is perfectly capable of erasing files, entering an infinite 
loop, or launching malicious attacks on the server, so we 
must be careful to place limits on what student code can do 
while running on the server. We have extended Nyquist 
with a number of security features as follows: 

• File access: Nyquist can be given a set of paths from 
which all file reads must take place (typically restricted 
to Nyquist libraries and a per-account directory for stu-
dent-submitted code), 

• File writes: Nyquist can be given a set of paths where 
file writes may occur (typically the per-account directo-
ry only), 

• CPU time: Nyquist will terminate if the interpreter runs 
too long. The interpreter normally polls for interrupt 
characters every few milliseconds, so we count the 
number of times the polling routine is called, and if the 
number is exceeded, the Nyquist process exits, 

• Memory usage: The Nyquist garbage collector is in-
strumented to keep track of memory usage. If the usage 
exceeds a limit, the process exits. 

Nyquist is run in the web server using these security fea-
tures to limit the damage that can be done by a program-
ming error or a malicious attack. Students can overwrite 
their own exercises but cannot affect other users or hog re-
sources to any great extent. 

3.4 Question Grading 

In addition to the “Evaluate” button, which simply runs 
Nyquist code in the web server and returns results, the stu-
dent can use a “Submit” button, which directs the server to 
automatically grade the exercise. Grading is done by 
Nyquist programs using a simple protocol to communicate 
with the learning management system (LMS). 

To grade an exercise, the system creates two files. One 
contains the code submitted by the student. The other con-
tains the parameters that were used to generate the exercise 
as described in Section 3.2. Each exercise has a name (e.g. 
“waveform”). The LMS uses the name to generate a grading 
program name (e.g. waveform-grade.sal), which is 
executed. The grading program typically reads the parame-
ters and constructs a correct solution. The student submis-

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 30 –



sion is then read, stripping out comments and looking for 
expected code patterns. The student submission can also be 
run, sometimes after redefining key functions to allow the 
grader to capture parameters, generated sounds, and other 
information, which are then compared to expected values 
from the correct solution. 

After grading the student submission, the grader program 
writes a score and text feedback to a file and exits Nyquist. 
The LMS then reads the score and text feedback, storing the 
information into a database and also constructing a results 
page to be delivered to and displayed on the student’s 
browser. 

4. COURSE DELIVERY 

4.1 Online Instruction 

In our current instance of the course, the main technical 
content is delivered through our online system. There are 81 
lecture videos with a mean length of 11 minutes and 97 in-
teractive problems. Figure 1 shows a typical lecture, which 
includes slides, video of the lecturer, and sound examples, 
and screen capture from the Nyquist IDE. 

 
Figure 1. A portion of a browser window illustrating a 

typical lecture video and links (under  
“Tests and Surveys”) to exercises. 

The interactive problems include 23 quizzes containing 
multiple-choice questions covering more theoretical con-
cepts such as sampling theory or music perception. The oth-

er problems consist of 74 short programming exercises us-
ing Nyquist. Exercises are designed to reinforce lecture con-
tent and to create a more active learning experience for stu-
dents. To make sure students actually take time to do the 
exercises, successfully passing an exercise following a lec-
ture video is a prerequisite to viewing the next lecture video. 
To avoid students getting “stuck” on one exercise, all exer-
cises are designed so that minimal work is required to get a 
passing grade. Typically, all that is needed to pass is a pro-
gram that runs to completion and that includes some ex-
pected code. For example, if the instructions say to use the 
fmosc function, the student need only write a program that 
calls fmosc in order to pass. However, students can submit 
exercises multiple times to improve their scores, and most 
students will work on exercises until they have close to per-
fect grades. 

Figure 2 illustrates an interactive exercise programmed in 
Nyquist in the browser. The text box in the middle of the 
figure is used to create a solution. After entering Nyquist 
code, the student can click on the “Evaluate” button to run 
the code. The program is run on the web server, compiler 
and run-time output are displayed on the web page, and if 
the program produces audio, an audio player object is dis-
played as well, allowing students to listen to the audio out-
put of their programs. 

The student may also click a “Submit” button to grade the 
program. The results of a submission are shown in Figure 2. 
Here, the student has entered a valid program, but the modu-
lation signal, lfo(5), has an amplitude of 1 rather than the 
specified 14 (which gives a 14 Hz depth of modulation.) 
The feedback gives hints to fix the problem. The score of 
70%, while sufficient to allow the student to move on, pro-
vides some incentive to find and fix the problem. 

Students can get help from their peers and from course 
staff through Piazza [8], an online forum supporting univer-
sity instruction. 

4.2 Classroom and “Off-Line” Instruction 

We meet our students in a traditional classroom once per 
week (vs. the normal 2 or 3 classes per week). We use these 
sessions to: 

• preview upcoming topics and projects, 

• answer general questions, 

• listen to music, discussing the technical approaches, but 
perhaps more importantly discussing the esthetics, ap-
proaches to composition, and links between recent pop-
ular music and historical masterworks of computer mu-
sic. 

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 31 –



• Students are also assigned projects that take more time 
than the online programming exercises. These projects 
are implemented using the Nyquist IDE running locally 
on students’ personal computers. Currently, these 
projects are graded by teaching assistants because they 
include a short composition and some creative pro-
gramming that cannot be reduced (in their current form) 
to a simple checklist of attributes or a single right an-
swer for automatic grading. 

5. EXPERIENCE AND RESULTS 
In the spring semester of 2015, 70 students completed the 
full semester and started work on a quiz or programming 
exercise nearly 20,000 times. Since multiple-choice ques-
tions are not novel, we will consider only the online pro-
gramming exercises, of which 16,358 were started. Of 
those, 11,248 were submitted for grading and feedback. The 
remainder (about 30%) were abandoned, possibly because 
the student ran out of time or simply decided to begin with a 
fresh copy of the exercise. One student reported they some-
times look at exercises before watching the lecture so they 
know what to take notes on in order to solve the problems 

more easily. In any case, these incomplete sessions are ig-
nored in our analysis because, without any submission to the 
server, we have no information about what the student did 
or even how much time was spent.  

One finding is that nearly every student completed nearly 
every exercise. The average rate of completion was 98.4% 
even though the online problems account for only 8% of the 
overall course grade. The average final grade on submitted 
exercises was 98.5 (out of 100), meaning that virtually every 
student is making multiple attempts if necessary to produce 
essentially perfect scores. This indicates that 

• Exercises can be completed by every student (perhaps 
after seeking help), 

• Students are motivated to resolve all problems reported 
by the automated grading software. 

One could imagine that the exercises are trivial and stu-
dents nearly always get grades of 100%. To test this hy-
pothesis, we can compare grades from initial submissions to 
the best grades achieved on each exercise. The mean initial 
grade taken over all students and all exercises (not including 
cases where students did not submit anything) was 82.7, 
significantly below the final mean of 98.5. Figure 3 shows 
the distribution of initial scores in white and final scores in 
gray. 

The mean number of submissions per exercise was 2.2 
with a maximum of 54. The mean time spent per exercise is 
difficult to estimate because it appears that sometimes stu-
dents returned to “abandoned” exercises and completed 
them. Perhaps some students also started exercises to read 
the problems and then watched the corresponding lecture, 
thus increasing the apparent time on task for the exercise. In 

Figure 3. An online exercise to create vibrato using  
frequency modulation, programmed in Nyquist. 

 

Figure 2. Histogram of scores. About 40% of all 5098 
initial submissions scored below 90%, while less than 
5% of all final submissions scored below 90%. 

 

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 32 –



any case, measured times between starting an exercise and 
submitting a solution range from seconds to weeks. Consid-
ering only times of 10 minutes or less, the mean time per 
submission was 127s, and the mean time per exercise, al-
lowing for multiple submissions, was 244s. The mean total 
time spent on all 74 programming exercises was 4.9 hours, 
not counting lecture viewing time (about 15 hours) or sub-
missions that took longer than 10 minutes. Overall, it seems 
that the problems are perhaps easy, but not trivial, and stu-
dents working online are able to master the material and 
solve the problems. 

It should also be mentioned that grading over 11,000 ex-
ercises in one semester would be well beyond the capabili-
ties of our teaching staff. The evidence indicates that the 
short exercises and rapid feedback help to engage students 
and help them to learn step-by-step as content is introduced 
through short lectures. 

We expected that an end-of-semester evaluation would 
show some differences between the online version of the 
course in 2015 and the previous standard course offering in 
2013. However, the overall course evaluation was not sig-
nificantly different. Student comments pointed to the lack of 
coordinated reading material to augment the online lectures, 
and we are working in this direction. 

6. FUTURE WORK AND CONCLUSIONS 
Our goal is to offer Introduction to Computer Music as a 
free and open course. The online system is almost ready for 
wider use, but we would like to augment the material with 
open, online readings, especially for students who cannot 
visit an instructor at office hours for help. The online books 
Music and Computers [3] and Linking Art, Science, and 
Practice through Digital Sound [2] are excellent and highly 
compatible resources that might be utilized. 

Another issue is giving students feedback on more open-
ended projects. One approach is peer grading, where stu-
dents assess the works of other students [6]. Another possi-
bility is to automate grading of these more open-ended crea-
tive projects. While a reliable measure of “musicality” or 
“creativity” is very ambitious, a near-term goal might be to 
evaluate submissions with the same reliability as student 
teaching assistants. Features that reflect code complexity, 
use of appropriate functions, spectral richness and balance, 
rhythmic variety, clipping, and task-specific attributes might 
be enough to generate credible feedback. Further design is 
needed to offer projects with feedback in a remote version 
of the curriculum.  

We also want to encourage listening and discussion of 
computer music. We publish a playlist with most of the 
pieces we listen to in class using the Google Play Music 
service.  

In conclusion, we have developed an online course that 
teaches “Introduction to Computer Music.” The course is 

designed for science and engineering students, or at least for 
students with a basic programming background. The course 
offers highly interactive instruction and exercises emphasiz-
ing a hands-on, computing-intensive curriculum. We plan to 
make the course available outside of our university in the 
near future and welcome collaborators who might want to 
integrate our material into their courses. 

Acknowledgments 

The authors would like to thank the School of Computer 
Science and the Carnegie Mellon IDeATe network for their 
support. 

7. REFERENCES 
[1] ATutor, ATutor Handbook, http://help.atutor.ca, 2015. 

[2] J. Burg, J. Romney, and E. Schwartz, Linking Science, 
Art and Practice through Digital Sound, 
http://csweb.cs.wfu.edu/~burg/CCLI/Templates/curricu
lum_index.php, 2015. 

[3] P. Burk, L. Polansky, D. Repetto, M. Roberts, and D. 
Rockmore, Music and Computers: A Theoretical and 
Historical Approach, http://music.columbia.edu/cmc/ 
musicandcomputers, 2011. 

[4] Cycling74, Inc., Max, https://cycling74.com/products/ 
max/, 2015. 

[5] R. Dannenberg, Nyquist Reference Manual, http:// 
www.cs.cmu.edu/~rbd/doc/nyquist/, 2013. 

[6] H. Luo, A. Robinson, J.-Y. Park, “Peer Grading in a 
MOOC: Reliability, Validity, and Perceived Effects,” Online 
Learning, Vol. 18, No. 2, 2014. 

[7] J. McCartney, “Rethinking the computer music lan-
guage: SuperCollider,” Computer Music Journal, Vol. 
26, No. 4, 2002, pp. 61–68. 

[8] Piazza Technologies, Piazza, http://piazz.com/signup, 
2015. 

[9] M. Puckette, “Pure Data,” Proceedings, International 
Computer Music Conference. San Francisco: Interna-
tional Computer Music Association, 1996, pp. 224-227. 

[10] C. Roads, The Computer Music Tutorial, MIT Press, 
1996. 

[11] M. Simoni and R. Dannenberg, Algorithmic Composi-
tion: A Guide to Composing Music with Nyquist, Uni-
versity of Michigan Press, 2013. 

[12] G. Wang and P. Cook, “ChucK: A Concurrent, On-the-
fly, Audio Programming Language,” in Proceedings of 
the 2003 International Computer Music Conference, 
2003. 

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 33 –


