Protection for Communication and Sharing in
A Personal Computer Network

Roger B. Dannenberg
Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

The autonomy offered to users by most personal
computer systems creates new problems for
communication and sharing. Protection is required if
personal computer networks are to attain the same level
of user cooperation as is now possible in time-shared
systems. A design is presented for protected
communication that relys upon a secure high-level
interprocess communication (IPC) mechanism and its
extension across machine boundaries using encryption
techniques. Protocols and support for authentication
(identity certification) and authorization (rights
certification) can be built upon the underlying IPC
facility. To support resource sharing, an accounting
process called the Banker is used to maintain a record of a
borrower’s resource utilization, and a sharing supervisor,
called the Butler, is used to administer a locally
determined sharing policy.

1. introduction

In recent years, personal computer networks have
become an attractive alternative to time-sharing systems.
A personal computer, in contrast to a time-sharing
system, gives its user a more stable and predictable set of
computing resources. In addition, a network of personal
computers offers the advantages of cconomy, support for
highly interactive and real-time programs, ' graceful
degradation in the presence of machine failures, and the
ability of the system to grow incrementally.

Time-sharing systems, however, have some advantages
that should not be overlooked. In particular, time-
sharing systems provide users with a protected
environment in which data and programs can be shared

This rescarch was sponsored by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3597, monitored by the
Air Force Avionics Laboratory Under Contract F33615-81-K-1539.

The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official
policies, cither expressed or implied, of the Defense Advanced
Resezich Projects Agency or the US Government.

CH2149-3/85/0000/0088$01.00©1985 IEEE

according to certain restrictions, and in which users can
communicate through unforgecable messages.
Furthermore, users can share expensive resources such as
file storage systems, printers, and spccial-purpose
Processors.

Ideally, we would like thc benefits of a personal
computer network without sacrificing the good features
of time-sharing. However, protection techniques
developed for physically secure time-shared computers
do not necessarily apply to networks of personal
computers. An examination of the protection
characteristics and general philosophy of personal
computers suggests that, unlike time-sharing systems,
they should be considered independent and autonomous.
In this light, methods for secure communication,
authentication, and authorization are designed. New
strategies are also presented that provide protection for
sharing resources.

The mechanisms described here were designed in the
context of the Spice personal computing envircnment! at
Carnegie-Mellon University. The reader is warned that
the present tense is used throughout to give a clear view
of the overall system design, but that some of the
mechanisms described are not operational. A description
of the present state of Spice is given in the last section.

2. Autonomy

Autonomy is an important factor in a personal
computer network. Autonomy in this context refess to
the degree of control exerted over a machine by its user.
In the case of time-sharing systems, autonomy is low
because the system makes resource-allocation decisions
and prevents the user from arbitrarily accessing stored
information. Although the protection and control
mechanisms are usually implemented in software, there
also must be physical barriers that prevent users from
tampering directly with the machine. In contrast,
personal computers are usually located at the site of the
user — at his home or in his officc — so that physical
isolation of the machine from its user is not so simple.

From PROCEEDINGS of the 5th International Conference on DISTRIBUTED COMPUTING

SYSTEMS, May 13-17, 1985.

Consequently, most personal computers — are
unprotected and can be arbitrarily programmed by their
users. However, even if a personal machine could be
protected from its owner, this might not be desirable.
Giving users total control over their machines allows
them to use a variety of operating systems, write their
own microcode, and test experimental system software.
Also, users must be allowed to make local resource-
allocation policies in order to achieve the predictability of
performance that the personal computing approach has to
offer. Thus, it is undesirable, if not impractical, to view
personal computers as protected machines running
trusted software. Rather, a personal computer and its
user should be regarded as autonomous with respect to
other machines and users. With this approach, users are
not only enabled, but encouraged to take complete
contro! of their personal machines. New techniques are
now required to support secure —cominunication,
authentication, authorization, and resource sharing.

In principle, existing technigues such as those proposed
by Ncedham and Schroeder? could be used to achieve
many of the desirable protection properties mentioned
above. In practice, however, these techniques are
difficult to use in a layered system because they require
cautious programs to perform all encription and key
exchange protocols at the application program level. This
implies that either (1) processes encrypt data even when
they are on the same machine, or (2) the message facility
must make the nctwork visible to communicating
processes, losing some of the advantage of a layered
system. Alternatively, all security protocols could be
hidden at the network transport layer, but this has the
disadvantage that authentication and authorization are
made on the basis of a machine identity rather than on a
per-process basis. None of these alternatives are
desirable. The primary goal of the present study is to
develop protocols that provide flexible and secure
authentication and authorization at the application
program level, while restricting all encription to the
network transport layer, thus keeping the network
transparent to application programs.

Before describing the results of this exploration, I will
briefly describe the Spice interprocess communication
facility (Section 3) and a protoco! to make the IPC secure
(Section 4). Then, higher level protocols for
authentication (Section 5), authorization (Section 6) and
resource sharing (Section 7) are described.

3. Interprocess Communication

In this section, we will examine the interprocess
communication facility provided by the Spice system.
This facility is the foundation for the protection
mechanisms to be described in later sections, and is based

on abstract objects called ports and supported by the
Spice operating system kernel, Accent. A simplified list
of operations provided on port objects is:

AllocatePort return PortName
Send(Message, PortName)
Receive(PortName) return Message

Port objects are protected by the kernel, and are
referenced indirectly through port names that are local to
each process. For each process, Accent maintains a table
of correspondences between local port names and ports.
This level of indirection prevents processes from forging
port tokens and avoids naming conflicts.

A port is made accessible to another process by sending
the name of the port in a message. An indication is made
by the sender that part of his message is to be interpreted
as a port name. Before delivering the message, Accent
translates the name to one through which the receiving
process can access the port.

A set of rights is associated with every port name, the
most important being send and receive rights. Only one
process can have receive rights on a port, but many
processes can have send rights. When a portis sent in a
message, the sender indicates what rights are to be sent.
Important: in this paper, we will use the expression:

“port Y is sent to some port X” to mean “send rights for
port Y are included in a message and sent to port X"
Although it is also possible to send receive rights, it will
not be necessary here. The reader is referred to the
description of Accent IPC by Rashid and Robertson® for
more details.

Because a process cannot forge a port, ports are used
extensively as capabilities within the Spice system. If a
server wishes to grant certain rights to a client, it can send
a port representing those rights to the client. Later, the
client can present the port to the server as a token
representing his rights. Just as with capabilities, the client
could give its rights to another process by sending the
port in a message.

Since ports cannot be forged and they provide message
passing operations, ports can also be viewed as a high-
level abstraction of secure connections. Below, we will
see uses of ports as both capabilities and secure
connections. In general, it is nor useful to think of ports
as names. In the Spice system, a name server process is
often used to map string names into ports when a client
wishes to make initial contact a server or some other
Process.

3.1. Network Servers

Message passing can be extended to the network by
introducing network server processes3. A network server
is a part of a machine's operating system; it is transparent
to an application program, and its function is to translate
between intra-machine messages and network messages.
To illustrate this, suppose process A on on¢ machine
wishes to send a message to process B on another (see
Figure 3-1). ‘

A's MACHINE B's MACHINE
° B
net net
server sorver

| Network

Figure 3-1: The use of network servers to achieve
transparent intermachine communication.

Process A has a port, P, which it uses to send messages
to B. Since B is on a remote machine, it cannot directly
receive messages from port P,. Instead, a network server
process receives the message. Next, the port on which the
network server receives the message is used to find a
virtual circuit® on which to forward the message. The
message at this point might need to be translated from its
operating system message format to a network message
format, The message is then sent to network server B.
Here the virtual circuit over which the message is
received is mapped into a port, Py, on the remote
machine. If necessary, the message is translated back into
its original operating system format. Finally, the message
is sent to this port and received by B. It is important for
network transparency that A and B both use ordinary
intra-machine message primitives to send and receive
messages across the network. This is made possible by
interposing network servers between the application
processes and the network.

Ports can also be passed over the network. To do this,
the network servers translate ports to network virtual
circuits and back to ports. Thus, network servers

transparently extend the kernel's IPC facility to the
network.

Because all interprocess communication in Spice is
based on this IPC mechanism, we have based our security

measures on ports as well. While Accent IPC is secure
within a machine, additional measures are required to
obtain secure network communication. These measures
could be handled individually by application programs;
however, hiding the security measures in the network
servers maintains the transparency of the network and
simplifies application programs. It might be argued that
trusting security to the network server makes programs
less secure, but ultimately, the application program itself
relies on the sccurity of the underlying operating svstem.
Therefore, there is no loss in security by trusting the
network server.

4. Secure Network Communication

4.1. Encryption

This section is included for the reader who is unfamiliar
with encryption techniques, which enable secure
communication over an unprotected network. For the
purposes of this paper, we will assume the use of
conventional encryption algorithms such as DES’.
Conventional encryption uses two functions:

Encode{Message, Key) return Message
Decode(Message, Key) return Message

where the key is of fixed length (usually 56 or 64 bits),
and messages are of arbitrary length. The functions
Encode and Decode are publicly known, and have the
property that given an encoded message without the
corresponding key, it is not feasible to recover the
unencoded form. This property means that if the key is
kept secret between two parties, then they can exchange
messages that cannot be decoded by a third party. As an
abbreviation, {D}K will be used in place of Encode(D,
K), since it is implied that the same encryption function is
always used.

Another class of algorithms, called public-key
encryption systems6 offers some advantages over
conventional encryption. However, for the sake of
simplicity, we will consider only the latter. Furthermore,
the DES algorithm has been implemented on a single
integrated circuit, so it seems likely that conventional
encryption hardware will be available on personal
computers before we see support for public-keys.

Encryption is useful not only to prevent the release of
information to a third party, but also to prevent a third
party from inserting messages into a stream of encrypted
ones. To prevent forgeries, each encrypted message must
have redundant information to indicate that it was
actually encrypted with the expected key. (Otherwise, a
random stream of bits would be indistinguishable from a
legitimate message,) In addition, a technique such es
sequence numbering must be used to avoid the possibility

of replayed messages. Popek6, and Kent’, and Voydock8
give excellent descriptions of these techniques.

4.2. Key Exchange

Before one machine can communicate with another, the
two machines must share a secret encryption key. This is
a problem because the machines cannot exchange secret
information before they agree upon the key, yet the key is
necessary to exchange secret information. This circle of
dependencies is broken by relying upon a trusted
intermediary, which we will call the Central
Authentication Server, or CAS. A secure communication
channel, henceforth called a connection, is created
between a pair of machines in two steps. First, each
machine must create a connection to the CAS. Then, the
CAS is used to forward an encryption key from one
machine to another.

To connect to the CAS, a user enters his name and a
secret key, K, known only to the user and the CAS. The
user's machine then generates a random key R and sends
the following message to the CAS:

name, {name, R}K — CAS

The CAS uses name to find K, and then decrypts the rest
of the message, including R, which is used in all
subsequent communication with the CAS. This scheme
results in a secure and authenticated connection with the
CAS, because only the user and CAS originally have
copies of K. Therefore, the CAS knows that the machine
identified by name must have R, and the user knows that
only the CAS can decode R.

To connect to another machine, the CAS is used to
forward an encryption key. Suppose machine A wants to
communicate with machine B. First, machine A
constructs a random key K AB’ It then sends the following
message to the CAS:

R
{K ,p name,, nameg}"A — CAS
where name, is the name of A, namey is the name of B,

and R A is the key used in A’s connection with the CAS.
Now, the CAS sends the following to machine B:

{K,p: nameA}RB —-B

The CAS then destroys its copy of K. Now, A and B
both have K Ap and can use it to communicate securely.
The connection is authenticated as well as secure, because
A trusts the CAS to forward the key to B, and B trusts
that the key originally came from A. In practice,
Mmessages must also contain serial numbers or use some
other means of avoiding the possibility of replayed
Messages. This protocol is based on one described by
Donald Davies®, It differs from that of Needham and

er in that the CAS forwards information directly

91

to B rather than returning information to A, and pre-
existing connections (the ones encrypted by R, and RB)
are used to eliminate some handshaking.

4.3. Summary

We saw in Section 3 how the Accent interprocess
communication (IPC) facility can make the network
transparent to processes, and in this section, we have
shown that network servers can communicate securely,
In the next three sections, we will assume a secure IPC
facility and show how protection can be obtained using
IPC port and message operations.

5. Authentication

Given the protocols above for secure communication
between network servers, we can design authentication
protocols at the Accent IPC level of abstraction. When an
encrypted channel is established between a machine and
the CAS, the network servers involved generate a virtual
circuit and associate it with an IPC-level port connection
from the personal machine’s operating system to the
CAS. This is called the machine-to-CAS port and is used
by the operating system to communicate with the CAS at
the Accent [PC level

The machine-to-CAS port does not represent the user,
however. The Spice system distinguishes between users
and their machines; there may be several users on a
single machine, or a user may use several machines. The
machine identity represents the person who initializes the
machine and its operating system. This person is
implicitly responsible for deeds (or misdeeds) performed
by the machine. In contrast, a user identity represents a
person who uses the machine to run application
programs. He might or might not have the same identity
as that of the machine, and is generally prevented by the
operating system from doing any harm.

The Spice operating system requires that all users of the
local machine authenticate themselves by logging in (if
they use the keyboard, screen, etc.) or by using an
authentication protocol if they access the machine via the
network. The login procedure will be described first.

To log into a machine, the user enters his name and
secret key as described in Section 4.2. This information is
sent to the machine-to-CAS port in a Login message.
Upon receipt of this message, the CAS checks its table to
see that the user has supplied the correct key. Then, the
CAS allocates an authentication port and returns it to a
reply port specified in the Login message. If the key does
not match, an error message is returned, and the user is
denied access to the machine. Otherwise, the local
operating system creates a command-interpreter process

for the user. (This login procedure is performed
automatically after the machine is initialized (see Section
4.2) so that the user who is also the machine owner need
not enter the same information twice.)

A common operation is for a user to request a service,
such as printing a file, where the user must authenticate
himself to a server on another machine. A simple (but, as
we shall see, not very safe) way to accomplish this is for
the user to send his authentication port to the server. The
CAS is augmented with an operation of the following
form:! ‘

Verifyl(port) return UserID

The operation is invoked by sending a message to the
sender's authentication port The argument is an
authentication port to be verified, and the result is the
user identity that corresponds to the argument. To see
how this form of authentication can be used, suppose a
client wants to print a file, given a port 10 a printing
server. The client sends a file and his authentication port
to the server (see Figure 5-1). The server then sends a
Verifyl message to the CAS. This message is sent to the
server's authentication port to make sure it will be
received by the CAS, and contains the port to be verified.
The CAS then replies to the server with the name (if any)
associated with the port.

3) Client's Name
2) Verity1(C)

Client 1) C, Request

Figure 51: Simple authentication protocol.

There is a problem with this scheme: the server might
not be secure and trustworthy. Since possession of the
client’s authentication port gives the server the ability to
masquerade as the client, a malicious or careless server
could jeopardize the client's security.

To avoid this problem, the identity of the client must be
conveyed without giving away the ability to masquerade

1We will use an Algol-like notation to describe server interfaces.
Interfaces are actually implemented using one message to invoke the

operation and supply parameters, and another message to return the
resuits.

92

as the client. This is done by adding an operation called
Register to the CAS:

Register(porf)
which is invoked by sending a message t0 an
authentication port. The message contains send rights for

a port that is to be associated with the identity of the
sender.2 A companion operation:

VerifyXport) return UserID

can be used to determine the identity (if any) associated
with a port.

Let us return to the previous example and see how our
client can authenticate himself using these new operations
(see Figure 5-2). First, the client allocates a port, X, and
registers it with the CAS using the Register operation.
Then the client sends X to the server. Now, the server
can find the identity of the client with receive rights for X
by sending a Verify2 message to the CAS. Assuming the
server is willing to print a file for the client (who is now
authenticated by the result of Verify2), the server allocates
a port, Y, and sends its receive rights to the client via X,
The server also sends its name to confirm the name of the
owner of port Y. Finally, the client sends his file to port
Y. When a file is received on Y, the server knows that it
comes from the client because the CAS claims that X
belongs to the client, and Y was sent to X; therefore, only
the client can send to port Y. This assumes that the client
does not ever give away his authentication port (so no one
else can register a port in the client’s name) and that the
client does not give away X (so that the server’s message
only goes to the client) or Y (so that only the client can

send to the server).
nt': Name

1) Register(X)
3) Verity2(X)

2) X

5) Server's Name, Y

Figure 5-2: Improved authentication protocol.

To clarify the security properties of this protocol,

2Ime identity of the sender & known to the CAS because the
message is sent 1o user’s authentication port.)

suppose a server attempts to masquerade as his client by
passing along the registered port to yet another server,
which we will call “victim”, The server will attempt to
obtain service from the victim by posing as our original
client. As before, the client sends the server his registered
port X, but this time the server sends X to the victim,
claiming to be the client (see Figure 5-3). The victim will
verify that X corresponds to the client, allocate a private
port Z, and send Z and his name (“victim™) to port X.
Until now, neither the victim nor the client has noticed
anything wrong, but observe that the printing server has
now been bypassed, and will not even be able to intercept
further messages. When the client receives the victim's
message with the identifier “victim” rather than “printing
server”, the client detects the error and aborts the attempt
to obtain service. At no point does the printing server
have access to Z; therefore, it cannot forge any service
requests to the victim,

There is one remaining problem with this protocol: a
server might lie about its identity. For example, a
malicious program might claim to be the printing server
in order to deceive users into sending sensitive data. Twa
approaches can be taken to avoid this problem. First, a
protected name server can provide a directory service to
obtain server ports. The name server uses the
euthentication protocols already described to prevent
unauthorized directory updates. This leaves us with the

ON

4) Verity2(X) 5) Client's Name
@

1) Register(X)

X

Figure 5-3: The printing server attempts to masquerade
as the client,

problem that 2 malicious program could pretend to be the
name server. This situation can be avoided by combining
the name server and CAS!0, but the Spice designers
wanted to keep the CAS as simple as possible and to
provide a more general mechanism for authenticating
servers. Therefore, a bilateral authentication protocol was
designed to allow two processes to exchange ports such
that each process also receives the identity of the other.

93

The client begins the bilateral authentication protocol
as before by allocating a port and sending it to the CAS in
a Register message. (See Figure 5-4.) This port, call it X,
is also sent to the server. The server allocates a port, Y,
and sends X and Y to the CAS using yet another version
of Verify.

Verify3(ClientPori, ServerPort) return UserlD

For this operation, the CAS looks for the identity
associated with ClientPort and sends it to the server as the
result of the Verify3 operation. The CAS also finds the
identity of the server (as determined by the
authentication port on which the Verify3 message is
received) and sends it with the ServerPor: to the client,
Now the Client has a port associated with the server, and
the server has a port associated with the client. The
correctness of this protocol is based on the fact that both
the client and the server authenticate themselves through
their respective authentication ports and the trusted CAS.

Note that in this protocol, two users exchange identities
and set up a secure communication channel through
ports, whereas in Section 4.2, two machines (network
servers) exchange identities and set up a secure
communication channel based on encryption. Five
messages are required at the Accent IPC level, and this

nts Name, X

1) Register(X)

3) Verity3(X

Y)
5) Server's Name, Y
2) X

Figure 5-4: Bilateral authentication protocol.

will normally map onto five messages between network
servers if secure connections have already been
established between each pair of network servers. If not,
then at least two additional messages must be sent to pass
an encryption key from the Client’s network server
through the CAS to the Server’s network server. At the
opposite extreme, the Client and Server may be on the
same machine. For this case, an implementation nf the
CAS in which every processor runs a local authorization
server process (this organization has not been discussed
here) could result in no network messages and no
encryption. This is achieved with no loss of security
because trusting a local authorization server is no worse
than trusting the local kernel.

We have seen how a user (or his program) can certify
the identity of some other user or program. In some
instances, this is all the information necessary; for
example, authentication is sufficient to prevent forged
signatures in electronic mail. In other cases,
authentication is the first step in determining what rights
to grant to a client. This process, which we call
authorization, is discussed in the next section.

6. Authorization

To support authorization, the CAS maintains access
groups which represent subsets of users with a common
set of rights. For example, members of the Spice project
are included in the access group called Spice-Project.
Access groups provide a convenient mechanism to grant
or revoke rights to a collection of users; for example, one
can grant file-access rights to the group Spice-Project
without naming the members of that group explicitly.
We must now have a secure way for servers to determine
the access group memberships of a given user.

When a user logs in, the CAS finds the access groups of
which the user is a member and associates them with the
user’s authentication port. In addition to returning a
user’s identity, the Verify operations return the user’s
access group membership list. It is up to the server to
define what rights to associate with each access group.

Authorization is further refined by allowing the user to
obtain an authentication port with a restricted
membership list. The CAS operation Restrict:

Restrict(DeleteList) return AuthPort

is invoked by sending a list of access groups to be
removed from the user’s current membership list. The
CAS associates the restricted list with a new
authentication port that is returned to the user. Note that
this does not permanently change any membership
relations; it only changes the list that will be returned by a
Verify operation on a port registered with a given
authentication port. Thus, a user can be selective about
the authentication rights he distributes.

To illustrate the value of restricted membership lists,
suppose the system administrator wants to execute a
program that he does not trust. Since tue system
administrator has many privileges, it would be unwise to
give his authentication port to the program. Instead, he
uses Restrict to obtain an authentication port with only
ordinary user privileges. The untrusted program is given
this restricted port to limit the damage that it can cause.

We have now seen a number of mechanisms that can be
used to authorize the use of network resources such as
printers, databases, file servers, and special-purpose
processors. In Spice, we are also interested in supporting
the sharing of personal machines among the user
population, In the next section, facilities are discussed
which were designed to cope with the problems of
sharing autonomous machines.

7. Resource Sharing

There are several reasons for sharing personal
machines, First, the user might be able to borrow an idle
machine to reduce the load on his own. Users might also
want to share machines as a means of sharing data. For
example, it might be desirable to execute a database
manager remotely to access remote data. Finally, the
total processing power in a network of computers will be
much greater than that of a single machine for many
applications, so the additional resources available through
sharing might make new applications feasible. Sharing of
personal machines is thus useful for load leveling in the
presence of idle machines, for information sharing, and
for computational parallelism.

There has been little previous work concerned with the
sharing of autonomous machines. Shoch and Hupp11
describe the “worm” programs, which are distributed
programs implemented on a network of Xerox Alto
computers. No protection was provided, although some
interesting applications were generated. Liskov has
investigated programming language facilities to support
distributed programs’<, but does not address the lower-
level issues of obtaining access to or borrowing resources.
Some of the issues of sharing data and programs are
addressed by the National Software Works (NSW)
projectll 4. however, the NSW is a logically centralized
operating system, and machines in the NSW are not
autonomous. RSEXEC!% 16,14 comes closest to our goals
of supporting sharing on a network of autonomous
machines. RSEXEC is implemented on the TENEX
operating system and ARPA network, and it attempts to
extend TENEX to the network environment in a
transparent way. Since TENEX systems run on protected
time-shared computers, RSEXEC emphasizes autonomy
for reliability rather than for its implications for
protection. Powell and Miller!? describe process
migration in DEMOS/MP, a system in which kernels
trust each other. The authors discuss the possibility of
mutually suspicious processors, but no protection
mechanisms are suggested except the possibility of
refusing to grant resources to a potential client. Hornig's
Stardust system!® is an experimental system running in
the Spice environment for distributed parallel
computation.

In the Spice system, sharing is supported in several
ways. A host machine can protect itself by granting a
limited set of rights to a guest. This insures that the host
can remain autonomous. In addition, the resource
borrower, or client, can obtain assurance that he will not
be exploited if he grants some of his rights to a remote
process. Finally, the programmer or user is not burdened
with intricate protocols to achieve sharing.

Two subsystems, the Banker and the Butler’®, have
been designed to support sharing. The Banker helps a
host system to set and enforce limits on the use of
resources by a guest, while the Butler administers the
resource-sharing policy at the host machine and performs
negotiation on behalf of clients who want to borrow
resources. The Banker and Butler are described below.

7.1. The Banker

A common method of attacking a system is to exploit a
privileged program that performs inadequate checking
before carrying out a requestzo. For example, while a
user program might not be able to attack a system
directly, it might be able to use the file system to exhaust
the available disk space and achieve the same goal. We
refer to this as the problem of laundered requests because
the identity of a request is made to appear “clean” by
passing the request through a system program. This
problem can be solved by keeping track of the origin of
each request for service or resources,

The Banker helps to solve the problem of laundered
requests by providing a secure accounting facility for the
local machine, and by implementing a mechanism for
intra-machine naming and authorization. A separate
Banker runs on each machine and maintains accounts,
which are lists of resources and associated quantities.
These quantities are the resource value, giving the number
of resource units allocated, and the resource limit, giving
the maximum number permitted by the account. An
unforgeable signature is used as the external
representation of an account, and each user of the
machine has an account and an associated signature,
which is presented to servers to obtain resources.

Accounts can be created in two ways. The initial
account is created by the Banker for the local operating
system. As each server is initialized, it identifies to the
" Banker the type and number of resources that are made
available by that server. The Banker credits the operating
system account with these resources. The kernel, which
manages physical and virtual memmory, ports, and
Mmessages must also use the Banker for accounting, and
these resources are initially credited to the operating
system account. All other accounts are created as
dependents of existing accounts. For example, when a

95

user logs in, the operating system creates a dependent
account representing a subset of the resources available to
the operating system. The signature for the dependent
account is then given to the user. In general, any process
with a signature can create dependent accounts and pass
the corresponding signatures to subsystems.

An account can have several dependents, each one
including a set of /imits indicating an upper bound on the
number of resources the dependent can take from the
parent account. By setting the limits to infinity, the
parent allows dependents to withdraw as many of the
parent’s resources as necessary; alternatively, the parent
can divide his resources among dependents by setting
desired limits. For any given resource, the effective limit
is defined recursively by:

limi(dependent) = min(limit specified by
parent for dependent,
limir(parent))

To obtain resources, a process presents its signature to a
server as a representation of authorization to receive
resources. Next, the server takes the signature and
presents it to the Banker with a request to withdraw the
necessary resources. Then, the Banker replics with either
Success or Overdraft to indicate whether or not the
account contains the required number of resource units.

This description of the Banker has omitted some details
to simplify the explanation. In order to prevent any
process with a signature from making withdrawals on
arbitrary resources, the Banker creates an unforgeable
token for each resource as a capability to withdraw that
resource from an account. This capability must be
presented along with the signature to perform a
withdrawal. Also, the Banker allows the parent to
associate an overdraft handler port with each dependent
account. If a dependent attempts to overdraw his
account, the Banker sends a message describing the event
to the overdraft handier port. The parent can also ask the
Banker for a port corresponding to the server for a given
resource. Using these primitives, protocols that deal with
exhausted resources can be devised, and some of these are
described in the next section. Finally, the Banker
provides additional operations to check the balance of an
account, to determine the total of withdrawals, and to
allow servers to deposit resources when they are no longer
needed by a client.

The Banker provides a link between a process that must
control resource allocation (the owner of a parent
account) and server processes that directly manage
resources. Without the Banker, resources would have to
be managed on a server-by-server basis. In the next
section, we will see how the Banker is used by the Butler
to enforce resource-sharing policies.

7.2. The Butler

As with the Banker, there is one Butler process per
machine. The function of the Butler is quite similar to
that of Craft’s Resource Managerzl, although the Butler
focuses more on issues of autonomy and protection. The
Butler serves two roles in the Spice system. As a host, the
Butler grants access to its machine according to a policy
established by the machine owner. Rather than
managing resources directly, the Butler relies upon the
Banker to communicate the policy,.and upon servers to
enforce it. As an agent, the Butler functions to locate
potential host Butlers and to negotiate to obtain resources
for a client. Let us look at these roles in greater detail.

7.2.1. The Host Butler

The job of the host Butler is to loan resources while
protecting the interests and autonomy of the machine
owner. The owner communicates a sharing policy to the
host Butler through a policy database. The database
implements a mapping from user attributes to rights,
where user attributes include identity and locality, and
the rights have a direct correspondence to accounts in the
Banker. An owner can also deny sharing entirely by
entering an exclusive mode without modifying the
database,

Normally, a host Butler is asked by an agent Butler to
loan resources. The host then uses the bilateral
authentication protocol to determine the identities of
both the agent and his client. The client's identity is used
in consulting the policy database to determine the client’s
rights on the host’s machine.

Bilateral authentication is also used so that each party
involved will know the identities of the others. This
knowledge is useful if users are to detect malicious
behavior and prevent its recurrence. Because machines
are autonomous, a malicious machine owner can easily
exploit a guest by circumventing the operating system's
protection mechanisms. Similarly, if a guest is given the
right to load microcode or use device drivers directly,
then the guest can easily exploit the machine owner.
Maiiciousness can be discouraged here, as in society, by
identifying and punishing wrongdoers. Thus, protection
in this case is not absolute, but is based on social
mechanisms.

If the host Butler agrees to furnish the requested
resources, it builds a configuration consisting of one or
more servers and a signature representing an account with
the Banker. Access to the configuration is then returned
to the agent. Because the Butler can use the Banker to

limit the resources that servers will grant to a client, there.

is no need to create special servers for guest processes.
This complietes the host Butler’s normal involvement with
the agent. The host stands by, however, in case the client

SYSTEMS, May 13-1 7 .

i il allLe

1985.

attempts to exceed the limits placed on its resource
utilization. This situation would be detected by the
Banker, which would send an overdraft notice to the host
Butler.

To handle an overdraft, the host performs one or more
of three recovery actions, according to earlier negotiation.
The first possible action is to send a warning to a port
supplied by the client. This allows application-specific
actions, such as checkpointing, to be performed. If the
warning fails to achieve the required reduction in
resource utilization, then the host might attempt to deport
the configuration by packaging the associated state
information and sending it in messages to a port specified
by the client. Finally, if warning and deportation fail, the
host can terminate the configuration by notifying all of
the participating servers. The Banker supports
deportation and termination of configurations by locating
these servers for the Buder.

7.2.2. The Agent Butler

The agent Butler is used to insulate the client from the
details of the negotiation and authentication protocols.
The client expresses his request to the agent as a
configuration specification containing the rights preferred
by the client and another configuration specification
containing the rights required by the client. The preferred
rights are forwarded to potential hosts, which reply with a
specification of what rights they can offer. The agent
then compares each host's reply with the client’s required
rights and decides to accept or reject the offer. To reduce
the cost of negotiation, authentication protocols are only
performed when an agent intends to accept an offer.

The Butler uses a name server to locate resources for its
clients. Because of the constraints imposed by autonomy,
there is no attempt to perform any sort of global
optimization of resource allocation. This would require
cooperation between Butlers that might make them
vulnerable to malicious users.

8. Summary

As personal computers become more common, we will
see an increasing need for communication and sharing
among users. The mechanisms that have been described
here will allow users of the Spice system to communicate
and share resources with a high degree of protection and
autonomy. At the heart of the system is the Accent IPC
mechanism and the use of encryption to extend this high-
level communication facility across machine boundaries
in a secure manner. Several protocols rely upon this
facility and a trusted intermediary to perform
authentication and authorization. These protocols are
interesting in that they rely solely upon the security
properties of the IPC facility. Thus, network

frnacional Conterence on DISTRIBUTED COMPUTING

transparency can be maintained, and authorization does
not require a particular form or uniform implementation
of encryption across all machines.

To protect and facilitate resource sharing, we
introduced two processes called the Banker and the
Butler. The Banker helps to solve the problem of
laundered requests by providing a mechanism for
keeping track of the resources used by a guest The
Buuer is responsible for administering the machine
owner's policies for sharing. It does this by negotiation
with potential borrowers and creating the requested
configurations when permitted.

9. Conclusion

The most important aspect of this work is the
recognition that traditional security methods are
inappropriate for networks of personal computers. It is
only a matter of time before these networks move out of
“friendly” research and office environments and into the
general public where competing interests of users will
demand careful attention to security. The general theme
of this work has been to design an overall architecture
supporting communication and sharing rather than to
develop specific techniques. One result of this study has
been the realization that the general problem is quite
difficult. A practical solution will consist of at least the
following: (1) a careful design of the underlying
communication and security mechanisms, (2) a set of
high-level protocols for application-level communication
and sharing, and (3) a carcful implementation of all
servers to avoid loopholes through which applications can
obtain unauthorized privileges. 1 believe the design
described in this paper makes a significant step toward
the realization of a personal computer network that
supports a high degree of communication, sharing, and
security. In particular, the technique of layered security
protocols seems to have advantages in a layered system,
and warrants further study.

At the present time, the Spice interprocess
communication facility is operational, providing
transparent inter-machine communication across a local
area network. The IPC facility on a single machine is
secure, but encryption is not likely to be provided for
secure inter-machine communication on the present
hardware. In spite of the lack of security, a number of
distributed programs have been written and are in routine
use for sending mail, version control, and graphics. The
CAS is actually part of a larger system, called Sesame?,
which will provide naming, authentication, authorization,
data storage and retrieval services. A preliminary version
of Sesame is in use, and the full implementation of
Sesame is in progress. An initial release of Sesame that
includes a CAS and support for authentication should be

SYSTEMS. Mawv 12_17

97

made by the time of this publication. A prototype Butler
was implemented for experimental purposes?.

10..Acknowledgments

1 would like to thank Peter Hibbard, Jim Morris, Rick
Rashid, and Alfred Spector for advice and comments. To
a large extent, this paper integrates the good ideas of
many members of the Spice Project, and would not have
been possible without their efforts.

[T 7o sucsruduional Lonrerence on DISTRIBUTED COMPUTING

10.

1L

References

J.Fugene Ball,. Mario R.Barbacci, Scott
E. Fahlman, Samuel P. Harbison, Peter
G.Hibbard, Richard F.Rashid, George

G. Robertson, and Guy L. Steele Jr., “The Spice
Project,” in 1980-1981 Computer.Science Research
Review, Department of Computer Science,
Carnegie-Mellon University, 1982, pp. 49-77.

R.M. Needham and M.D. Schroeder, “Using
Encryption for Authentication in Large Networks
of Computers,” Communications of the ACM, Vol.
21, No. 12, December 1978, pp. 993-8.

Richard Rashid, George Robertson, “Accent: A
Communication Oriented Network Operating
System Kernel,” Proceedings of the Eighth
Symposium on Operating Systems Principles,
December 1981, pp. 64-75.

Andrew S.Tanenbaum,
Computing Surveys, Vol.
1981, pp. 453-439.

National Bureau of Standards, “Data Encryption

“Network Protocols,”
13, No. 4, December

Standard,” Tech. report, Federal Information-

Processing Standards, 1977, Publ. 46

Gerald J.Popek and Charles S.Kline,
“Encryption and secure computer networks,”
ACM Computing Surveys, Vol. 11, No. 4,
December 1979, pp. 331-356.

Stephen T. Kent, “Security in Computer
Networks,” in Protocols and Techniques Jor Data
Communication Networks, Franklin F. Kuo, ed.,
Prentice-Hall, New Jersey, 1981, ch. 9.

Victor L. Voydock and Stephen T. Kent, “Security
Mechanisms in High-Level Network Protocols,”
ACM Computing Surveys Vol 15, No. 2, June
1983, pp. 135-171.

Donald W. Davies, Protection, Springer-Verlag,
New York, Lecture Notes in Computer Science
Vol. 105, 1981, pp. 211-245¢h. 10.

I. Nassi, “The Liberty Net: An Architectural
Overview,” COMPCON, 1982 Fall, 1EEE
Computer Society, 1982, to appear

John F.Shoch and Jon A.Hupp, “Notes on the
"Worm" programs — early experience with a
distributed computation,” Communications of the
ACM, Vol. 25, No. 3, March 1982, pp. 172-180.

Barbara Liskov, Robert Scheifler, “Guardians and
Actions: Linguistic Support for Robust,

98

13.

14.

15.

16.

17.

18.

19.

20.

21

Distributed Programs,” Ninth Annual ACM
Symposium on Principles of Programming
Languages, January 1982, pp. 7-19.

R. E. Millstein, “The National Software Works: a
distributed processing system,” Proceedings of the
ACM Conference, Association for Computing
Machinery, October 1977, pp. 44-52.

Harry C. Forsdick, Richard FE.Schantz, and
Robert H.Thomas, “Operating Systems for
Computer Networks,” Computer, Vol. 11, No.-1,
January 1978, pp. 48-57.

Robert H.Thomas, “A Resource . Sharing
Executive for the ARPANET,” Proceedings of the
National Computer Conference, AFIPS, June 1973,
pp. 155-163.

B.P. Cosell, P.R. Johnson, J. H. Malman, R.E.
Schantz, J.Sussman, R.H. Thomas, and D.C.
Walden, “An Operational System for Computer
Resource Sharing,” Proceedings of the Fifth
Symposium on Operating System Principles, ACM,
November 1975, pp. 75-81, published as SIGOPS
Operating Systems Review 9(5)

Michael L. Powell and Barton P. Miller, “Process
Migration in DEMOS/MP,” Proceedings of the
Ninth ACM Symposium on Operating Systems
Principles, Association for Computing Machinery,
October 1983, pp. 110-119.

David Hornig, Automatic Partitioning and
Scheduling on a Network of Personal Compulters,
PhD dissertation, Carnegie-Metlon University,
1984,

Roger B. Dannenberg, Resource Sharing In A
Network Of Personal Computers, PhD dissertation,
Carnegie-Mellon University, 1932.

Richard R. Linde, “Operating System
Penetration,” Proceedings of the National
Computer Conference, AFIPS, 1975, pp. 351-360.

Daniel H.Craft, “Resource Management In A
Decentralized System,” Proceedings of the Ninth
ACM Symposium on Operating Systems Principles,
Association for Computing Machinery, October
1983, pp. 11-19.

Mike Jones, Richard F.Rashid, and Mary
ThompsonDepartment of Computer Science,
Carnegie-Mellon University, Sesame: The Spice
File System, 1982, Spice Document 5140

