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ABSTRACT
Optical music recognition (OMR) is the task of recognizing
images of musical scores. In this paper, we apply the first
steps of optical music recognition, specifically sta↵, barline,
and repeat detection, to automate annotation of scores for
use in an interactive score display system. We developed
new and simpler methods for these first steps, and show that
our sta↵ detection method outperforms existing methods on
a previously used test set. Annotating staves and barlines
by OMR and verifying by hand results in a 12-fold reduction
in manual e↵ort, facilitating the bulk import of a much
larger collection of scores into our interactive score display
system.
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Optical music recognition, Human-computer music perfor-
mance, Live Score Display
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H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing—Methodologies and techniques,
I.7.5 [Document and Text Processing] Document Capture—
Graphics recognition and interpretation.

1. INTRODUCTION
The computational power and storage capacity of modern
computers (and even mobile computing devices) allows the
construction of innovative musical interfaces and instru-
ments that incorporate images of common practice music
notation. Using images rather than structured machine-
readable notation eliminates much of the di�culty of cap-
turing and reusing score information that is already present
in paper scores. Rather than painstakingly entering music
into a music notation editor, one can simply scan or photo-
graph existing printed music to obtain a digital image that
can be displayed on a computer screen.

There are many applications of digital music displays:
Performers can replace large folders of music with com-
pact tablet computers for use on stage in live performance
[18; 21]. Multi-media music players have been created that
show the score synchronized with music playback [17]. In-
teractive music performances have employed music notation
on digital displays to direct performers [10; 19]. Computer
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music accompaniment systems [7] sometimes use music dis-
plays to show music to the performer and automatically
turn pages using score-following techniques [24; 25]. Digital
music displays have been proposed as the basis for general-
purpose interfaces to music sequencers and live music per-
formance systems [8].

For scanned music notation images to be used e↵ectively
in interfaces, meta-data must be added to indicate the lo-
cation of systems, barlines, and other musical information.
By annotating some key features of the score image, one
can enable automatic navigation, page-turning, extracting
individual staves and systems to format them for small dis-
plays, and other interesting operations. Moreover, if one
knows the beat position of each bar line in the displayed
notation, one can use the notation as an index into the mu-
sic: For example, pointing at a measure can indicate the
start location for a music playback system.

Notice that labeled music images require more work than
simply scanning images. Nevertheless, labeling sta↵ and
measure locations is a small fraction of the work of entering
a full transcription of the score into a score editor. Alter-
natively, one might apply optical music recognition (OMR)
followed by tedious corrections and manual formatting, but
correcting every mistake, such as incorrect notes, is very
time-consuming for most music [2]. An intermediate ap-
proach, which is the topic of this paper, is to use OMR
only for the required meta-data needed to navigate through
a score. In particular, automatically identifying staves and
barlines alone can save almost all the work of preparing a
scanned score for an interactive music display. The first
steps of OMR to identify this meta-data are more accurate,
and require much less time to correct. We introduce new
OMR techniques and show that they result in an almost
12-fold speed-up in identifying sta↵ systems, barlines, and
repeats for use in music display applications.

In the following section, we describe some related work
in score display systems and previous OMR systems. In
Section 3, we describe new OMR techniques we have devel-
oped. In Section 4, we evaluate our system. In Section 5,
we present conclusions and describe future work.

2. RELATED WORK
Our score display software has evolved from the Live Score
Display (LSD) system by Zeyu Jin [15]. The Live Score
Display system uses an arrangement, or mapping from time
to a measure in the score [9], and therefore requires the score
to be annotated with the locations of staves and barlines.
An example of Live Score Display in typical use is shown in
Figure 1.

With this program, the user first creates systems by click-
ing and dragging within the score images. The user can then
click within each system to create barlines. If any systems
or barlines are positioned poorly, the user can drag them to
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Figure 1: A typical score annotated in the Live Score
Display system.

correct their position.

2.1 Staff Size Estimation
Musical staves may be characterized by two parameters.
sta↵thick is the thickness of the sta↵ lines, while sta↵dist is
the sum of the thickness of the sta↵ line and the space be-
tween sta↵ lines (equivalently, the vertical distance between
the center of two adjacent sta↵ lines.)

Figure 2: A section of a score (left) with the corresponding
sta↵dist histogram (right). Each valid sta↵dist value has a
prominent peak in the histogram.

Cardoso et. al’s algorithm [5] was implemented for sta↵
size estimation. Convert each column of the image to a run-
length encoding, where runs are each consecutive sequence
of the same pixel value. Compute a histogram of the sums
of each 2 consecutive run lengths. Strong peaks correspond
to valid values of sta↵dist ; multiple values are possible when
there is an ossia part or di↵erent instruments use di↵erent
sta↵ sizes. An example of the sta↵dist histogram is shown
in Figure 2.

Next, given sta↵dist, we want to calculate sta↵thick. For
each pair of runs which sum to sta↵dist, store the length
of the black run. Make a histogram of the results, and set
sta↵thick to be the peak of the histogram.

2.2 Rotation
A version of Lobb et al.’s windowed FFT method [18] is
used to detect and reverse rotation of the page. Although
the original method used grayscale images with a Hamming
window, we found that a box window works well with binary
images.

2.3 Previous Staff Detection Algorithms
The Gamera MusicStaves toolkit [6] contains 10 implemen-
tations of various sta↵ detection and removal algorithms.
Four of the best performing of these algorithms (Fujinaga’s
[14] and Dalitz’s algorithms, “projections” and “skeleton”
[6]) were chosen as a baseline to compare to a new algo-
rithm. Capela et al.’s more recent Stable Paths algorithm
[3] was implemented as another baseline.

Projections have been used extensively for optical music
recognition [12], as they detect horizontal or vertical lines
which appear in several contexts. Horizontal or vertical
projections are defined as the sum of black pixels occurring
in each row or column of the image, respectively. The most
trivial sta↵ detection algorithm simply searches for 5 equally
spaced peaks in the horizontal projection of the image.

Bainbridge previously distinguished between algorithms
which use horizontal projections to detect each sta↵ line, or
identify sta↵ cross-sections in each column separately [2].
More generally, algorithms such as Stable Paths, which de-
tect sta↵ lines individually that are not necessarily horizon-
tal, can be grouped into the first category.

Figure 3: Various siuations which cause current sta↵ de-
tection algorithms to behave incorrectly. Top to bottom:
“bowing” is possible with a tightly bound book, prominent
ledger lines may be detected as part of a sta↵, and beams
may occlude most of the sta↵.

Each category seems to behave poorly on some inputs,
which are illustrated in Figure 3. The first category seems
to be less robust to“bowing”—distortion caused by the page
curving next to the spine [1]—or a rotated score; horizontal
projections are known to work poorly in this case [2] and
Stable Paths may detect sta↵ lines that jump between ac-
tual lines [4]. On the other hand, the second category is
vulnerable to detecting long ledger lines as part of a sta↵,
as they form multiple possible staves in a cross-section. Ad-
ditionally, much of the sta↵ may be occluded by beams or
other symbols, creating gaps where no sta↵ cross-sections
are detected.

3. NEW OMR TECHNIQUES
3.1 Staff Detection
A new sta↵ detection algorithm, Filtered Hough Transform,
was developed to solve these issues and simplify the overall
sta↵ detection process. We first noted that assuming a con-
stant sta↵dist value, each possible sta↵ in a column can be
reduced to the y-coordinate of its center line. Next, all that
is necessary is a simple line detection for each sta↵, and the
other sta↵ lines can be reconstructed by adding a multiple
of sta↵dist. We have found that sta↵dist is constant for
each page of a scanned score; Figure 2 is a representative
example. Therefore, the reconstructed lines are accurate.

We implemented the first step as a filter operating on
each pixel. We set the pixel to white if any pixels 1 or
2⇤sta↵dist above or below are white. Finally, we noted that
even when the sta↵ is obscured, at least 2 lines are usually
visible. Therefore, at least 2 of the possible sta↵ lines (the
original point and the 4 points as described above) must
have a white pixel sta↵thick above and below. The result
of the filter is shown in Figure 4.

Next, the Hough transform [11] is used to detect lines
in the filtered image. In the context of OMR, the Hough
transform is equivalent to a 2D array containing the hori-
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Figure 4: The results of the sta↵ center filter (black) on
the original image (gray).

zontal projection of several rotated versions of the image.
Although the Hough transform has previously been used for
sta↵ detection [20], it obtains poor results similar to hori-
zontal projection for bowed scores [22]. However, the sta↵
center filter leaves the center line more prominent than the
others, so it is still easily detected even if the other lines
bleed together due to bowing.

To avoid ledger lines being detected, we want to only
choose the largest peak in parameter space near each sta↵.
Therefore, after the peak is found in the accumulator array,
all lines with an intercept within 6⇤sta↵dist are set to 0.

3.2 Barline and System Detection
Compared to sta↵ detection, fewer methods have been de-
scribed which detect barlines and join staves into sta↵ sys-
tems. Barlines are commonly identified as vertical lines
which span the height of the sta↵ and have no adjacent
noteheads [13; 23]. Since our system does not yet classify
notes or other symbols, we needed to develop a di↵erent
heuristic for detecting barlines.

Without classifying notes, we extract each sta↵ from the
image and take the vertical projection (the number of black
pixels in each column.) Barlines are classified as consecu-
tive columns with at least 75% black pixels, surrounded by
columns with at most 10% black pixels.

Afterwards, we detect systems as follows. If consecutive
staves all share a barline in the same position, then we fit
a line through the barlines. If there are black pixels along
the line for any shared barline, allowing for only small gaps,
the staves are joined into one system.

3.3 Repeat Detection
Repeat dots must appear next to a normal barline, which in
turn is next to a thick barline. Previous work has searched
for repeat dots any time two barlines are close together [13].
As two close barlines may be detected as one barline in
the projection process, we only look for thick barlines, and
then merge any close barlines together. If we found a thick
barline, we perform connected component analysis on the
sta↵ and identify two small dots on one side of the thick
barline as a repeat symbol. Checking a smaller number of
staves which contain a thick barline also improves process-
ing time, as our implementation of connected component
analysis seems to take longer than the other steps.

4. EVALUATION
4.1 Staff Detection
We used the Gamera MusicStaves test set [6] to evaluate
the selected baseline algorithms and the Filtered Hough
Transform. The test set uses scores from music engraving
software with random distortions applied, where the actual
sta↵ locations are known. Most distortions used Kanungo
noise with several di↵erent parameters, as this emulates lo-
cal noise caused by the scanning process [16]. The “cur-
vature”, “rotation”, and “white speckles” deformations were

Figure 5: Using engraved images from the Gamera Music-
Staves test set, Filtered Hough Transform outperforms the
baseline algorithms toolkit on both sensitivity and speci-
ficity.

Sensitivity Specificity

Sta↵ Systems 100 % 100 %
Barlines 99.8 % 100 %
Repeats 87.5 % 87.5 %

Table 1: Performance on the OMR steps occurring after
sta↵ detection.

also used to emulate other types of noise. Although the
original tests measured the accuracy of a sta↵ removal step,
sta↵ removal was not useful for our application, and we only
implemented a naive sta↵ removal method in our system.
Therefore, we simply checked whether each detected sta↵
was within sta↵dist/2 of a known sta↵, and evaluated sen-
sitivity and specificity. The mean sensitivity and specificity
of each algorithm is shown in Figure 5. Our method (hough)
demonstrated a 9% increase in sensitivity and 4% increase
in specificity compared to the other algorithms.

4.2 Staff Systems, Barlines, and Repeats
Sensitivity and specificity on the later OMR steps were mea-
sured by hand on a 17-page scan of Ludwig van Beethoven’s
Piano Sonata, Op. 2, No. 1, which was obtained from IM-
SLP. The results are presented in Table 1. All staves and
sta↵ systems were correctly detected.

4.3 Annotation Time
The same score was used to measure the time required
for OMR-assisted and manual score annotation. First, the
score was labelled fully by hand. Next, the score was pro-
cessed by OMR with the results imported into Live Score
Display, and then corrected by hand. We found an almost
12-fold speedup in the manual work (Table 2).

5. CONCLUSIONS
We developed new methods for extracting structural infor-
mation from a score without performing full OMR, allow-

Processing Manual work Total
Manual N/A 18 m 24.1 s 18 m 24.1 s
OMR 23.0 s 1 m 36.0 s 1 m 59.0 s
Speedup N/A 11.5 X 9.3 X

Table 2: Time spent correcting OMR output vs. annotat-
ing the score by hand.
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ing scanned scores to be added to a score display system
more quickly. Our sta↵ detection method, Filtered Hough
Transform, combines the advantages of several existing sta↵
detection algorithms, while it is even simpler. The first sta↵
filter step is more relaxed than other methods which operate
on columns of the image, so it does not filter out partially
occluded staves. The second Hough transform step finds a
globally optimal best fit line, unlike existing methods that
only join adjacent columns of the image, increasing robust-
ness to inaccuracy in small sections.

We found that on a synthetic data set, our method out-
performed the baseline sta↵ detection algorithms. Real
scans may contain more global deformation due to page
curl. Greater robustness may be added using a preprocess-
ing step such as Fujinaga’s deskewing [13].

Our system has also validated the use of a single sta↵
center line, combined with the value of sta↵dist, as opposed
to building 5 separate sta↵ lines. Removing unnecessary
parameters in our sta↵ model should increase the robustness
of sta↵ detection and simplify later steps in our system.

We also implemented barline, system, and repeat detec-
tion, without a complete OMR system. We showed that
using simpler versions of these steps, without relying on
other information such as note positions, worked robustly.

Finally, we demonstrated that our system reduces the
manual work required for score annotation by 12-fold. This
will help prevent repetitive strain injury from manually an-
notating scores, and allow many more scores to be used in
the interactive score display system.
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