Optimizing Software Synthesis Performance *
Nicholas Thompson and Roger B. Dannenberg
School of Computer Science, Carnegie-Mellon University
nix @cs.cmu.edu, rbd@cs.cmu.edu

Abstract

Sound synthesis in software on general-purpose computers offers a number of advantages over
specialized hardware. Its main disadvantage is performance; however, as general purpose
machines get faster, software synthesis becomes increasingly accessible. The CPUs used in the
latest generation of personal computers achieve high performance using large amounts of internal
parallelism in the forms of multiple functional units and deep pipelines. These performance
improvements in the CPU do not, in general, carry over to the performance of the memory system,
changing the importance of different optimizations. We report on several profiling experiments

which suggest optimizations for these processors.

Introduction

Our work aims to determine what factors affect
the performance of software synthesis
(Dannenberg), what is the optimal structure for
synthesis software, and how much room exists
for improvement. We divide the work done by a
software synthesizer into three parts: useful work
(the computational core of the routine),
communication costs (including memory access
and cache miss costs), and loop overhead
(essentially constant for each unit generator).
We treat these parts separately below.

Computational Improvements

In the core of the routines, we have found a
technique for phase rounding and wrapping that
yields a performance increase of nearly 50
percent in our FM oscillator code. Our
measurements were taken on an IBM RS/6000
model 250. however, the rounding technique
relies only on IEEE arithmetic. Rounding is
accomplished by adding 252 to the double-
precision phase, which forces the floating-point
unit to shift the mantissa in such a way as to
make the exponent 0. This allows the integer
part of the phase to be easily extracted from the
binary representation of the new number. Using
this method of rounding rather than the built-in C
cast to integer saves 19 (of 75) instruction cycles
per sample in the oscillator loop, for a
performance increase of 35 percent. A similar
technique can be used to implement phase
wraparound if the table length is a power of 2:
once again the mantissa is shifted by adding a
constant, and the high bits of the mantissa are
masked out using logical operations. This
eliminates 5 more instruction cycles, for a further
improvement of 9.6 percent. Finally, by
reordering expressions in the loop to expose
more instruction-level parallelism, another 11
instruction cycles can be saved, bringing the total

cost to 40 instruction cycles per sample for a
total performance improvement of 90 percent. It
is surprising how much speedup can be obtained
by slight variations in code order.

Communication Costs

The traditional way to combine flexibility and
efficiency in a software synthesis system is to
build separate “unit generators,” each of which
performs a relatively simple computation
(Mathews). Unit generators are then combined
to form more complex systems, with
communication between unit generators taking
place through memory buffers. Efficiency is
good because the overhead of starting and
stopping unit generators is amortized over the
number of samples in the buffer, but the cost of
reading and writing the buffers is still incurred
for every sample. To test the cost of
communication between unit generators, we
manually fused groups of unit generators into
single loops, using local variables for
communication between steps. The possible cost
of this approach is that larger loops may require
more variables (such as filter coefficients and
buffer pointers) to be stored in memory than in
registers: if one has more state than registers, one
must pay memory costs in any case. We then
compare the speed of this fused loop with the
speed of the same computation using simple unit
generators communicating through buffers in
memory.

The particular application chosen is a simple
wavetable oscillator whose output is connected
to a chain of from 1 to 9 first-order filters.
Figure 1 compares the cost of the traditional
approach (communication through memory) with
the cost of the corresponding monolithic unit
generator (communication through registers) on
the RS/6000.

*Published as: Nicholas Thompson and Roger B. Dannenberg, “Optimizing Software Synthesis Performance,” in
Proceedings of the 1995 International Computer Music Conference, Banff, Canada, September 1995. International

Computer Music Association, 1995. pp. 235-236.

*Published as: Nicholas Thompson and Roger B. Dannenberg, “Optimizing Software Synthesis Performance,” in
 Banff, Canada, September 1995. International Computer Music Association, 1995. pp. 235-236.

Proceedings of the 1995 International Computer Music Conference,

*

236

RS/6000 cost per filter
80 1T T T T T 1

160 I~

140

120

100
80
60
40
20 P~ -]
0 | 1 | | | 1 |

1 2 3 4 5 6 7 8 9
number of filters

nemory
register

instruction cycles

Figure 1

The cost of register spillage is less than expected:
even with 9 filters combined into one loop,
performance is better than with the separated
loops. Inspection of the assembly code for the
RS/6000 shows that, although register spillage
begins when 6 filters are combined into the loop,
the cost is small: read-only filter coefficients are
spilled before read-write filter state (so there is
no store cost), and there is enough computation
to be done that reloading spilled coefficients can
proceed in parallel with the rest of the
computation.

Figure 2 compares the performance gains on the
RS/6000 and Intel 486. Removing
communication through memory produces
significant speedups on the RS/6000 architecture
(with fast floating point and a large register file).
The 486, with slow floating point and hardly any
registers, shows only a slight improvement,
while preliminary Pentium results show
speedups similar to those on the RS/6000. This
work shows that, as processors incorporate more
registers and parallelism, the optimal size for unit
generators will rise.

register vs. memory speedup

100 —TTT1T"T1T 717 71 1

RS/6000 speedup —
1486 speedu

80 I~ _—
60

40

% speedup

20

1 2 3 4 5 6 7 8 9
number of filters

ICMC

PROCEEDINGS

Cache Influences

Conventional wisdom holds that cache misses
cause a significant performance penalty on
modern architectures, and some software
synthesis systems (Lindemann et. al.) have been
designed based on this premise. We conducted
some simple tests which show that typical
software synthesis code is served very well by
cache prefetch, so that the cost of a primary
cache miss is amortized over as many data items
as fit in a cache line. For example, on one Intel
486DX2-50 machine, the cost of a cache miss is
8 instruction cycles. Since we are using single-
precision floating point samples (4 bytes each)
and the cache line size is 16 bytes, the actual
cache miss penalty is only 2 instruction cycles
per sample, which is negligible compared to the
cost of computation. As with other
communication costs, larger loop bodies will be
more efficient.

Conclusions

Superscalar processors offer new challenges for
optimization of software synthesis code. Much of
the performance gain to be had requires careful
attention to floating-point operations and
instruction-level parallelism. In addition, the cost
of using unit generators which communicate
through memory has risen significantly and will
probably continue to do so. Although we were
able to speed up computation by combining unit
generators, this is a tedious and error-prone
process if done manually. Using this
optimization successfully on a large scale will
require automatic code generation.

Acknowledgements

The authors would like to thank Fred Gustavson
at IBM for showing us the fast rounding trick
and stressing the importance of code order.

Bibliography
Mathews, M. V. 1969. The Technology of
Computer Music. Boston: MIT Press.

Dannenberg, R. B. 1992. “Real-Time Software
Synthesis on Superscalar Architectures.”
Proceedings of the 1992 ICMC. San
Francisco:International Computer Music
Association. pp. 174-177.

Lindemann, E., F. Dechell, B. Smith, and M.
Starkier. 1991. “The Architecture of the IRCAM
Muiscal Workstation.” Computer Music Journal
15(3). pp. 41-49.

1995

