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A technique is presented for the analysis and digital resynthesis of instrumental
sounds. The technique is based on a model that uses interpolation of amplitude spectra
to reproduce short-time spectral variations. The main focus of this work is the analysis
algorithm. Starting from a digital recording the authors were able to compute automatically
the parameters of this model. The parameters themselves, harmonic amplitudes at
selected times, are small in number and intuitively interpretable. The model leads to
a synthesis technique more efficient than classical additive synthesis. Moreover it
allows dynamic spectral variations to be controlled with only a few high-level parameters
in real time. Two analysis/synthesis methods are studied based on spectral interpolation.
The first uses only spectral interpolation. This method made it possible to compress
recordings of orchestral instruments to an average of 400 bytes per second without
perceptible loss of realism, and to resynthesize these sounds with about 10 arithmetic
operations per sample. The second method is a hybrid in which a sampled attack is
spliced onto a sustain synthesized via spectral interpolation. The spectral interpolation
model has been applied successfully to different instruments belonging to the brass
and woodwind family. The authors plan to extend the study to many more instruments.,

0 INTRODUCTION

All approaches to the synthesis of musical tones rep-
resent & compromise among generality, the ability to
produce any sound; efficiency, the computational cost
of synthesis; and control, the ability to simply, flexibly,
and intuitively control musical parameters such as
timbre, pitch, and loudness. For example, additive
synthesis exhibits a high degree of generality in that
any sound can be created, but additive synthesis [1] is
not efficient, requiring a large amount of computation
and control information, and contro! is complex. FM
synthesis [2] is more efficient but not as general as
summation synthesis. The amount of control infor-
mation is reduced, but the control parameters are not
always intuitive, and automatic analysis of instrumental
sounds to obtain FM parameters is largely an open
problem.
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Fixed waveform synthesis, waveshaping, subtractive
synthesis, sampling, and physical modeling are other
examples, each providing a different combination of
generality, efficiency, and control, but no technique
scores highly on all criteria. We have investigated a
new technique that trades some generality for efficiency
and control. The technique is inspired by both additive
and fixed waveform synthesis, and control parameters
can be derived automatically by analysis of natural
sounds.

Sec. 1 presents a new technique, called spectral in-
terpolation synthesis, and Sec. 2 describes the analysis/
synthesis problem we studied. Sec. 3 presents and
evaluates several solutions we explored. The remaining
sections describe related work, directions for further
study, and our conclusions.

1 SYNTHESIS BY SPECTRAL INTERPOLATION

Perhaps the least expensive way to generate tones is
through the use of fixed-waveform (or table-lookup)
synthesis, which uses one digital oscillator per voice
[3]. Unfortunately, fixed-waveform synthesis does not
offer the possibility of time-varying spectral content,
which is important in the production of interesting mu-
sical tones.

One solution is to sum the outputs of a number of
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fixed-waveform oscillators. The amplitude controls can
then be used to control various parts of the spectrum
independently. In the limit, each oscillator produces a
sinusoidal partial, and we have summation synthesis.
This approach is expensive because many oscillators
are needed for each voice or musical tone.

Another approach is to change the waveform in a
single oscillator. If the waveform currently addressed
is changed instantaneously to a different one, the re-
sulting spectrum will change, and by generalizing the
same procedure to a set of waveforms, dynamic spectral
variation can be produced. For example, smooth timbral
transitions can be obtained by reading successively a
sequence of waveforms that are “very close” to each
other [4]. Unfortunately, avoiding perceptual discon-
tinuities (clicks) at the switching points requires a large
amount of input data [5], [6]. In other words, the
changes between successive spectra need to be slight
in order to be imperceptible, necessitating a large control
bandwidth.

Thus it is not very practical to use a single table-
lookup oscillator to generate spectral variation, since
it is costly to change smoothly between spectra. How-
ever, if we allow ourselves two table-lookup oscillators
per voice, we find that we can indeed change smoothly
between wave tables.

Fig. 1 illustrates the waveform interpolation oscil-
lator. Waveform interpolation is similar in implemen-
tation to table lookup but uses two phase-locked wave
tables, W and Wy, each loaded with a different wave-
form.

The two tables have the same length M and are indexed
with the same phase value phase(n). The interpolation
signal can be expressed as

phase(n) = phase(n — 1)

(1
+ phaselnc(n) [mod M]
'(n) = c(n)W[phase(n)]
) LIP )
+ d(n)Wg[phase(n)]
where
n = pumber (index) of sample being
computed
M = (constant) number of samples in
wave table W
phaselnc(n) = phase increment at sample n
Wim] = mth sample of fixed wave table W

c(n) = amplitude scale factor of left wave
table at sample n

d(n) = amplitude scale factor of right wave
table at sample n

phase(n) = phase accumulator at sample n

v(n) = output signal at sample n.

Thus we see that a waveform interpolation oscillator
is identical in effect to two table-lookup oscillators
whose phases phase(n) are constrained to be equal. An
alternative view is to consider a waveform interpolation
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oscillator to be a table-lookup oscillator whose “effec-
tive” table is computed dynamically as the linear com-
bination of two fixed wave tables,

WE [m] = c(mWyIm] + d(m)Wglm] . 3)

1.1 Arbitrary Spectral Evolution via Waveform
Interpolation

We would like to use waveform interpolation [Eq.
(2)] to generate a spectral change over time. This is
accomplished by switching the wave tables themselves
over the course of a sound. For instance, by repeating
the interpolation procedure [Eq. (2)] with different pairs
of waveforms loaded in the right and left tables, one
can get a succession of different dynamic spectral
combinations. To avoid discontinuities at the point when
a waveform is changed, only one of the two waveforms
is changed at any one time, and the change occurs
when the scaling factor associated with the wave table
being changed is zero.

Fig. 2 illustrates the interpolation of a succession of
Q waveforms (Q = 4) taken in a time-ordered sequence
{(ng, Wo), (ny, Wy), ..., (ng-1, Wp_1)}, where n;
represents the sample at which the reading of waveform
W; starts. At any point in time we are interpolating
between one of the waveform pairs (Wy, W), (W,
Wa), ..., (Wo_a, Wo ).

In the figure we have shown c(n) and d(n) as piecewise
linear functions, each of which alternatively has value
zero at some n;, rising linearly to its maximum at 7,
and again reaching zero at n;4;. It is not necessary that
c(n) and d(n) have this form; all that is required is
that they be continuous and have value zero at the
points their respective wave tables change.

1.2 Spectral Interpolation

Problems may occur when interpolating between two
waveforms whose phase distributions are different.
Phase cancellation causes the amplitude of each har-
monic in the interpolated signal to be less than expected
[3]. To avoid these problems and to get an intuitive
control over the interpolation process, we will only
interpolate between spectra whose corresponding har-
monics are all in phase. For natural sounds, it is in
general not the case that the corresponding harmonics

c(n) {?
allly - alli,
Wifm) !
Phaselnc(n Il Phase(n) G—?-) y(n)
Ao . -
wm) T
d(n) é

Fig. 1. Waveform interpolation oscillator.
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of each period are in phase. In order to conduct our
experiments on waveform interpolation synthesis, we
will rely on an assumption that has been used extensively
in digital signal coding of speech and musical signals.
The assumption is that the ear is not very sensitive to
phase information, so this information can be thrown
away [7]. In addition to ignoring phase shifts of a given
harmonic in time, we ignore the initial phase differences
between different harmonics.! We use the term synthesis
by spectral interpolation to mean that we have con-
strained the corresponding harmonics of each generator
wave table to be in phase.

Expressing the left and right wave tables of an in-
terpolating oscillator as the sum of their respective
harmonics, we have

Wiplm] =

|
MT
L
2
>
(o]
o
w
N
[ &)
1 3
=
3
4
D
=
~——

“

Rl 2mhm
Wgrim] = al cos <——H— + o}

where a} and 8% are the amplitude and the phase of

the hth harmonic in the left wave table, and a}}, and 6%

are defined analogously for the right wave table.
Substituting Eq. (4) in Eq. (3) we obtain

H-1
2mh
WE,[m] = c(n) >, aj cos ( T e‘;)
h=0 H

H-1
2mh
+ d(n) 2 af cos < mhm
h=0

+ eﬁ) - (5)

Assuming that the corresponding harmonics in Wy
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and Wy are in phase (that is, 6% = 8% = 0,), we have

H-1 Imh
WEym] = 3 (c(n)ak +d(m)ak) cos ( ot eh>.
h=0
©)

Thus the effective amplitude of the Ath harmonic in
the effective wave table WE, is

ap(n) = c(n)ay + d(n)a} . )

Given the constraints of spectral interpolation, the am-
plitude of a harmonic of the output at sample n is thus
equal to the linear combination of the amplitude of the
respective harmonic in the left and right wave tables,
the combination coefficients being ¢(n) and d(n) as
expected.

In this section we have described the process of gen-
erating an acoustic signal whose spectral composition
can be dynamically modified through the interpolation
of waveforms. Next we address the question of the
analysis and reconstruction of an acoustic signal using
such a model.

2 THE RECONSTRUCTION PROBLEM

Spectral interpolation, achieved by interpolating be-
tween successive waveforms, can be used to synthesize
a large class of instrumental sounds. If we use slowly

! Depending on the class of instrument, the frequency reg-
ister, and other factors such as pitch and Ioudness, natural
tones show different degrees of initial phase shift {8]. As is
often done in additive synthesis and the phase vocoder [9],
we ignore the initial phases, at least for most of Sec. 3. We
do, however, consider initial phase differences in Sec. 3.7.

0 1 2 3
n 1 I T T T [ T T T I T 1 | T 1 T T T I 1
3 w Y
w
L(n) oE = 0 | |
c(n) T

W
3 N W, [“‘A 3
o f | |
d(n) I M
interpolated
signal .

Fig. 2. Interpolation of successive waveforms.
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changing control functions to control amplitude and
frequency, then the waveform interpolation oscillator
will produce only sounds with harmonically related
partials.? This is not appropriate for many percussion
and noise sounds, but excellent results have been ob-
tained for wind instrument sounds. To produce realistic
instrument sounds, it is most helpful to analyze sounds
in order to obtain control parameters for the spectral
interpolation model described by the following equation:

y(n) = c(n)Wy,lphase(n)]
+ d(n)Wg(,[phase(n)]

(8

where L(n) and R(n) determine the left and right wave-
forms at sample n. :

What additional properties should a harmonic signal
exhibit to make possible a quality resynthesis by wave-
form interpolation? Clearly, interpolation will best re-
produce a signal with a slowly varying short-time spec-
trum. As a large class of instruments show gradual
changes in their short-time spectra (especially in their
sustain portions) we think that waveform interpolation
is profitable in many situations.

This does not mean that it is not possible to reproduce
signals with large, rapid spectral changes using wave-
form interpolation. Eq. (8) may be flexible enough to
adapt to such cases, as it allows the modification of
the mixing coefficients of the wavetables and switching
of the waveforms themselves. A large control data
bandwidth would be necessary to handle rapid spectral
modulations.

2.1 Role of the Analysis

To reproduce a sound with the generation model de-
scribed by Eq. (8), we perform a sequence of inter-
polations between pairs of waveforms stored as the set
of wave tables {W;}. Each wave table corresponds to
a single period of the signa]. Because of the interpolation
function, the number of wave tables will be less than
the total number of periods in the signal. The time it
takes for the interpolation to go from one wave table
to the next is called the interpolation interval. The
function of the analysis preceding the synthesis is to
select the wave tables, interpolation intervals, and
weighting functions [¢(n) and d(n)] such that the re-
synthesized signal sounds like the original.

2.2 Nonautomatic Derivation of Input
Parameters in the Time Domain

One method of analysis consists in extracting the
wave tables manually from periods of the original signal.
In this method, the user studies a display of the signal

2 This is not exactly true. It is possible to generate sounds
with inharmonic partials by interpolation between waveforms
containing out-of-phase harmonics [3], and this effect may
be used, for example, to generate vibrato [10]. However, as
we discuss in Sec. 1.2, it is not likely that we can system-
atically use this effect to reproduce spectral variations of a
given sound, and by excluding this effect we accrue advantages
in both analysis and synthesis (see Sec. 1.2).
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over time and selects the periods he or she believes to
be the onset of significant spectral changes. These pe-
riods (each stretched to fill exactly M points) will be
the wave tables, and the intervals between successive
selected periods, the interpolation intervals. Time-linear
interpolation may be used [in which c(n) and d(n) are
determined from the interpolation intervals], or the
user may specify (by, say, drawing) the mixing functions
directly.

Nonautomatic analysis is clearly difficult and labor
intensive. Thus our effort has focused on building a
general analysis model that computes the amplitudes
and phases of the harmonics, then automatically selects
(or computes) the generator wave tables, interpolation
intervals, and weighting functions.

3 ANALYSIS/SYNTHESIS BY SPECTRAL
INTERPOLATION

In this section we present the analysis algorithm that
precedes the spectral interpolation synthesis. The anal-
ysis algorithm takes as input the acoustic signal that
we wish to regenerate, and outputs the control data for
the synthesis.

In order to extract from the acoustic signal the relevant
information for driving the synthesis, we follow several
consecutive steps: digital recording of the sound, spec-
tral analysis of the digitized sound, and data reduction.
At the end of the analysis we arrive at a set of data
describing (to some approximation) the original sound
according to the spectral interpolation model. This set
is then fed into the waveform interpolation synthesizer
(or its software simulation) to verify the analysis.

3.1 Digital Recording

For the purpose of analysis we start to work with
isolated tones played (as nearly as possible) at a constant
pitch. These restrictions allow us to study separately
the reproduction of the amplitude spectral variations
by spectral interpolation. The analysis and synthesis
described here will still work for tones whose pitch is
not constant. However, since vibrato and connected
pitches are facets of the tone we wish to control ex-
plicitly, we handle these at a higher level. This is briefly
mentioned in Sec. 5 and will be described in a forth-
coming paper.

The sound coming from the instrument is recorded
using a microphone and then sent to an analog-to-digital
converter that transforms the analog signal into a stream
of 16-bit samples. The sample rate and the anti-aliasing
filter must be chosen according to the bandwidth of the
signal. In addition we choose a sample rate that leads
to an integer number of samples per period. For a given
pitch, there are usually several possible sample rates
in the system that can be suitable. We try to keep the
sample rate close to 16 kHz as we low-pass filter the
signal at 6.4 kHz. If it is not practical to record at
arbitrary sample rates, an interpolation and decimation
procedure [11] or other resampling algorithm [12], [13]
can change the sample rate efficiently. In order to fully
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experiment with our technique, we record several groups
of notes for a given instrument. Each group contains
notes played at constant pitch, and with different loud-
ness and duration attributes. Thus we get different kinds
of spectral evolutions to reproduce with the spectral
interpolation model.

3.2 Spectral Analysis

There exist several methods of harmonic extraction
based on the short-time Fourier transform {phase vo-
coder, heterodyne filters, discrete Fourier transform
(DFT)]. We use a pitch-synchronous DFT because it
is simple and efficient. In addition, when the period is
measured accurately, the DFT directly produces the
amplitude and phase of each harmonic. Since we re-
corded the tone at a sample rate to ensure an integral
period, we need only to check that the period is correct.
We do this using Moorer’s optimum comb [14] or a
simple peak detector.

Once the pitch modulations have been tracked and
recorded, we can measure the evolution of the har-
monics. For simplicity of presentation, we assume
constant period P over the entire tone. The DFT of the
ith period of the discrete signal x(n) is defined by

P-1
XS’i) = Z x(iP + n)e—jZ'nhn/P,
n=0

O<hs<P-1, 0<i<Np 9

where P is the length of the period in number of samples
and Np is the total number of periods in the tone. Eq.
(9) is equivalent to taking the short-time Fourier trans-
form of the signal x(n) by using a rectangular window
of duration P and sampling it every P samples.

As the signal x(n) is real, the DFT amplitudes are
symmetric: |X§?| = |X{"_)|. Thus we have at most
[(P — 1)/2] harmonics (ignoring the dc component at
h = 0). In actuality, we calculate H harmonics, H =
[(P — 1)/2], possibly ignoring some higher harmonics.
We ignore the higher harmonics for a number of reasons:
they often have insignificant amplitudes, the pitch-
synchronous DFT computes them inaccurately, and we
want to avoid aliasing when the tone is resynthesized
at higher pitches. For simplicity, we evalute the sum
[Eq. (9)] directly for each harmonic A, 1 < h < H.
This is often more efficient than using the fast Fourier
transform (FFT) to compute the entire DFT, since H
may be significantly less than P/2 (so there is no need
to calculate all P/2 harmonics), and P is in general not
a power of 2 (making FFT methods awkward).

The filter interpretation of the short-time Fourier
transform [15] shows that if the DFT is computed on
a sequence whose length equals the period (or a multiple
of the period), then the amplitudes aj represent the
exact amplitudes of the harmonics. If the input is not
perfectly harmonic, or if the period is not an integral
number of samples, there will be some error due to the
fact that in the passband of the filter for harmonic A
(centered at 2mwh/P) more than one harmonic may be
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present, or the harmonic under analysis may not be in
the center of the band. Nonetheless, we have obtained
good results using the direct computation of Eq. (9).
Also, we have been satisfied with the low time sampling
rate of the short-time Fourier transform (one measure
every P samples).

The DFTs result in a vector of amplitudes on each
period of the tone. We call §) the spectrum measured
at period i,

SO = (@), ax(i), . . ., anli), .. ap(i))  (10)
where a,(i) = |X§"|, that is, the magnitude of the hth
harmonic at period i.

The list of DFT spectra with their time indices is
{(no, SO, (ny, 8N, .. ., (nnp-1, SN} We call
this list the spectral envelope of the tone. To reproduce
the tone using the spectral interpolation model, we
want to transform the list of DFT spectra into suitable
data for the waveform interpolation synthesizer. That
is the subject of the next section.

3.3 Spectral Paths and Spectral Ramps

For the remainder of Sec. 3 we describe several al-
gorithms that process the time-ordered list of DFT
spectra {(ng, $), (ny, SV, .. ., (np-1, SMe=Ihy
The purpose of each algorithm is to obtain the control
data needed to drive the spectral-interpolation oscillator
[Eqgs. (10}, (4), (8)]: alist of O spectra (with associated
times) and the scale functions c(n) and d(n). The number
of spectra used for the synthesis Q should be much less
than the number of spectra coming from the Fourier
analysis Np.

In order to explain how the data reduction works,
we want to express the interpolation between two spectra
5 and §' (successive in the synthesis) in terms of
their individual harmonics.? Analogously to Eq. (7),
we can express the instantaneous interpolated harmonics
at sample n, af(n), as*

ai(n) = c(ma’ + dnyal?,
n,-Sn<nj,1ShSH.(ll)
The effective spectrum at sample n, S('f>(;z), is

SDny = e(n)SY + dm)SY,

np<n<n. (12)

3 This explanation assumes that the spectra used in the
synthesis have been selected from the DFT spectra computed
in the analysis. While this is often the case, one of our al-
gorithms (see Sec. 3.4.2) computes the spectra used in the
synthesis.

* For the remainder of Sec. 3 we assume without loss of
generality that the waveform for 5% is in the left wave table
and the waveform for SV is in the right. If this is not the
case, as happens every other pair of spectra, the roles of c(n)
and d(n) must be interchanged. The equations as written
generate sawtoothlike functions for c(n) and d(n), which
after the interchange become the trianglelike functions as
illustrated in Fig. 2.
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We call the sequence of spectra $7(n), n; s n <
n;, the spectral path from 5 to 9. A spectral path
consists of the H loci that connect each harmonic of
the initial spectrum S to the harmonic of the same
order in the final spectrum § 0 A spectral path is defined
by a set of two amplitude spectra (H amplitude values
for each spectrum) and a mixing function defined by
the two coefficients ¢(n) and d(n), forn; < n < n;.

The interpretation of a spectral path is straightforward
when the interpolation is linear in time. In this case,
the harmonic amplitudes are given by

Sny = [1 = sp(m)}S? + sp(n)SP? |

n,~$n<n,~

ay’(n) = [1 = sp(mlaf) + sp(m)al,
lshsH nsn<n
sp(n) = —1 (13)
nj - n;
Eq. (13) is equivalent to
an) = a) + Tl o)~ af),
i ny

J

l<sh<H n<n;. (14

Here the effect of interpolating between two spectra
is that the amplitude of each harmonic ramps linearly
from its value in the first spectrum to its value in the
second. For this reason $U7 (consisting of H amplitude
ramps) is called a spectral ramp. A spectral ramp is
defined by the set of H initial and H final values of the
harmonic amplitudes, together with the duration of the
interpolation (n; — n;).

Fig. 3 shows three successive spectral ramps. Rep-
resenting an amplitude spectrum evolution with spectral
ramps is similar to using a piecewise linear approxi-
mation for the individual harmonic amplitudes. How-
ever, in contrast to the usual representations used for
additive synthesis [16], the break points that define the

amp

time

harmonic
number

PAPERS

piecewise linear function for each harmonic are si-
multaneous.

In order to ensure that the reproduced spectra are
close to the original spectra, the data reduction algorithm
is based on an error-minimization process. The various
methods we use to determine the spectral paths in order
to minimize our error criteria are described in the fol-
lowing sections.

3.4 Data Reduction Using the Time-Linear
Spectral Interpolation Representation

We first consider using spectral ramps for resynthesis.
The fitting of the spectral envelope with a small set of
spectral ramps is based on the following process: starting
with the spectrum of the first period of the tone, we
compute the spectral ramp to the spectrum of each suc-
cessive period in turn. For each successive period we
calculate an error measure based on the deviation be-
tween the harmonic amplitudes of the original spectra
and those of the computed spectral ramp. When the
error exceeds a given threshold, the spectral ramp ending
at the previous period is stored. The process is repeated
using the end of this spectral ramp as the initial spectrum
of the next spectral ramp. This loop is executed until
the entire spectral envelope has been approximated.

We have tried two different ways for optimizing the
spectral ramps. The first method is called spectral ramp
interpolation using original spectra. It selects some
of the DFT spectra in the spectral envelope of the orig-
inal tone as endpoints of the spectral ramps. The second
method is called spectral ramp interpolation using
computed spectra. It uses a linear regression algorithm
to compute the spectral ramps. We discuss each of
these in turn.

3.4.1 Spectral Ramp Interpolation Using Original
Spectra

Consider Eq. (13), which defines an interpolated
spectrum SY(n) on each sample n within the ramp
S For the purpose of measuring the error on the
spectral ramp S, we need to compare the successive
computed spectra $/)(n), n; < n < nj, to the corre-
sponding sequence of DFT spectra S with i < [ < j
(since n; = iP and n; = jP). Thus we need to sample
the computed spectra at the same rate as the DFT spectra,

Fig. 3. Three spectral ramps.
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that is, with a time interval equal to the period P. We
consider that the interpolated spectrum on period / is
equal to the spectrum computed at sample n; = [P, that
is, SWXIy = §(n;). Given this notation, Eq. (14)
can be rewritten,

. ) n - n; , ,
agx'J)u) = agll) + n—l—:—# (aﬁlﬁ - aﬁ,')),
i i
isi<j. (15

Comgaring the amplitudes of the harmonics of spec-
trum S 1_>‘ with values given by Eq. (15) produces an
error E§}’>’, which is defined as the mean square error

on the H harmonic amplitudes,5
a H » o
E{p = ;,21 (@ — aih? . (16)

Using the following notation:

Adil = a — af
Adll = gl — aff (17
AnY = n; — n
An' = n; — n;
Eq. (15) becomes
N . An't
ai(ly = ol + A:"f Adj . (18)
From Egs. (18) and (16) we deduce
H il 2
. Ant . .
EQ) = hz (m Adjl + a - a%”)
=1
H il 2
An' . )
= (An"f Aall - Aa;,’> . (19)
h=1

The global erorr E‘” within the spectral ramp §'7/
is defined as the sum of the errors on the individual
spectra,®

j-1
B9 = 3 EW 20)
I=i+]

If the error E‘/ is less than the tolerated threshold
Enax, We extend the spectral ramp to the next period
(j + 1) and compute the new error E%J*D using Eq.

(20), Eﬁ;")f“) being computed with Eq. (19). Otherwise

5 The averaging factor 1/H is omitted here as it is assumed
constant for the tone under study. )

® We may start the sum from i + 1 since as we use S as
the initial spectrum in the spectral ramp, we haveEE:,f; = 0.
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we store the data defining the previous spectral ramp
s~ and we compute the next ramp starting at spec-
trum (nj_l,S(J‘”).

3.4.2 Spectral Ramp Interpolation Using
Computed Spectra

The linear regression algorithm is a way of fitting
piecewise linear functions to a set of points [17]. We
use a variant of linear regression called anchored
regression [18)]. Given a fixed point called the anchor
and a set of data points, the anchored regression al-
gorithm finds the slope of the line passing through the
anchor which minimizes the sum of squared distances
from the data points to the line. We use this algorithm
for the computation of the H segments which define
the spectral ramp. Instead of processing each harmonic
separately (which would probably result in a set of
segments of different lengths), we perform H linear
regressions on a fixed time interval, and we compute
a global error on the resulting spectral ramp.

The anchors (or the endpoints of the spectral ramps)
are denoted by §'{, The prime is used to differentiate
the anchors from the DFT spectra. The anchored
regression algorithm works as follows. We start with
an anchor (n;, S’(i)). For the first anchor we take (ng,
$9.7 For each successive consecutive DFT spectrum
(nj, S(j)),j > i, we compute H lines. The hth line goes
through its anchor (n;, a;(i)) and comes closest (in the
least-squares sense) to the set of points (n;4y, ax{i +
1), ..., (nj, ay(j)). The error on the spectral ramp is
computed as the sum of the errors of the H individual
lines. If the error is below a threshold E ., the next
DFT spectrum (nj4,, S<j”>) is examined. Otherwise
the spectral ramp S'/~1 is used. In this case the end-
point of the spectral ramp is (n;-,, S'j"). The H co-
ordinates of §'Y™Y, q,/(j = 1), for 1 < h < H, are
computed using the slopes of the H best lines. The
endpoint (n;-, §'U=1) is then used as the new anchor
and the process is repeated to get the next spectral
ramp.

Using a simple least-squares fit, it is straightforward
to compute the best spectral ramp. Since each of the
H lines forming the spectral ramp S’‘ must go through
the coordinates (n;, ai{i)), each line is defined by an
equation of the form

a"{ily = m{P(n; = n) + aili),
lsh<sH isl=sj (21)

where m{" is the slope of the hth line of the ramp.
Defining E; to be the sum of the squared errors of
each harmonic within the ramp 5" we have

J
EP = 3 lal) = (miPn = n) + a()”

I=i+1

(22)

7 Here the prime is omitted because the anchor is not com-
puted.
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The total error on the spectral ramp E' is the sum of
the errors on each harmonic,

H
EilY = Z Eﬁ)ij) . (23)
h=1

By using the notation previously defined [Eq. (17)] we
can write

J
> (Adl = m{PAn'ly? (24)

I=i+1

H J
EW = Y [E (Aal! - mgliﬁAnil)z:] .25

h=1 LIl=it+1

Differentiating the error with respect to m,(,fj>, we obtain

QE J . .y . .
= 2 > (Adl!l = m{Panhant . (26)
my, I=i+1

Setting each derivative 3E‘7/am|/ = 0 gives the slope
of each line,

J
S An'Aa]
mg}ij) = 1=i;1 27
Z (An”)z
I=i+1

As we mentioned before, if the total error E‘7 is
less than the threshold, we add the next spectrum SV +1
to our set and calculate the error E/* 1, Interestingly,
we do not have to reevaluate from scratch the sums in
Egs. (25) and (27) when we add the new spectra. Re-
writing (24) gives

J J
Eﬁ,”) = 2 (Aaih? - 2m§,’7> 2 An''Aal

I=i+] I=i+1

J
+ (m{h? > (@'
I=i+1 (28)

Now each of the sums in Eqs. (27) and (28) may be
computed incrementally:
i)

ol = olilth) = old(h) = 0

il

ol = ofii™V + @n'"H)?
ol (h) = ol (k) + Aai M)’

ou(h) = ol""(h) + Aaf AR,

i<l=sj, l<sh=s=H. (29

Now m{” [Eq. (27)] and E}”’ [Eq. (28)] can be computed
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as

ol (h)
ol (h)

m{ih =

EiN = ¢idhy — 2mPaliP(h) + m{iP ol .
(30)

The incremental computation allows us to do a small
amount of work (proportional to H) to compute the
new slopes and error when adding a spectrum to the
regression. In other words, we can compute every error
gl ptii+h o EW) with the same effort as it takes
to just compute E‘7,

3.4.3 First Results

After computing the spectral ramps (using either
method), we resynthesize the tone by evaluating Eqgs.
(4) and (2) in software. The successive spectra defining
the spectral ramps are sent to the waveform generator.
The waveform generator computes one cycle of a
waveform from a given amplitude spectrum. One period
of the waveform is obtained by adding H sine waves,
each scaled by the corresponding amplitude. The phases
of the sine waves are alternately set to 0 or 7, so that
the waveform and its first derivative are close to zero
at the beginning and at the end of the table. This is the
technique used in the Bradford musical instrument
simulator [19]. After two waveforms defining a spectral
ramp have been loaded in the wave tables, the wave
tables are read, scaled by two opposite linear ramps
{Eq. (13)], and added to form the output signal. The
process is repeated until every spectral ramp has been
synthesized.

The degree to which the synthesized signal approx-
imates the input signal depends on the number of spectral
ramps output by the data reduction algorithm. This
number can be modified by varying the threshold E ..
For each tone we run the algorithm several times, using
different thresholds. We then choose the synthesized
signal with the smallest number of spectra (largest
threshold) that is perceptually indistinguishable from
the original tone. The chosen spectral ramps are an
accurate (and usually succinct) representation of the
tone.

We have obtained very good results on a number of
instruments belonging to the woodwind and brass fam-
ilies (bassoon, clarinet, saxophone, trumpet, trombone).
The average reduction rate on the number of spectra
Q/Np is on the order of 10%. The two algorithms,
spectral ramp interpolation using original spectra and
spectral ramp interpolation using computed spectra,
were found to be almost identical in terms of the data
reduction they achieve and in their computational cost,
For an equivalent data reduction rate, the two algorithms
lead to a similar perceptual output. Using computed
spectra usually achieves a slightly greater data reduc-
tion, since by computing spectra a given amount of
error can be spread over a longer spectral ramp than
is possible using original spectra.
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These promising results were obtained on sounds
whose spectral evolution was rather regular Fig. 4
shows a sampled trombone tone.® Beneath the tone are
the spectra that resulted from the DFT analysis of the
tone. Under those are the spectra selected by the data
reduction algorithm. The synthesized tone is shown
last.

When applied to sounds whose amplitudes vary rap-
idly (as in a rapid tremolo), the data reduction was less
effective, although always below 50%. In this kind of
situation, a large number of spectral ramps were needed
to track the changes in amplitude (and their corre-

8 Actually, part of the sustain portion of the tone was re-
moved so we could fit the signal on the page.

ANALYSIS AND SYNTHESIS OF TONES

sponding spectral changes). As our algorithm proceeds
sequentially without any global view of the signal, it
does not take advantage of the oscillation between two
close spectra, characteristic of the tremolo. To improve
the data reduction (in these cases and in general), we
have tried another method, based on nonlinear inter-
polation. By relaxing the constraint that the scaling
factors ¢(n) and d(n) [Eq. (12)] be two opposite linear
ramps summing to unity, we allow arbitrary combi-
nations of the two waveforms. Thus instead of resorting
to the computation of new waveforms, we look for
more complex time-varying mixing functions, with the
hope that these will result in greater data reduction.
The nonlinear interpolation analysis is described in the
next section.

time f
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Fig. 4. Synthesis by time-linear spectral interpolation.
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3.5 Data-Reduction Using the Nonlinear
Spectral interpolation Representation

In this section we consider that the paths connecting
the harmonics [Eq. (11)} c(n) and d(n) are arbitrary
functions of time. To determine the optimal set of
spectral paths we use a similar procedure as presented
in the previous section. But instead of optimizing the
spectra defining the ends of the spectral path, we select
two spectra in the DFT list $) and SV separated by
an arbitrarily large time interval, and we minimize the
square error within the spectral path by choosing the
best coefficients c¢(n) and d(n). If the error is larger
than the threshold E 4, we try the same operation with
a smaller interpolation duration, that is, we try the
spectral path that links together the spectra $¢ and
§Y=1 and so on.

Within the spectral path S‘) the harmonics of the
interpolated spectrum SS{) at period / are computed
using Eq. (11)

agh(y = cnpay(iy + dimay(j)
withm, = IP, i<l <j. (31

Using the notation
¢ = clny) d; = dny)

Eq. (31) can be written as

alilny = can(i) + diai()) (32)

or, equivalently,

S = c)§% + a9 (33)

The error on spectrum S within the ramp §‘7” is
p ) P 0

defined as the mean square error on the harmonics,
ED = X lah) = (can(d) + diay(jN? . (34)
h=1

The error is minimized by setting the two partial de-
rivatives 6E§;§>/ac, and aEix)/ad, to zero,
aE(U) H H

[0} ., . .
= 2¢; 2, ap(i? + 2d; > ap(dan())
acy h=1 h=1

H
=2 2 ayDayli) = 0

h=1
IEY H H
- = 2 2 4G+ 20 3 an(ias()
! h=1 h=1

H
-2 > abay(j) = 0 .
h=1
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This is a two-equation linear system with unknowns ¢,
and d,

H H H
o1 2 ali)? + dp D, alidanls) = X anlDanli)
h=1 h=1 h=1
H H H
o 2andan(j)y + di D, an(? = 2, a(lan(j) -
h=1 h=1 h=1

(33)

The existence of a solution (¢;, d;) to the system
(35) depends on the value of its determinant and on
the values of the constant terms of the system. Consider
the initial equation [Eq. (33)]. If the two vectors S
and SV are linearly independent (in a vector space of
dimension H), it is possible to find a unique solution
(cy, d;) that minimizes the error. Otherwise the problem
remains underdetermined or impossible. '

The nonlinear interpolation model has been tried on
a number of tones. In practice, there are two kinds of
situations for which Egs. (35) have no unique solution:

1) One of the vectors S or Y is zero or close to
zero. This happens usually when one of the spectra is
located in a low-energy segment of the signal (for ex-
ample, at the beginning or at the end of the note).

2) The vectors are not zero but are linearly dependent
or nearly dependent. This happens usually in the sustain
part of the envelope, when the tone is played with a
constant loudness or when the amplitudes of the har-
monics are varying strictly linearly (which is rare on
natural sounds)."

We have investigated several methods for dealing
with such cases. In the first method, Eq. (33) is replaced
by a one-vector decomposition by, for example, as-
suming d; = 0,

S = ¢, (36)
¢; being a real number. Expressing Eq. (36) in terms
of the harmonic amplitudes yields

aéﬁ{;(l) = can(i), Il <hs<H. (37)

The error on spectrum SE;’Q is now

M=

E(’J> =

b
f

(38)

x

(cran(iy — ap())? .
|

o
"

Setting the derivative of the error with respect to ¢; to

° Here again we omit the averaging factor 1/H.

10 There is an infinity of solutions when the constant terms
are zero, otherwise there are no solutions.

"' When the two vectors S and SY as well as S are
close to zero but not strictly zero, we can find a solution.
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zero we obtain

H

RO
e = h=lH
Z ali)?

h=1

(39)

The error on each spectrum within the spectral path
can be computed by Eq. (38) and the error within the
spectral ramp is taken as the sum of the errors on the
individual spectra. If the global error exceeds the
threshold, a shorter spectral path will be tried.

This method is straightforward. Unfortunately it is
not reliable. The main problem is an occasionally
perceptible discontinuity between the two spectra

61) ) = Cj- 15 and §Y. If it was the case that S and
S ) were truly dependent, there would be no discon-
tinuity. However, our test for dependence checks only
that the determinant is very small, not that it is exactly
zero, so it is usually the case that S and S are not
strictly dependent. This difference can be occasionally
perceived as a soft click in the signal. This is exactly
the same problem one gets when switching waveforms
without interpolation.

The second method uses a linear interpolation to
avoid the discontinuity when we abruptly change spec-

tra,
SE;;) = ¢ (S(i) + nMooon (SU) _ S(i))) (40)
nj - n;
so that d; = c¢)(n; — n;)/(n; — n;). The amplitudes of

the harmonics in spectrum ng are

aiij><l) = C/<ah(1> + (ahO) - a;,(z}))

i

H . (41

The error E{} is expressed as

(U) = n
E(l)

H L —
> [ahU) - C1<ah(i> e =
h=1 n;

T N

2
n; — n,~>}
nj - n;

(42)

+ au(j)

By minimizing the error (42) with respect to ¢; we
obtain

2 au(l) Z

(ah(i> i

- n N M
+ an(j)
= n; n
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The resulting error is obtained by replacing c; by its
value in Eq. (42).
An alternative formulation would be to take d; =

(n; — nj)/(nj — n;) so that
S = 5% + T R o) (44)
nj - n;
afily = capli) + —— an(j) . 45)
Nj - n;
This yields the optimal ¢,
il n —n .
2 (ah<i>ah<1> - - ah<1>ah<1>>
=1 n; — n;
C =
l > anli)?
h=1
(46)

These last two variants of nonlinear interpolation
assure the continuity of the output signal, while allowing
a high spectral reduction rate.

By applying the nonlinear interpolation analysis we
have been able to reduce greatly the number of wave-
forms needed to resynthesize the tone accurately. The
reduction is greatest during the sustain portion of the
tone. However, we now need many points (two numbers
per period) to represent the scaling functions ¢; and d,.
These scaling functions are usually well behaved, so
we are able to approximate them with piecewise linear
functions containing a small number of break points.
This we do after we have computed the spectral paths
representing the entire tone. We use the anchored
regression algorithm of [18] to perform the fitting auto-
matically.

We do not have an incremental algorithm for com-
puting spectral paths as we had for computing spectral
ramps (Sec. 3.4.1). Thus the effort expended in com-
puting the optimal spectral path between § ) and §
does not help at all in computing the optimal path be-
tween S and SY*", or between $ and Y™V, Our
nonlinear interpolation algorithm which iterates until
the error threshold is crossed (as do the time-linear
algorithms of Sec. 3.4.1) is quite time consuming. We
could reduce this time by doing binary search, or better
yet by developing some kind of incremental algorithm.
We have done neither of these, but have instead ex-
perimented with a fixed spectral path length, as we
now describe.

To speed up the analysis process we have the option
of using an arbitrary fixed interpolation interval, that

_ h=1
cp =
M

h=1

<ah<l> n.
J

J. Audio Eng. Soc., Vol. 38, No. 3, 1990 March

i

(43)

L+ ah<]>

2
n,~>
nj n;
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is, we approximate the tone with a list of spectral paths
of identical length. On a given tone, we run this al-
gorithm several times, varying the spectral path length.
We then listen to the resulting resynthesized tones and
choose the one with the longest spectral paths (fewest
spectra) which sounds indistinguishable from the orig-
inal. Fig. 5 shows the same input tone as Fig. 4, but
synthesized via the nonlinear interpolation method.

3.6 Results

The nonlinear interpolation analysis using fixed-
length spectral paths (Sec. 3.5) and the linear inter-
polation analysis (Sec. 3.4) are both very efficient,
The linear model is more efficient, partly due to the
fact that the nonlinear model requires an additional
smoothing of the synthesis input parameters. The non-

PAPERS

linear analysis generally results in an improved data
reduction rate.

Table 1 shows results of applying linear and nonlinear
interpolation to several tones. All the tones shown in
this table were digitized and resynthesized at a 16-kHz
sample rate. The “duration” column gives the duration
of the tone in seconds, P is the period of the tone in
number of samples, Np is the total number of periods
in the tone (and thus the total number of DFT spectra),
H is the number of harmonics in each spectrum,
“method” is the algorithm (linear or nonlinear) used
for the analysis, Q is the number of spectra used in the
synthesis (constant for a given tone), Q/s is the number
of spectra per second sent to the synthesizer, R is the
spectral reduction rate, and Nbytes/s is the number of
8-bit bytes per second sent to the synthesizer. The latter
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Fig. 5. Synthesis by nonlinear spectral interpolation. C = amp - sramp: d = amp (] — sramp).
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three columns are used to characterize the efficiency
of the analysis/synthesis process:

1) Q/s is the number of spectra per second sent to
the synthesizer, Q/duration.

2) R is the spectral reduction rate, Q/Np, in percent,
and thus compares the number of spectra in the syn-
thesized tone to the number of periods in the original
tone.

3) Nbytes/s is the number of 8-bit bytes per second
sent to the synthesizer. It is equal to the number of
spectra per second, Q/duration, multiplied by the
number of harmonics H (that is, the amplitude of each
harmonic is coded using one byte as in [19]). For non-
linear interpolation, the number of break points per
second of c¢(n) and d(n) are added assuming 2 bytes
per break point.

Each of the five tones shown in Table 1 have been
synthesized via both methods. For a given tone and
method, the tone has been resynthesized using a number
of different threshold values. Of these, the tone selected
to be shown in the table is the tone synthesized using
the smallest number of spectra that is judged to be
indistinguishable from the original tone. Thus the
numbers in Table 1 are subjective, but we believe they
provide an accurate comparison between our two syn-
thesis methods, and between our synthesis methods
and other analysis/synthesis techniques.

In Table 1 we did not mention which linear method
was used to compute the spectral ramps (Sec. 3.4.1 or
3.4.2) as the two methods perform almost identically.

Since the result of spectral interpolation can be com-
puted exactly using additive synthesis, it is interesting
to compare the two methods in terms of efficiency. We
use the following parameters: sample rate r, table size
N, number of harmonics 4, number of waveforms per
second w, and number of operations per second o.

For additive synthesis, we have one oscillator per
harmonic (h oscillators) and each sample requires one
multiplication for the amplitude, one addition to in-
crement the phase, and one addition to sum the oscillator
output into an accumulator. The total number of op-
erations per second is

o= 3rh .
This figure ignores the computation of amplitude

ramp functions which could contribute as much as an-
other addition and a comparison to each sample of each

ANALYSIS AND SYNTHESIS OF TONES

oscillator. In practice, amplitude ramps are often com-
puted at low sample rates to reduce the computation
requirement.

For spectral interpolation synthesis, a waveform
computation requires a multiply and two adds for each
harmonic and each waveform sample for a total of 3AN
operations. To increment the phase and interpolate be-
tween two tables requires three additions and two mul-
tiplies, or five operations per sample. Multiplying by
the waveform rate w and sample rate r, respectively,
gives

o = 3hNw + 5r .

The ratio of spectral interpolation to additive synthesis
computation is

Sr+ 3hWNw 5 +1411:1

3hr 3h r

The 5/3h term represents one interpolating oscillator
versus h sine-wave oscillators. The term wN/r represents
the cost of summing harmonics into a wave table versus
computing harmonics at the sample rate.

Using actual data from our experiments, we find that
the computation cost for spectral synthesis is dominated
by the cost of computing waveforms. Thus the most
critical factors are the size of the tables and the number
of tables computed per second. The relative advantage
of spectral interpolation over additive synthesis in-
creases with the sample rate. For a table size of 512
samples and a sample rate of 16 kHz, the ratio varies
from 0.30 to 0.63 in typical data. If the sample rate
were increased to 48 kHz, the ratio would vary from
0.13 to 0.24. This represents a substantial reduction
in the number of operations required by spectral in-
terpolation synthesis with respect to summation syn-
thesis, even if we ignore the cost of extra amplitude
ramps and additional control information also required
by additive synthesis.

The tones compared are those that gave the best re-
sults. These tones belong to the woodwind family. The
resynthesis of brass instruments using similar data re-
duction rates produced acceptable but not identical tones
when compared to the originals. In particular, the attacks
of the trumpet and the trombone tones did not sound
perfectly natural. In fact, increasing the number of
spectra did not achieve the desired matching between

Table 1.
Name Duration P Np H Method 0 Qs R Nbytes/s
Bassoon 1 1.44 204 111 40 Linear 16 11.1 14% 444
Bassoon 1 Nonlinear 12 8.3 1% 388
Bassoon 2 2.12 136 249 40 Linear 19 9.0 8% 359
Bassoon 2 Nonlinear 14 6.6 6% 323
Bassoon 3 1.06 81 211 30 Linear 18 17.0 9% 509
Bassoon 3 Nonlinear 11 10.4 5% 400
Clarinet 1 1.25 103 194 40 Linear 23 18.4 12% 736
Clarinet 1 Nonlinear 20 18.4 10% 704
Clarinet 2 3.77 91 663 25 Linear 21 5.6 3% 139
Clarinet 2 Nonlinear 18 4.8 3% 175
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the synthesized and the original attack. We believe that
this is due to the fact that our analysis/synthesis method
does not handle inharmonicity in general, and brass
tones often show inharmonic properties in the attack.
When we apply the pitch synchronous DFT on a non-
harmonic attack, we get erroneous spectral measures;
furthermore, even if we resort to a more general spectral
analysis model (such as the phase vocoder), it is still
difficult to use spectral interpolation synthesis to re-
produce inharmonicities (see Sec. 2). In order to keep
the advantages of the spectral interpolation model while
achieving more natural attacks, we have investigated
a technique in which a sampled attack is spliced onto
a synthesized sustain, as we describe in the next section.
An evaluation of this hybrid technique is given at the
end of that section.

3.7 Combination of Sampling and Spectral
Interpolation Synthesis

We now consider the problem of reproducing a tone
by connecting the attack portion of the tone to a syn-
thesized sustain portion obtained by analyzing the tone
using one of our algorithms described previously.!?
We first examine methods of deciding how much of
the original signal to use. We then discuss the techniques
we tried for connecting the sampled and synthesized
portions.

For data reduction it is desirable to use as small a
sampled attack portion as possible.'> On the other hand,
we need enough of the attack to create a convincing
reproduction of the tone. Since our synthesis method
only reproduces harmonic sounds, the attack sample
should include the significant nonperiodic or inharmonic
portions of the tone. For our technique to be useful it
is assumed that these inharmonicities occur at the start
of the tone and are of short duration. As one might
expect, the two methods we use for pitch detection
(optimum comb and peak detection) show erratic be-
havior during the inharmonic portions of the attack.
By observing where the pitch detectors settle down,
we attempt to get an idea of where the attack inhar-
monicities finish and the harmonic sustain begins. In
actuality this method is not totally reliable (at least we
have not worked at making it so), so we are occasionally
forced to choose the attack endpoint manually by ex-
amining a plot of the signal.

Connecting a sampled attack to a synthesized sustain
requires that for each harmonic the phase of the sampled
harmonic matches the phase of the corresponding syn-
thesized harmonic at the transition point. If some cor-
responding harmonic phases are not equal, we may
hear a click in the signal due to the instantaneous phase

12 Here we are using the term “sustain” to refer to the part
of a tone after the attack. It includes what is normally thought
of as the sustain portion as well as the release portion of the
tone.

'3 There are other reasons to want a short attack sample.
In particular, as the contro! of a sampling synthesizer is limited
compared to that of the interpolation synthesizer, we desire
the duration of the sampled portion to be as small as possible.
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shifts. If the transition occurs at a zero crossing in the
signal, the click is attenuated, but often still perceivable.
We have tried two techniques for achieving smooth
transitions, phase interpolation and simple phase
matching.

In the phase interpolation technique we attempt to
gradually shift the phases of the harmonics in the sam-
pled attack to be zero or 7'4. To this end, we divided
the attack portion into two segments. The first is used
unchanged; the second is processed so that by the end
of it the harmonic phases are zero or m.'> We have to
find a way of shifting the initial phases of the harmonics
of the second segment to zero so that the frequency
shift resulting from the phase shift is imperceptible.
We tried to use a phase interpolation algorithm, based
on [21], where the phases are progressively interpolated
(using cubic polynomials) from their original values
to zero or 7. In order to reduce an eventual perceptual
effect, we decrease the phase shift per sample by using
a long interpolation time interval, from 5 to 10 periods
or more, if necessary. Also, to reduce the giobal fre-
quency shift, we tried to use opposite directions for
each harmonic. In any case, the phase interpolation
algorithm has been successful on those few cases where
the phase shifts to be applied were very small. Unfor-
tunately, for real signals such as trumpet and trombone
tones, the shifts that we had to apply were quite large.
In most cases, the phase interpolation was always per-
ceived as a frequency shift whose magnitude was not
acceptable. Although this is a negative result, we found
it surprising: in general the relative phases of the har-
monics of a signal cannot be arbitrarily rearranged in
an imperceptible manner, even over many periods.
Consider adjusting the relative phase of the second
harmonic. In the worst case the harmonic will be 7
rad out of phase, but this represents only m/2 rad of
the fundamental. If an adjustment is made over 10 pe-
riods, we are shifting the second harmonic by at most
7/20 rad per period. Higher harmonics will have even
less phase shift per period, and yet the shift is clearly
perceptible.

Thus we decided to compute the first waveform of
the synthesis using the phases measured at the transition.
This is the simple phase matching technique. As we
can interpolate only between spectra having identical

14 We had an ulterior motive for trying to do this. We wish
to use the Bradford musical instrument simulator [20] hardware
for our synthesis. This hardware currently requires the phases
of the harmonics in the wave table to be zero or . A number
of benefits come as a consequence of this restriction: the
transition between successive wave table lookups is contin-
uous, the update rate of the amplitude scaling factors in the
oscillator can be low, only a small number of bits are needed
to code the amplitude factors, and very cheap multipliers
(gate arrays) can be used. We would have liked to maintain
these advantages.

!5 Ideally, the point where the attack is broken should be
one where the harmonic phases are as near as possible to
their final values, zero or w. We wrote programs which
searched for such points, but in practice it was never possible
to find one where more than a few of the harmonics were
close to their respective targets.
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phases, all the waveforms used during the synthesis
are computed with those phases. By doing this, the
phase match at the transition is faultless. In addition,
computing the waveforms with the phases found at the
end of the attack did not alter the quality of the syn-
thesized signal.

Using the simple phase matching technique, we have
obtained very high quality reproductions of brass in-

ANALYSIS AND SYNTHESIS OF TONES

struments. Fig. 6 shows the same input tone as Figs.
4 and 5, but synthesized using a sampled attack. The
arrow points to the transition between sampled sound
and synthesized sound.

Table 2 depicts the data reduction rates obtained by
combining sampling and spectral interpolation on sev-
eral tones. It uses the following parameters: “duration”
is the total duration of the tone in seconds, srate is the
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Fig. 6. Synthesis by spectral interpolation with sampled attack.

Table 2.
Name Duration srate P Np H Method Q Q/S R Attack Nbytes/s
Trombone 1 0.39 13513.5 58 81 25 Linear 5 14.2 6% 500 320
Trombone 2 0.96 13513.5 58 210 25 Linear 5 5.4 2% 500 130
Trumpet 1 0.55 13201 30 211 6 Linear 5 10.5 2% 1000 54
Trumpet 2 0.99 13201 30 389 6 Linear 7 7.7 2% 1000 42
Saxophone 1 4.82 16604 46 1666 20 Nonlinear 63 13.2 4% 500 300
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sample rate in kilohertz, P is the period of the tone in
number of samples, Np is the total number of periods
in the tone, H is the number of harmonics, Q is the
number of spectra sent to the synthesizer, “attack” is
the number of samples copied directly from the original
tone, Nbytes/s is the number of 8-bit bytes per second
sent to the synthesizer (excluding the attack samples),
and “method” is the linear or nonlinear interpolation
algorithm.

The hybrid technique, sampling and spectral inter-
polation, can be applied without restriction to any kind
of sound whose sustain is harmonic, which is the case
for most orchestral instruments,

4 RELATED WORK

We have presented and discussed the technique of
waveform interpolation for the analysis and resynthesis
acoustic instruments. We use a succession of wave tables
that are dynamically mixed to reproduce analyzed
spectral evolutions. Until now, waveform interpolation
has been used in a number of other contexts by different
people. Some of these past applications are similar to
ours, some not. We now review this related work.

4.1 Mixing Waveforms to Generate Dynamic
Sounds

The idea of mixing multiple sequences of samples
to generate sounds whose spectra change over time is
not new. Several commercial synthesizers have imple-
mented this technique. The digital instrument built by
Matsushita [10] reproduces acoustic instruments with
a similar oscillator as that in Fig. 1. In this instrument,
the waveforms are extracted manually from real tones.
In fact, to avoid phase problems Matsushita [10] ad-
vocates using the Fourier transform. The Matsushita
digital instrument uses the same synthesis algorithm
as we do. However, the work differs from ours as it
does not use any automatic analysis.

The Prophet VS [22], [23] from Sequential Circuits
uses “digital vector synthesis.” Each voice is the result
of simultaneously mixing four wave tables. Unlike our
oscillator, the wave table contents of the VS are fixed
over the course of a note. The four-way interpolation
is dynamically altered as a function of envelope gen-
erators, keyboard velocity, joystick position, as well
as other factors.

The Keytex CTS-2000 is a crosstable sampled syn-
thesizer [24]. It uses the technique of waveform inter-
polation. A voice is the sum of two oscillators, each
with independent wave tables, frequencies, and am-
plitudes. Each oscillator can generate an interpolated
succession of exactly three different complex wave ta-
bles. The synthesizer comes with a number of wave
tables stored in ROM. Unfortunately there is no way
for users to specify their own wave tables.

4.2 Voice Point Interpolation

Voice point interpolation is a technique whereby the
user specifies signals or synthesis parameters at a number
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of points, and interpolation is used to compute the
signal at points between the specified points. A point
is a location in a space, the dimensions of the space
most often being pitch, velocity, key pressure, and
other controller input. Voice point interpolation is in-
teresting as it attempts to efficiently model the timbre
of an instrument as a function of the control inputs.

The Bradford musical instrument simulator [19], [20]
uses voice point interpolation to reproduce timbre
variations with pitch and loudness for organ tones,
among other instruments. For this two-dimensional
space they use two waveform interpolation oscillators.
Spectral variation with amplitude is a result of the rel-
ative scaling of the two wave tables within each os-
cillator; spectral variation with frequency is achieved
by varying the mix of the output of the two oscillators.
It is easy to see how this scheme can be generalized to
higher dimensional spaces, three dimensions requiring
eight waveforms, four dimensions requiring 16 wave-
forms, and so on.

4.3 Timbre Interpolation

Research on timbre has also used interpolation of
multiple samples or of spectra. Lo {25] uses interpo-
lation of portions of the signal (called break frames)
to reproduce timbre. The break frames are normalized
in length and recomputed by FFT for phase control. A
similar model is applied for interpolating between dif-
ferent timbres [16] to combine timbres dynamically.
To interpolate between instruments, Grey [16] uses
interpolation of envelope break points defining the am-
plitude and frequency harmonics.

4.4 Combination of Sampled Sounds with
Synthesized Sounds

Smith and Serra [26] independently combined sam-
pled attacks with synthesized tones using the same
phase-matching technique as that described in Sec. 3.7.
Their synthesis technique was based on summation of
sinusoids rather than interpolation. The Roland D-50
[27] seems to be able to combine sampled attacks with
synthesized sustains. At present we have no technical
information on the method the D-50 uses to ensure
smooth transitions.

5 DIRECTIONS FOR FUTURE WORK

We have simplified our analysis by restricting our
data to relatively fixed-frequency examples. To relax
this restriction, it shoud be possible to resample the
input to obtain a fixed frequency, perform the analysis,
and then use a time-varying frequency in the table lookup
oscillator to reproduce the original frequency. To re-
sample, the time-varying frequency must first be de-
termined by some pitch extraction method. The signal
can then be resampled [13] at a sampling rate that varies
in proportion to the measured frequency. The effect is
to “flatten” the frequency variations and obtain a fixed
number of samples per period. The same frequency
information can be subjected to linear regression for
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data reduction before resynthesis.

We have concentrated on sounds with a highly stable
period. It would be interesting to apply the same tech-
niques to bow string and vocal sounds, which might
be expected to have some jitter in their periods. Our
analysis/synthesis techniques will tend to remove the
jitter, resulting in a perceptually altered sound. Can
the jitter be introduced into synthesis for more realism?
Can this extension to our basic techniques be automated?

Finally, this study is the first stage of a two-stage
project to meet the criteria of generality, efficiency,
and control. So far we have not discussed the problem
of control. Our plan is to develop a characterization
of an instrument, be it real or artificial, as a multi-
dimensional space of spectra. Typical dimensions would
be amplitude and frequency, which are input parameters
to this synthesis model. Other parameters, such as bow
position or lip pressure, can be introduced as additional
dimensions. Variations in pitch, amplitude, and other
parameters give rise to a trajectory in this space, and
spectral interpolation can be used to reproduce the cor-
responding spectral evolution. Variations of this tech-
nique have been alluded to by Grey [16], Covitz and
Ashcraft [4], Sasaki and Smith [28], and Bowler [5].
We have already produced synthesized crescendos using
a one-dimensional space of spectra, and we are now
developing analysis software for multidimensional
spaces.

6 CONCLUSIONS

We have described techniques for the automatic
analysis and resynthesis of musical tones based on
spectral interpolation. These techniques are interesting
for several reasons. First, automatic analysis is im-
portant when it is desired to reproduce known sounds
such as the sounds of traditional instruments. Second,
we have achieved a high degree of data compression
without perceptual degradation in quality or realism
for a large and musically useful class of sounds. Third,
the computation rate for synthesis is very low compared
to other methods with equivalent generality. Finally,
the data obtained from the analysis are in a form that
can be modified and manipulated in various musically
useful ways such as stretching, pitch changing, and
interpolation between the spectra of different tones.
We are currently studying an extension of this technique
in which sequences of spectra are obtained not from a
specific tone being reproduced, but by sampling an
arbitrary trajectory in a precomputed spectral space.
This extension promises a combination of simple and
intuitive control, computational efficiency, and realistic
production of traditional instrument tones.
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