
Real-Time Issues In Computer Music

Roger B. Dannenberg, David H. Jameson

Carnegie-Mellon University
IBM T.J. Watson Research Center

Introduction

The fields of music and real-time systems have
many common concerns, and there are many ways in
which the fields might benefit from interdisciplinary
research and an exchange of ideas. Time is a
fundamental parameter in both music and real-time
systems. Music is often concerned with ways of
representing and structuring time, whereas real-time
systems offer analytic techniques and engineering
solutions for time critical systems. Computer music
researchers have been guided by the problems of music
to explore some interesting new approaches to
representation, language, scheduling, and system
organization. This paper surveys some of the interesting
issues raised by music that can be addressed by real-time
systems research. We also examine some of the ways in
which sound and music technology can be applied by
real-time systems researchers.

Characteristic scheduling problems

We begin by outlining some of the problems that
are often found in music systems, and which tend to
distinguish real-time music systems from other sorts of
systems. First, music tends to be very bursty - musical
events tend to cluster around downbeats, with relatively
little work to be done in between. Thus, computer music
systems typically have a large amount of idle time and
frequent periods of momentary overload. Some systems
try to precompute and timestamp data to minimize the
amount of time-critical work to be done [l]. This has led
to work on fast scheduling and dispatching [2]. Music
systems usually have soft deadlines in the sense that data
should be computed even if it is late, although late in a
computer music system is often just a few milliseconds,
after which time the effects of the lateness are
perceptible. It is also the case that events cannot be
scheduled too early. Having a note sound early is just as

1052-8725/93 $03.00 Q 1993 IEEE
258

wrong as having a note stop late. Music is often
predictable at least a short distance into the future and
even though the computation load is bursty it is usually
possible to anticipate how much and when computation
will be needed. This opens up the possibility of advanced
scheduling techniques that try to compute dynamically
schedules that minimize timing errors. In general, music
output is intended for human listeners; therefore, there is
a perceptual basis for scheduling [13]. Timing or data
errors that cannot be perceived are not important, and
music systems often use human perception as a basis for
performance requirements. Music is perhaps the most
demanding medium in terms of timing. While video can
often tolerate an occasional skipped frame, and lip-sync
requires resolutions of tens of milliseconds. deviations of
less than 10 ms can be detected in music performances.
This is why it is important to synchronize video to audio,
and not the other way around, a mistake often made.

Integrated real-time systems

It is not uncommon to combine expert systems,
graphical monitoring, and music processing in a single
real-time system [3]. For example, we have built
computer systems that listen to a live performer and
synchronize an accompaniment while automatically
“turning pages” of music on a graphics display [2]. Here,
the problems include scheduling tasks with a diverse
range of scheduling requirements (typically on a single
processor), and finding the right “glue” to interconnect
various modules. Interface builders, object linking, and
IPC mechanisms that support real-time systems are
sorely needed. Music processing itself comes in different
forms and places different kinds of demands on a system
so audio output requires hard real-time scheduling to
avoid glitches. Live audio processing (e.g. digital
mixing) requires small communication packets with very
low communication delays to avoid accumulating audio
input-to-output latency. MIDI requires fast response to
asynchronous input. Many systems must support all of

*Published in:

Proceedings of the Real-Time Systems Symposium,

 Raleigh-Durham, NC, December 1-3, 1993. IEEE

Computer Society Press, 1993.

*

these requirements in a single system [L?]. Control
updates in many real-time systems and in MIDI are not
time-stamped, they simply take place as soon as the
update arrives. This asynchronous approach can lead to
non-determinism that is difficult to debug and can make
output unpredictable. Audio filter updates, for example,
sometimes must be sample-synchronous to guarantee
filter stability. Some systems use time-stamping so that
controls are delivered exactly at a predetermined audio
sample. This is not always desirable, however, because a
sample-synchronous control system inherits the same
hard real-time constraints as the signals it controls.
Systems that offer a range of options seem to be
desirable. A whole range of issues regarding mixed event
and signal processing remain to be explored.

Languages and system specifications

Expressive music control is very demanding; it
leads to complex systems and requires advances in
programming languages in addition to real-time
operating system support. In other words, the
programming problems of specifying intricate temporal
behaviors sometimes dwarf the systems problems of
scheduling or performance. Computer music researchers
have probably devised more approaches to specifying
temporal behavior than any other group [141, [151, [4].
Computer music systems sometimes use load-shedding
techniques to (a) avoid overloading a bandwidth-limited
MIDI channel, or (b) to best use limited audio processing
resources. Load shedding usually means that MIDI notes
must not be left on, and active signals must be carefully
attenuated to avoid the pop that would occur if a process
were simply terminated asynchronously. Thus load
shedding implies additional work before the load is
reduced. This is partly a scheduling problem, but we
describe it here to emphasize that load-shedding requires
domain-specific information from the system designer.

on RT Mach [16], and then perform operations like
dragging a window, forking a process, or running ftp, to
see how much interference is generated by other
processes and devices. An easy-to use and continuous
monitoring system like this has turned up some
interesting problems that were previously unnoticed.
Several researchers have begun to investigate the use of
audio, and in particular musical sounds, as a means of
understanding programs [8], [71. We have built a
debugging environment called Sonnet [111 that consists
of a visual programming language to define runtime
actions that can be triggered by running code. Many of
the actions produce sounds that allow programs to be
monitored and debugged. One very difficult issue to
resolve is how to provide appropriate sounds without
being too intrusive.

Computer music is clearly a very useful testbed for
real-time systems. Unlike the example above where
sound is being used explicitly as a new tool to solve
some other problems (monitoring and debugging in this
case) we can also use music as a safe environment for
experimenting with problems in real-time without the
possible dangerous side-effects caused by a broken
system. The real- time programming language ORE [5],
[61, [91, although originally designed to control a juggling
robot was found to be just as effective for building some
music software [lo].

Educational applications

Computer music using MIDI can be a good
teaching tool. The effects of latency are very apparent on
music data (for perceptual reasons), and music is a
natural real-time application for motivating real-time
topics. Students generally find music and sound an
exciting domain, and a welcome change from the typical
“glass tty” interface we see too often. Digital music
synthesis hardware is relatively inexpensive.

Music technology for real time systems
Conclusion

We now describe a few applications of music
technology to real-time systems research. The MIDI
protocol can provide a simple real-time serial
communication link to external monitoring equipment,
and MIDI recorders are available off-the-shelf. For
example, we use one machine running an experimental
system to generate 100 MIDI notes per second and we
record and plot the events on a second machine. If the
sending program is not scheduled appropriately, we can
readily see (and hear) it. We typically run the generator

Real-time systems are essential to computer music,
and new developments in scheduling, operating systems,
and languages are certain to find applications in music.
At the same time, we believe the issues that arise in
computer music should be of interest to designers of real-
time systems. Computer music systems are demanding
and complex, and require a large degree of flexibility to
support the creative goals of musicians. Musicians and
composers were working in the “real-time business” long

259

before the computer, and we think the art and science of
music-making has much to offer.

References

[l] Anderson, D. P. and R. Kuivila, Accurately Timed
Generation of Discrete Musical Events, Computer Music
Jo~mal, V10(3), pp 48-56, Fall 1986.

[2] Dannenberg. Roger B, Current Directions in Computer
Music Research, pp 225-262, System Development Foundation
Benchmark Series. Mathews. M. V. and J. R. Pierce (Eds),
MIT Press, 1989

[3] Dannenberg. R. B., Real Time Control For Interactive
Computer Music and Animation, The Arts and Technology II:
A Symposium, N. Zahler (Ed), pp 85-94, New London. Conn..
Connecticut College 1989

[4] Dannenberg, R. B., The Canon Score Language, Computer
Music Joumal, V(13)1, pp 47-56, Spring 1989

[5] bnne r , M. D.. Jameson. D.H., A Real-Time Juggling
Robot, IEEE Proceedings Real-Time Systems Symposium,
December 1986

[6] Donner. M. D., Jameson. D.H., Language and Operating
System Features for Real-time Programming, Computing
Systems, Vol 1(1), University of California Press, 1988[FrAlJa
911 Francioni, J.M.. Albright. L, Jackson, J.A., Debugging
Parallel Program Using Sound, ACM Proceedings Parallel
and Distributed Debugging, May 1991

[7] Francioni, J.M., Jackson, J.A.. Breaking the Silence:
Auralization of Parallel Program Behavior, Technical Report
TR 92-5-1, Computer Science Department, University of
Southwestem Louisiana, Lafayette, LA, May 1992

[8] Hotchkiis. R.S.. Wampler. C, The Auditorialization of
Scientific Information, ACP Proceedings SUPERCOMPUTING
'91, November 1991.

[9] Jameson, D.H., ORE: Programming Real-Time
Applications, 5th Workshop on Real-Time Software and
Operating Systems, IEEE, May 1988

[lo] Jameson, D.H., Computer Music Pegormame as a Real-
Time Testbed. Real Time Programming, Prowdings of the
IFAC/IFIP workshop, 1992. (Atlanta, Georgia, May 1991)

[111 Jameson, D. H. , Sonnet: Audio Enhanced Monitoring and
Debugging, Proceedings, Intemational Computer Music
Conference, Santa Fe, NM 1991

[12] Puckette M., FTS: A Real-Time Monitor for
Multiprocessor Music Synthesis, Computer Music Journal,
V15(3), pp 58-67. Fall 1991

[13] Rubine, D and McAvinney P, Programmable Finger-
tracking Instrument Controllers, Computer Music Journal,
V14(1). pp 26-41, Spring 1990

(141 Schottstaedt, B, Pla: A Composer's Idea of a h g u a g e ,
Computer Music Journal, V7(1), pp 11-20. Spring 1983

[15] Scaleni, C., and Johnson, E, An Interactive Graphic
Environment for Object-Oriented Music Composition and
Sound Synthesis, Proceedings of the 1988 Conference on
Object-Oriented Languages and Systems, pp 18-26, ACM
1988.

[16] Tokuda H.. Nakajima T., and Rao P.. Real-Time Mach:
Toward a Predictable Real-Time System, Proceedings of the
USENIX Mach Workshop, USENIX, October 1990

260

