Real Time Control For Interactive Computer Music and Animationl!

Roger B. Dannenberg
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACT

Real-time systems are commonly regarded as the most complex form of
computer program due to parallelism, the use of special purpose input/output
devices, and the fact that time-dependent errors are hard to reproduce. Several
practical techniques can be used to limit the complexity of implementing real-
time interactive music and animation programs. The techniques are: (1) a
program structure in which input events are translated into procedure calls, (2) the
use of non-preemptive programs where possible, (3) event-based programming
which allows interleaved program execution, automatic storage management, and
a single run-time stack, (4) multiple processes communicating by messages where
task preemption is necessary, and (5) interface construction tools to facilitate
experimentation and program refinement.

These techniques are supported by software developed by the author for real-
time interactive music programs and more recently for animation. Although none
of these techniques are new, they have never been used in this combination, nor
have they been investigated in this context. Implementation details and examples
that illustrate the advantage of these techniques are presented. Emphasis is placed
on software organization. No specific techniques for sound and image generation
are presented.

1. Introduction

Much has been written about real-time control, process control, scheduling and
synchronization. So much has been written that it is difficult to know what techniques to apply
to a given problem. Often, in an effort to squeeze out every last drop of performance,
researchers (including this one) have designed complex strategies which are primarily of

Ipublished as: Dannenberg, ‘‘Real Time Control For Interactive Computer Music and
Animation,”” in Proceedings of The Arts and Technology I1: A Symposium, Connecticut
College, (February 1989), pp 85-94.

academic interest. In this paper, I will present practical advice for building real-time systems for
computer music and animation. This advice is based on experience building real systems and in
many cases runs counter to common assumptions.

I will begin with a description of the sort of ‘‘real-time’’ system to which the subsequent
recommendations apply. First, these systems are interactive; that is, they respond to input as
opposed to producing a sequence of predetermined outputs. This implies that low latency is an
important goal. The desired maximum latency is on the order of milliseconds. These systems
are soft real-time systems in that outputs are still important even if the output cannot be produced
within the desired maximum latency. Most activity is asynchronous and occurs at unpredictable
times. Finally, these systems are not overloaded except for brief periods; that is, the average
workload does not exceed the processing capability, so all scheduled computations can be
completed.

In the following sections, I make five recommendations for designing real-time software of
this sort and explain the advantages and disadvantages of each recommendation. The first is to
handle input data by mapping input into procedure invocations. The second is to avoid
preemption whenever possible. The third is to use a particular event-based programming
strategy that handles interleaving, storage management, and executes on a single stack. The
fourth recommendation is to use multiple processes that communicate through messages when
preemption is necessary, and the fifth is to use interface construction tools as an aid to testing
and program development. All of these principles are embodied in a recent version of the CMU
Midi Toolkit [8], which is used as a source of examples.

2. Handling Input

Traditionally, input has been handled in programming languages by calling procedures (or
executing special statements) which return data when it becomes available. In real-time systems,
programs typically then ‘‘decode’’ the input to determine an appropriate action to handle the
new data. This is clumsy and inappropriate in two respects. First, it is inappropriate to block
waiting for some particular input. Input may arrive from another device first, or it may become
time to run a previously scheduled action before any data arrives. Second, if input is almost
always decoded to determine an action to take, then a standard decoding procedure should be
provided by the language or run-time system rather than each application. This avoids the need
to reimplement input routines for each application program.

As an example, the CMU Midi Toolkit handles input from Midi and the console (typewriter
keyboard). The Midi input is parsed into a number of message types and a C routine is called
when a complete message is received. The routines are keydown (), keyup(),
pitchblend (), prgmchng(), aftertouch(), and ctrlchng(). In addition,
asciievent () is called when a character is typed at the console. Default behaviors for all of
these routines are provided in a library, and programs are linked so that the programmer can
provide application-specific definitions for any or all of these routines.

This same technique is often used for building display-oriented user interfaces where an
application must handle interleaved events generated by the mouse, menu system, and console
keyboard [4]. This organization helps in writing software that is always ready to handle any
input event as opposed to always being in some mode expecting a particular type of input.

3. Preemption

Preemption occurs when one process is stopped at an arbitrary instruction in order to run
another process. Preemptive systems are useful when it is important to run a high-priority
process as soon as data arrives or when one wants to implement a “‘fair’” scheduler that prevents
a single long-running process from taking all of the processor time.

While these sound like nice properties, preemptive systems also have disadvantages. The main
disadvantage is that a process may leave a data-structure in an intermediate state at the time of
preemption. For example, suppose processes A and B are adding data to an array by assigning a
value to V[1i] and then incrementing index i. Suppose A assigns a value to V[i] but is
preempted before it increments i. Process B might then overwrite V[1i]. This is one example
of a classic operating systems problem. The standard solutions to this problem [1] all involve
making updates to shared data structures mutually exclusive. In this case, process B would be
denied access to array V until process A finished its operations. This requires extra processing to
take place before and after updating the data structure. Notice, however, that this problem only
arises if process A can be preempted. If we disallow preemption, data structure accesses will run
without interruption, and no extra precautions need to be taken.

There are at least three advantages of non-preemptive systems. First, non-preemptive systems
are usually the simplest and most efficient to implement. Second, non-preemptive systems do
not incur as much overhead to lock and unlock data structures to achieve mutual exclusion.
Finally and most importantly, non-preemptive systems obtain mutual exclusion by default,
avoiding timing dependent programming errors which are difficult to debug.

On the other hand, non-preemptive systems can only switch tasks when a process explicitly
blocks waiting for input, delays, or requests that the system run another process. Therefore, a
long-running computation can seriously degrade real-time performance by delaying other
processes. Since we are interested in interactive, low latency systems, there are rarely any long-
running computations. If there were, then the assumption of low latency would be false with or
without preemption. In short, the problems solved by preemption do not normally exist in
interactive real-time music and animation software. (I will discuss some exceptions later.)
Another problem with non-preemptive systems is that special care must be taken so that other
processes can run when a process waits for input. This situation does not occur when input is
handled as described in the previous section.

4. Event-Based Programming

While concurrent real-time programs are ordinarily implemented as multiple processes, each
with its own stack, I will argue here that this approach is more complex and troublesome than
necessary. An alternative, first described by Douglas Collinge [6], is an event-based
organization that uses only one stack and supports interleaved execution of many tasks.

The principal idea is to think of the program as consisting of many execution events, each of
which consists of calling a short-lived procedure at a particular time with a particular set of
operands. Input data give rise to events (as described in Section 2), and events may also cause
other events, either immediately or some time in the future.

For example, in the CMU Midi Toolkit, one can write

cause (100, echo, pitch, Ioud);

This says to call the routine named echo after a delay of 100 time units, passing the values of
pitch and loud as operands. This event is saved in a time-ordered queue until the current
event completes and the indicated time has elapsed. Other events may execute in the meantime.
Extended computations that produce output, wait for some time, produce more output, wait
again, etc. can be implemented by using cause within events to generate future events.

This simple organization is efficient because it is not necessary to save all of the processor’s
registers in order to create or execute an event. Executing an event amounts to calling a
procedure, and this is normally faster than switching processes. Storage management is very
simple and mostly automated by the system: the cause operation allocates an event record
from a free list and stores the procedure address, operands and event time in the record. The
record is then inserted in the queue. When the time arrives, the event procedure is called with the
saved operands and the event record is returned to the free list. In practice this is much less
error-prone than explicitly allocating, initializing, and freeing storage for processes.

Another advantage of this approach is that it is compatible with standard debuggers which
often do not work properly with multiple stacks. Although it is possible to execute events within
an interrupt handler, debugging is simplified by having events called from the main program so
that they can print to the console, be paused by a debugger, or single-stepped. In interrupt-
driven, multiple-process systems debuggers are typically (but not inherently) of limited use. My
main point here is that a simple system that can use an off-the-shelf debugger and even simple
“print’’ statements is generally easier to program than a complex system requiring special
debugging tools.

As an aside, it is worth mentioning that this event-based strategy is compatible with the polling
of input devices as opposed to interrupt-driven input. Since interrupts are almost always more
difficult to implement and debug than polling-based systems, interrupts should only be used
when necessary for performance.

5. Multiple Processes

The organization described above is perfectly adequate for a variety of real-time programs;
however, there are cases where some long-running computations are necessary. User interfaces
that perform expensive graphics operations such as scrolling or image generation are examples
of long-running computations. One may also want to combine low-latency (fast) music
processing with relatively slow graphic operations. These can always be handled by breaking
them up into a sequence of shorter computations, but this is error-prone and it can make the
program unreadable. Input device handling, Midi in particular, requires very low latency
responses to avoid losing data. This hard real-time constraint makes preemption almost
essential.

In these cases, it is better to separate long-running computations into another process and use
preemption to minimize the latency of computations. This brings us back to the problems of
synchronization and mutual exclusion discussed in section 3. In my experience, the most
effective way to avoid these problems is to use a message-based client/server interface between
processes. The idea is that a client wanting some service (for example, a graphics operation)
sends a request message to a server process. The server reads one request at a time and uses a

reply message to return results to the client. The message queue(s) are the only shared data
structures and otherwise, both the client and server can be programmed as if they are never
preempted. This organization is easy to manage and leads to reliable programs.

Circular buffers are especially good data structures to implement client/server message
interfaces. Circular buffers have the advantages that they require no dynamic storage allocation
and in cases where there is only one reader and one writer, no locking of the data structure is
necessary to prevent interference even with preemption. Interrupt-driven device handlers should
also use circular buffers to communicate with processes that use the devices.

6. Interface Construction Tools

Following the previous advice makes it possible to quickly put together rather elaborate
interactive programs. Typically, programs that produce music and graphics have many
parameters that must be adjusted interactively to achieve the desired results. This implies that
user interface construction will be a major component of the overall programming task. This
effort can be minimized through the use of visual programming tools that allow the user to
interactively place software buttons, switches, sliders, and other controls onto a control panel and
then define the action which is to take place when the control is manipulated. Once designed,
the control panel can be saved to a file for use by an application or for further editing. This
technique was first demonstrated by Jean-Marie Hullot.

This approach can dramatically reduce the implementation time and increase the quality of
user interfaces. Since interfaces are easy to construct in this way, the implementer is encouraged
to use visual interfaces for debugging and testing as well as for the final product. This is
extremely valuable for exploratory programming which is typical in the development of artistic
music and animation software.

7. Putting It Together

An experimental version of the CMU Midi Toolkit was produced to incorporate all of these
recommendations. Time critical software is written in C and runs non-preemptively in a single
high-priority ‘‘music’’ process. Within this music process, an event-based structure as described
in section 4 is used so that this single process actually supports many interleaved operations. All
Midi input is decoded by this process and each Midi message results in a call to a C routine as
discussed in section 2. Figure 7-1 illustrates connections among processes and interfaces.

A user interface is provided by another ‘‘graphics’’ process which runs at a lower priority.
This process provides an interactive screen-oriented editor to create control panels consisting of
sliders, buttons, switches, and text labels. The editor is written is Lisp so that arbitrary actions
can be attached to controls and used immediately without compilation. In keeping with the
recommendation to use a message-based interface, the control panel process sends messages to
the high-priority music process to effect changes. The messages are handled exactly like Midi
and console input and do not preempt running events. Messages can be used to set variables and
cause events within the music process.

The issues of garbage collection and execution speed are always raised in the context of Lisp-
based real-time systems. Garbage collection is the way Lisp systems reclaim and reuse memory

graphics
commands

" 3) " 1 "

User Graphics Music MIDI
Interfa Process Process Interfafe
commands
Lowest from user Highest
Priority Priority

Figure 7-1: Processes, priorities, and interfaces in the CMU Midi Toolkit.

that is used only temporarily by a program. Execution normally stops while garbage collection
takes place. The question of execution speed is raised because executing Lisp programs often
involves some amount of interpretation as opposed to the faster technique of running compiled
programs. The music process is written in C for speed and to avoid garbage collection. The
graphics program is written in an interpreted Lisp which occasionally stops for garbage
collection.

To avoid speed problems with the Lisp interpreter I have made extensive use of graphics and
user interface primitives provided by the operating system, and in some cases I have added my
own primitives written in C. This leaves relatively little work for the Lisp program, which is
therefore quite responsive. Garbage collection is fairly fast (about 1 second) since the program
is small, and this is not usually noticeable because time-critical performance input data is read
(via Midi) directly by the music program. This approach would be unsuitable for continuously
reading the mouse position and updating some music parameter, but it works well for discrete
events caused by buttons, switches, and sliders (the system ignores intermediate slider positions
while the slider is being moved).

Others have avoided the garbage collection problem by explicitly freeing garbage or by using
only staticly allocated structures. The first of these approaches is error-prone and the second
significantly reduce the benefits of using Lisp in the first place. This led to my decision to use
Lisp only for the less time-critical user interface code where Lisp seemed to have a real
advantage over C and where garbage collection was tolerable.

The music process can also send messages to the lower priority graphics process. Currently,
these are all requests to perform graphics operations. Sending graphics operations to a lower-
priority process allows the music process to respond more rapidly to time critical Midi input.
Note, however, that the graphics operations can fall behind the music if too much processing
time is taken by the music process.

Midi input and output is interrupt-driven and runs at the highest priority. Midi data is
transmitted to the music process through yet another message interface in keeping with the
recommendations.

This particular implementation runs on a Commodore Amiga computer with 1 MByte of
memory. The Amiga was chosen because its operating system provides multiple tasks with
priority-based scheduling.

8. An Example
To illustrate how this all works in practice, I will describe the implementation of the final
section of ‘‘Assuming that you wish to dump data from module 1 ...”", a work for live trumpet,

computer, and synthesizer. The music of the final section is played by four independent voices,
each of which plays in a different octave. The first voice plays a note every 5 beats, the second
plays every 7 beats, the third plays every 9 beats, and the fourth plays every 11 beats. This
creates a constantly changing pattern. Each note is accompanied by the appearance of an image
which then fades to blackness. The code to implement these voices is the following:
do_voice (i, multiplier)
{
/* turn off previous note */
midi_note (basechan+i, pitches[i], 0);
if (!running) return; /* stop */
/* get a new pitch only if a new note was played */
if (note_count > last_count) {
pitches[i] = 24 + (12 * i) + note_pitch % 12;
}
last_count = note_count;
/* give time for decay, then play note: */
cause (10, midi_note, basechan+i, pitches[i], vel);
cause (11, new_figure, i, rate * multiplier);
cause (rate * multiplier, do_voice, i, multiplier);
}
This do_voice routine is invoked once for each voice, and each execution of do_voice uses
cause to schedule another execution for the next note of that voice. The choice of pitch class
for each voice is based on pitches played by the trumpet. Every time a new trumpet pitch
arrives, it is saved by the input handler routine (not shown) into a global variable
(note_pitch), and a counter called note_count is incremented. The next time do_voice
plays a note, it looks at note_count and compares it to last_count, the value of the
note_count last seen when a voice sounded. If the note is new (note_count >
last_count), then the voice takes the pitch class of the trumpet note in an octave based on the
voice number (the parameter 1i).

Thus each trumpet pitch can be used by at most one voice. This gives the effect of selecting
and echoing pitches performed on trumpet. The code example shows how each execution of
do_voice turns off the currently sounding note, tests to see if the performance has ended by
testing a global variable, calculates a new pitch, plays the note via Midi, computes an image (by
causing new_figure) to coincide with the performance of the note, and finally schedules
another call to do_voice to end this note and start a new one.

The graphics routine new__figure finds a location for an image, generates an irregular image
and draws the image on the screen. The image is a solid color that corresponds to a particular
entry in a (hardware) color table. To create the fade to black, the color table entry is modified in
16 successive steps. Each step corresponds to an event scheduled by cause, and each step
event schedules the next step, just as each execution of do_voice causes the next one. When
the color has faded to black, the image is redrawn using the background color (also black). This
step is invisible, but it frees the color table entry just in time for reuse in conjunction with the
sounding of a new note.

9. Evaluation

No controlled study has been made to test these recommendations in a scientific manner; in
fact, an unbiased study would be very difficult to design because programming methodologies
tend to influence software design.

Another way to evaluate a methodology is to see how it is used. The CMU Midi Toolkit,
which embodies most of these recommendations has been in use for several years. It appears
that this software has enabled at least several composers and a number of students to create
programs which would not have been possible otherwise [5,7, 10]. Some Lisp-based Midi
software, which provides an alternative manifestation of many of these same design principles,
has been similarly successful [2, 3].

Of these recommendations, the use of multiple processes and interface design tools are the
ones with which I have the least experience. These were implemented as tools for a recent work
involving interactive music and graphics generation. As it turned out, I have never bothered to
raise the priority of the music processing over graphics processing, so at least in this case, the
extra work to offload graphics to another process was unnecessary. The control panel design
software was not as useful as expected. Most of the changes and adjustments required
reprogramming in addition to simply changing the values of some parameters or calling existing
routines, so having a reconfigureable control panel in conjunction with a compiled real-time
system did not eliminate compilations. Also, since the screen was normally occupied by
graphics output from the program, it was awkward to also use the screen for a control panel.
Nevertheless, with some additional improvements to make this software easier to use, I believe it
will become an essential tool for future program development.

Two areas which have not been addressed are dealing with continuous controls and reducing
the computation time required for interesting animation. The event-oriented strategies described
here do not make it convenient to deal with continuous data such as amplitude envelopes or
trajectories of animated objects. Arctic [9] and FORMES [11] are languages designed
specifically for this kind of computation, but neither language has a real-time implementation
yet. This is an important area for future research.

Computing images in real-time requires a combination of special-purpose hardware, fast
processors, and various image- and program-specific tricks. As with sound generation, the most
advanced image generation techniques do not run in real-time, and the graphics community is
actively developing new hardware and software techniques to get better and faster results.
Regardless of the approach, the techniques presented here are useful for the generation of control
information in real time. Describing all the possibilities for real-time sound generation and

image production in response to this control information is beyond the scope of this paper.

10. Conclusions

I have attempted to de-mystify the art of writing reliable and efficient interactive real-time
music and animation software. I have argued for simple organizations that are amenable to
traditional debugging techniques and which avoid error-prone synchronization and storage
management. The resulting approach has been successfully used to implement a number of
music and animation programs.

11. Acknowledgments

I would like to thank Cherry Lane Technologies, Commodore-Amiga, Inc., Yamaha, and the
Computer Science and Music Departments of Carnegie Mellon for supporting the various
projects which led to the ideas presented here.

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

References

Andrews, G. R.
Concepts and Notations for Concurrent Programming.

ACM Computing Surveys 15(1):3-43, March, 1983.

Boynton, L., P. Lavoie, Y. Orlarey, C. Rueda and David Wessel.

MIDI-LISP: A Lisp Based Music Programming Environment for the Macintosh.

In P. Berg (editor), Proceedings of the International Computer Music Conference 1986,
pages 183-186. International Computer Music Association, 1986.

L. Boynton, J. Duthen, Y. Potard, and X. Rodet.

Adding a Graphical Interface to FORMES.

In P. Berg (editor), Proceedings of the International Computer Music Conference 1986,
pages 105-108. International Computer Music Association, 1986.

Buxton, William.
Lexical and pragmatic considerations of input structures.
Computer Graphics 17(1):31-36, 1983.

Chabot, Xavier, Roger Dannenberg, and Georges Bloch.

A Workstation in Live Performance: Composed Improvisation.

In P. Berg (editor), Proceedings of the International Computer Music Conference 1986,
pages 57-59. International Computer Music Association, 1986.

Collinge, D. J.

MOXIE: A Language for Computer Music Performance.

In W. Buxton (editor), Proceedings of the International Computer Music Conference
1984, pages 217-220. International Computer Music Association, 1985.

Collinge, D. J. and Scheidt, D. J.

MOXIE for the Atari ST.

In C. Lischka and J. Fritsch (editor), Proceedings of the 14th International Computer
Music Conference, pages 231-238. International Computer Music Association, 1988.

Dannenberg, R. B.

The CMU MIDI Toolkit.

In Proceedings of the 1986 International Computer Music Conference, pages 53-56.
International Computer Music Association, San Francisco, 1986.

Dannenberg, R. B., P. McAvinney, and D. Rubine.
Arctic: A Functional Language for Real-Time Systems.
Computer Music Journal 10(4):67-78, Winter, 1986.

Pennycook, Bruce W.

PRAESCIO-IT: AMNESIA Toward Dynamic Tapeless Performance.

In C. Lischka and J. Fritsch (editor), Proceedings of the 14th International Computer
Music Conference, pages 383-391. International Computer Music Association, 1988.

Rodet, X. and P. Cointe.
FORMES: Composition and Scheduling of Processes.
Computer Music Journal 8(3):32-50, Fall, 1984.

10

