A Structure for Representing, Displaying,
And Editing Music

Roger B. Dannenberg

Computer Science Department and
Center for Art and Technology
Carnegie-Mellon University
Pittsburgh, PA 15213 U.S.A.

Abstract

An extensible data structure has been implemented for
the representation of music. The structure is intended for
use in a display-oriented music editor and has several
features that support interactive editing. The structure
consists of a set of events, each with a list of attribute-
value pairs. In addition, events can have multiple views,
and an inheritance mechanism allows sharing of data
between views. Multiple hierarchies can be encoded
within this structure. A version system facilitates an
efficient undo operation and incremental redisplay. At
the same time, versions allow client programs that update
the structure to be written in isolation from programs that
present the structure on a graphics display.

1. Introduction

A screen-oriented interface that allows music notation
0 be entered, modified, and displayed in traditional
notation is high on the list of resources desired by many
composers and researchers working in the field. Such an
editor can ease the task of producing printed scores and
copying parts. In addition, it can provide a foundation
for educational programs to teach music theory, sight-
singing, and orchestration. A sufficiently flexible editor
can do much more. It can serve as an interface to various
forms of software and hardware synthesis, it can provide a
standardized representation for music so that cutput from
one program can serve as input to another, and it can be
extended to support new notations without the major
software effort required to implement a new notation
from the ground up.

Copyright (C) 1986 Roger B. Dannenberg

I am working on-such an editor as part of an advanced
computer music system called the Musician’s Workbench.
At this time, a data structure for supporting the
Musician's Workbench editor has been implemented, and
a very simple editor has been constructed for testing and
evaluation. The data structure is important because it
provides all facilities for representing data and most of
the mechanisms for interactive editing and redisplay. The
data structure itself does not specify how music is to be
encoded, so a fair amount of flexibility is obtained in this
area. I have made every effort to avoid making decisions
at the data structure level that would preclude notational
or representational choices at a higher level

The principal terms and features of the data structure
are outlined in the following paragraphs.

Scores. A piece of music is represented by a structure
called a score.

Events. A piece of music, or score is a set of events: data
objects which may be created, deleted, or modified.

Properties. An event has a list of associated properties,
each of which has an attribute or name, and a value.

Hierarchies. Events can be related in multiple
hierarchical structures. For example, an event may
represent a note which is a member of several
overlapping phrases. The note may also be a member of
a chord. These structural relationships can be
represented explicitly as instances of hierarchies.

Views. An event can participate in any number of views,
and events may have view-specific properties. For
example, the first violin part of an orchestral score would

Dannenberg, “A Structure for Representing, Displaying and Editng Music,”
in Proceedings of the 1986 International Computer Music Conference, Den
Haag, Netherlands, October 20-24, 1986. San Francisco: International
Computer Music Association, 1986. pp. 153-60.
153 ICMC 86 Proceedings

cc8k
Typewritten Text
Dannenberg, “A Structure for Representing, Displaying and Editing Music,” in Proceedings of the 1986 International Computer Music Conference, Den Haag, Netherlands, October 20-24, 1986. San Francisco: International Computer Music Association, 1986. pp. 153-60.

be represented as a view. A piano reduction could be
another view.

Incremental Update. A view can be associated with one
or more regions of a computer display. When visible
events of a view are modified, mechanisms provided by
the data structure allow view software to modify the
display incrementally. This is accomplished by automatic
bookkeeping that records what has changed and what
views are affected by the change.

Unde. The data structure uses a history mechanism to
enable previous versions of the data structure to be
restored. Undo can be applied iteratively to undo a
sequence of changes (called Undo-more) and recursively
to restore a change that was undone (called Undo-less).
This facility is completely integrated with the incremental
update mechanism so that changes can be undone
rapidly.

Permanent Storage. Scores can be written to a file and
read back into memory. Circular data structures and
shared structures are properly handled. Assuming music
editing exhibits locality of reference; then saving and
restoring a score will, as a side effect, rearrange its
placement in virtual memory so as to optimize paging
performance.

Event Sets. Events can be collected into sets
(implemented as hierarchies). Abstract operations exist
for creating and manipulating event sets. For example,
one operation creates a set containing every event such
that the value of a given property is greater than a given
amount. Set union and intersection are also
implemented.

Editing Operations. A oollection of abstract editing
operations is provided. For example, one operation takes
every event in a given set and increments the value of a
given property by a given amount.

The use of property lists rather than some
predetermined, fixed data structure allows new
information to be added to the structure quite easily. For
example, a composer could. edit a composition in
common music notation, but attach additional timbral
information to each note. This information would be
ignored by the standard display routines, but could be

ICMC 86 Proceedings

154

accessed and used by a synthesis program. Properties
might also be used to store performance information such
as actual durations as opposed to theoretical durations
computed according to beats and tempo. This approach
differs from earlier systems that either are restricted to
traditional notation {3, 6], are designed to represent
typographical information only[L, 5], or have simpler
structure representation facilities [4, 2].

All of this functionality is implemented in C and runs
on Sun, VaxStation, and IBM-RT workstations. The
current music editor provides a “piano roll” notation
where pitch is indicated by position on a grand staff, and
time is indicated by horizontal position. A note is
indicated by drawing a heavy horizontal line from the
note’s starting time to its ending time at the appropriate
vertical position corresponding to the note’s pitch.

The next stage of development is the creation of a set of
music fonts and the development of a representation for
traditional Common Music Notation within the existing
data structure. This work is currently in progress.

1.1. An Outline of What Follows

In order to understand the present design, it is
necessary to consider the problems the design is meant to
overcome. There are a number of problems, so the
resulting design is fairly complex. In the next section, I
hope to show that these problems are important and to
convince the reader that they require special treatment in
a score-editing program. Section 3 describes the major
features of the design as seen by the implementer of
editing commands, and Section 4 extends the design with
a description of the view mechanism. Then, Section $
shows how the structure can support multiple hierarchies.
Versions form the basis of undo and incremental
redisplay operations, and are described in Section 6.
Section 7 shows how the design is intended to be used,
and Section 8 evaluates the design in terms of the
problems it is intended to solve and looks at other
problems that have arisen. Finally, conclusions are
presented in Section 10.

2. Motivation

The present design is intended to address five critical
problems in the implementation of a display-oriented
editor. First, mechanisms must be provided for updating

the display to reflect the represented information.
Second, it should be possible to control the granularity of
redisplay, not necessarily changing the display after every
lowest-level change to the information. Third,
information access and modification should be
computationally efficient. Fourth, it should be efficient
to “undo™ a sequence of operations when the user decides
he has made a mistake, Finally, the structure should
support abstraction in the form of multiple hierarchies.

2.1. Display Consistency

The first problem is that of keeping the display
consistent with the data. In many cases, it is
computationally unfeasible to recompute the entire
display after every modification to the underlying
structure. Therefore, the display must be updated
incrementally.

2.2. Granularity)

The second problem is that it is often desirable to
control the granularity of display updates. For example,
suppose the user wants to move a box diagonally, and
suppose that the position of the box is represented by a
horizontal and a vertical coordinate. Furthermore,
suppose that the user’'s move command is implemented
by assigning a new horizontal value followed by a new
vertical value, A straightforward implementation might
attempt to redisplay the box at its new horizontal pasition
and then redisplay it at its final position. This could
require more computation than a single redisplay and
might result in confusing and esthetically undesirable
changes to the display.

2.3. Efficiency

The third problem is to support efficient modification
of information. I want the music editing system to be
extensible so that users can perform arbitrary
computations on scores within the context of a nice
interface. Therefore, it is important that these
computationally intensive tasks do not suffer a heavy
performance penalty because of display mechanisms. For
example, changing a note duration in memory may only
take a microsecond, but updating a view of that duration
may take many milliseconds. In order to support
applications that require intensive computation, I would
like to pay the display penalty only in proportion to the
amount of redisplaying that actually takes place.

155

2.4. Undo

The fourth problem is the provision of an Undo
command that restores a previous state of the edited
information. While checkpointing techniques are useful
for recovering from catastrophic errors, it is nice to undo
changes in time proportional to the size of the change
rather than proportional to the total amount of
information. Furthermore, the undo mechanism shoutd
not require commands to explicitly save information
when modifying information. This would greatly
complicate command implementation.

2.5. Hierarchy

The fifth problem is that the structure must support
multiple hierarchies. The problem is mentioned here to
emphasize the importance of this aspect of the structure.
In our terminology, a hierarchy represents a class of
relationships. For example, a beam hierarchy is one that
describes the relationships of beams to notes. A hiérarchy
instance can be thought of as one node in the hierarchy;
for example, a single beam might be represented as an
instance of the beam hierarchy. A hierarchy instance is
said to contain members; for example, a beam contains
notes and perhaps other beams. The concept of multiple
hierarchies means that hierarchy membership does not
necessarily form the well-nested structure of a single
hierarchy. For example, two phrases may share a note,
and a beam hierarchy may be contained only pastially
within a slur. These examples illustrate the necd for a
very flexible hierarchy representation system.

3. The Score Data Structure

My solution to the problems described in the previous
section is based upon a fairly elaborate data structure
called a Score, which has several levels of interface. The
highest level is seen by clients, that is, programs that
manipulate score information, normally in response to a
user command. To a client, the Score appears as a set of
entities called events. Each event contains a set of
attribute-value pairs called properties. In the current
implementation, attributes are Lisp-like atoms, and a
value can be either an atom, an integer, a {loating-point
number, a reference to another event, a list of values, or a
special Null value. In addition, an “indirect” value is
supported so that many properties can be bound to one
variable. Changing the modifies all
corresponding properties. This additional mechanism is

variable

ICMC 86 Proceedings

completely integrated with Undo and display update
facilities, but further details are beyond the scope of this
paper.

The client can perform the following operations:
put_value (event, attribute, mode, value);

value : = gel_value (eveni, attribute, mode);

event := nexi_event (event);

event : = score_event (event);

The first two operations allow properties to be written
and read. (The mode parameter will be explained below.)
The third operation allows the programmer to iterate
through all events. Events are linked in a circular list,
with a distinguished event serving as a list header. This
header event is a convenient place to store properties that
apply to the score as a whole. It is appropriate to refer to
this event as “the score” since a reference to it gives access
to the entire score structure. For reasons we will learn
later, it is often necessary to locate the score given one of
its events. The fourth operation takes any event and
locates the corresponding score, that is, the event at the

head of the circular list of events. Figure 3-1 illustrates a
score structure with four events (including the score)
represented by circles, and a number of properties
represented by boxes, The score event is distinguished by
a double circle.

& S
OUR PITCH FREQ
673.7 A4 869.3

OUR

HALF

Figure 3-1: A score structure with events
and properties.

ICMC 86 Proceedings

156

4. Views

Before describing views, let me try to explain how they
came about. One of my assumptions is that a small
amount of manual positioning and touch-up will be
necessary to achieve high-quality printed scores. This
implies that there will be detailed typographic
information stored in the data structure. The problem
arises when an entity (a note, for example) appears in
more than one presentation of the score. For example, a
note might appear in a french horn part in F and in the
full score in C. These two different presentations, or
views, of the score may require conflicting sets of
typographical information. To handle this, there must be
a way to associate properties with a specific presentation.
At the same time, some properties should be shared by ail
presentations in order to save space and encourage
consistency. (Consistency is easier to maintain if a piece
of information is stored in one and only one place.)

The data-structure that corresponds to a presentation is
called a view. A view is a set of view events, some or all of
which are related to score events. A separate property list
is provided for each view event, and the resuiting
structure is illustrated in Figure 4-1. As indicated by the

EFE
ug -

Figure 4-1: A score with two views.

SCORE

VIEW}1

figure, each view is similar to the score structure shown
earlier in Figure 3-1, except view events may be linked to
a corresponding score event, as illustrated by the vertical
arcs between view events and score events. In our
implementation, the score event corresponding to a view
event is accessed by reading the EVENT property of the
view event. Starting from a score event, we can find the
corresponding view events by getting the VIEWS property
from the score event. The value (if not Null) will be a list
of events. A score may have any number of views.

Now we can put information that is common to all
views on the score event, and information that is
particular to a single view can be stored on the
corresponding view event. The mode parameter in the
get__value and put_value operations is used to specify
where properties are stored and accessed as follows: If
mode is Local, only the view event is modified or
accessed. If mode is Any, and the operation is get_value,
then the view event's property is searched first. If no
property is found with the desired attribute, and if there
is a corresponding score event, then the score event's
properties are searched. If mode is Any, the operation is
put_value, and a corresponding score event exists, then
the property is placed on the score event and any existing
property with the given attribute is removed from the
view event. On the other hand, if no score event exists,
the view event is updated as if mode were Local.

5. Hierarchy
In order to provide a general structure for music
representation, events can be related in hierarchies. A
hierarchy is represented in terms of events and properties.
For example, one might want to represent a specific slur
as a hierarchy containing the notes (events) under the
slur. To do this, an event (call it siur-event) is created
with the property [CLASS: SLUR] and the property [SLUR:
slur-eveni] is added to each note under the slur. In the
- implementation, slur-event is a reference to (memory
address of) the slur-event structure. This approach is
flexible in that multiple hierarchies can be created, events
can be members of several hierarchies, and hierarchies do
not have to be nested. Hierarchies have the nice property
that an event can quickly find the hierarchies of which it
is amember. Figure S-1 illustrates two hierarchies which
are not themselves hierarchically related. Operations are
provided to simplify the manipulation of hierarchies.
The principal operations are:

157

Figure 5-1: Two abstract hierarchies and
their representation as events.

Create a new hierarchy event, inserted after previous
event:

create_hierarchy(previous_event, class);
Test to see if an event is a member of a hierarchy
instance:
member_hierarchy(event, class, instance);
Remove an event from a hierarchy:
rem_from_hierarchy(view, event, mode,
class, instance);
Remove an event from the score (or delete a hierarchy
instance):

rem_from_score(event, score);

6. Versions

The incremental redisplay and undo facilities.are based
on the idea of versions. Each cycle of command entry,
data modification, and redisplay is associated with a new
version number. Although invisible to most clients, the
score data structure includes a version number for each
property, so a property is really a triple: [attribute,
version, value}, ~ The current version number is
maintained in the global variable current-version and the
operation

set_version(version)

is invoked to change the current version. Conceptually,
put_value works by inserting a new property with the
current version number at the head of the list. Old
properties are never removed or modified, even if they
have the same attribute. The operation ges_value works
by scanning the property list from head to tail for the first
property with a matching attribute and a version that i3
less than or equal to the current version. To avoid
complications, if puf_value is invoked at a given current
version, then it cannot be invoked later with a lesser
(earlier) version. In other words, modifications are made

ICMC 86 Proceedings

with non-decreasing versions.
can't change history.”

In intuitive terms, “you

6.1. Undo

Given the version mechanisms described above, it is
relatively straightforward to implement an undo facility.
Since previous versions are accessible, we can undo the
last change as follows: First, locate properties that are the
result of changes to be undone. These properties will
have a particular version tag if we want to undo only the
latest version. Second, for each property to be undone,
find the previous value for the given attribute and
perform a put_value operation of that value at the highest
version.

Note that we can even undo an undo operation with no
additional support. The following example illustrates this
process. Suppose we have just completed the
construction of version 10. To undo version 10, returning
the structure to its state in version 9, we begin by finding
attributes that were changed, reading their values at
version 9, and writing these values at version 11. Version
11 will now have the same values as version 9. Now,
suppose the user decides to undo his undo command.
This is accomplished by reading version 10 and writing
the values at version 12.

6.2. Incremental Redisplay

As mentioned earlier, versions also facilitate redisplay.
By comparing the previous version to the present one, a
redisplay program can determine what has changed,
thereby making minimal changes to the display. A simple
but effective technique is to erase the image of any event
that has changed, using the previous version of the eveat
to determine what to erase, and then redrawing the event
using the current version. To support redisplay more
completely, a property with attribute MODIFIED
maintains a list of attributes of properties that have
changed since the previous version. Thus, if the PITCH
and ACCENT properties of an event were modified, then
the MODIFIED property would have the value (PITCH
ACCENT). The MODIFIED attribute is always omitted
from the list. If any attribute of a score event is modified,
the MODIFIED property is updated if necessary, and in
addition, EVENT is inserted into the MODIFIED list of each
corresponding view event. Note that corresponding view
events are quickly located by reading the VIEWS property
and that EVENT only need be added to MODIFIED

ICMC 86 Proceedings

158

properties of the view the first time that the score event is
modified. A redisplay routine can find out what events
have changed by looking for events with the MODIFIED
properties. The nature of the change can be roughly
ascertained by looking at the value of the MODIFIED
property, and the exact nature of the change can be
determined by looking at the previous version of each
property whose attribute is on the MODIFIED list. In
cases where the score event changed, it will be necessary
to locate the score event (by calling ges_value(event,
EVENT, Local)) and then looking at the MODIFIED list of
the score event and the previous version of the score
event.

7. Application

The typical application program that uses the Score
structure is an editor, and the editor operates in a cycle of
four phases. Each cycle corresponds to a version of the
structure. In the first phase, the user enters a command.
In the second phase, the command is interpreted and, as a
result, data is modified through calls to put_value and
new_event. Events that are visible and modified will have
the attributes of modified properties put on the
MODIFIED list. Note that the MODIFIED list is maintained
as a side-effect of put_value, and in this way, support for
redisplay is decoupled from editing operations.

In the third phase, a display update routine is called for
each view. The display update routine finds the changed
events either by traversing a list of modified eveats or by
traversing the events looking for modified flags set by
puf_value. When a changed event is found, the update
routine can redraw its representation of the event or
perform some more sophisticated incremental update.
Complete information about what has changed can be
accessed quickly through the MODIFIED list and by
reading the previous version.

An elegant example is the redisplay routine used in the
current prototype, which graphs notes as horizontal bars.
The vertical axis represents pitch and the horizontal axis
represents time. When a note changes, the redisplay
routine decrements the version to be used by access
routines, It then sets the window manager’s paint color to
white and draws the note. The effect is to “white out” the
old image of the note. Then, the access version is
incremented (to the most recent version), the color is
changed to black, and the note is drawn again. This

repaints the note, making it visible and reflecting its new
properties. Common practice notation will require more
elaborate redisplay procedures, but at least the data
structure provides all the information necessary. A likely
scenario is that some medium-sized chunk of display, say
one measure, will become the unit of redisplay.

The fourth phase is the cleanup phase in which
MODIFIED lists are deallocated and the version is
incremented. All of Phase 4 is an operation of the Score
structure and is not something an application
programmer must write or even fully understand.

8. Evaluation

One might now ask, how has the Score structure made
programming easier? Let me return to the set of
problems outlined in Section 2 and discuss how they are
solved by the Score structure.

The first problem is keeping the display consistent with
the data. The Score structure supports incremental
. display updates by providing the redisplay routines with
information about what changes were made. This
information is maintained by the structure access
routines, so editing operations by the client need not
include any code concerning the display. This is an
important software engineering consideration, and it
leads to modular structure in which editing operations are
cleanly separated from display maintenance.

The second problem is controlling the granularity of
display updates. This is accomplished in part by not
constraining how the display is updated. The main
control over granularity is through the version
mechanism. In Phase 2, the application program is free to
make arbitrarily many updates to the structure without
any display changes. Only when the application advances
to Phase 3 is any display updating performed.

The third problem is efficiency. There is not space here
for a complete analysis, but it is worth noting that the
overhead of accessing data in this structure is never more
than a small fixed cost per operation. Mechanisms have
been implemented to prune the structure of old versions
with very little overhead, although a detailed explanation
has been omitted from this paper.

The fourth problem is the provision of an Undo

159

operation. The facility discussed in Section 6.1 has
several interesting properties. First, Undo is completely
independent of the client; that is, no special code nced be
written by the application programmer to support the
Undo operation. Secondly, the Undo mechanism can be
applied to itself with no extra work to provide an “undo
undo” operation. In fact, the “undo undo™ operation can
also be undone, and so on. Third, the Undo operation is
completely compatible with incremental redisplay.
Performing an Undo has the same effect on the Score
structure as calling put_value to make the necessary
changes. Therefore, the MODIFIED lists and version
number are changed as usual, and a display update
routine can be called as usual. No special provisions are
needed in the display routine to handle Undo.

The fifth problem concerned the representation of
hierarchies and was discussed in Section 5. The Socore
structure solves all of the problems posed in Section 2:
however, no data structure is perfect, and even the Score
structure has some limitations and undesirable properties.
These are discussed in the next section.

9. Remaining Problems

To give the reader a balanced assessment of the Score
structure, we will consider some potential liabilities of its
use. First, there is the obvious point that the structure
organization itself may be inappropriate. For example,
random access to events or associative lookup by
properties is not directly supported. It is likely that for
any given application a more compact representation
could be found. Thus the Score structure has a restricted
set of access methods and is not optimal in its memory
requirements,

Another problem of the Score structure is that it only
supports incremental update of discrete structures. There
is a hidden assumption that the user only makes faitly
coarse modifications to the structure.

Another problem with the Score structure is the
increased access time due to the existence of multiple
versions of properties. The real problem, if any, arises
when get_value is called with an attribute that does not
correspond to a property. The result is the Nuil value,
but this can only be determined by traversing the entire
property list, including all old versions of properties. A

ICMC 86 Proceedings

tradeoff between space and time can be made by making
the following change in the implementation of get_value:
Whenever an attribute for which no property exists is
accessed, insert a new property with the attribute and the
Null value at the head of the property list. The next time
the same access is made, the property will be found
immediately; thus, the average access time can be
substantially improved in some cases.

10. Conclusions

The Score structure is designed to support a flexible
and extensible music editor. It is essential that operations
be separated from redisplay so that new operations can be
added easily and so that redisplay can be performed once
after a collection of low-level operations. The resulting
structure performs these tasks well, and the mechanisms
are cleanly integrated with a powerful Undo facility. The
resulting system is quite flexible and efficient, given the
demanding requirements.

The structure currently provides the foundation for the
development of an advanced music score editing and
typesetting system. A simple editor has been created to
test and debug the structure. The editor demonstrates the
use of versions, views, incremental display update, Undo
operations, and the practicality of the Score data structure
as a tool for building interactive, display-oriented editors.

An informal cooperative effort has been formed
between the University
University, and Carnegie Mellon University to continue
development of a music editor using the present design as
a foundation. Writing an editor is a big job, and I
welcome the assistance of other interested individuals and
organizations,

ICMC 86 Proceedings

of Washington, Brown .

160

11. Acknowledgments

This design started as an extensive discussion with
Dean Rubine and Paul McAvinney. The initial
implementation was enabled by the loan of a workstation
which is part of a campus computing system, Andrew,
developed jointly by CMU and IBM. In the initial
implemeantation, I wanted a flat structure without views
and property inheritance. Rob Duisberg deserves credit
for pointing out the flaws in my thinking. I would also
like to thank the numerous people who have shown an
interest in these ideas. Their questions and discussions
have helped to improve not only the design but my
presentation of it.-

References
{1l Brinkman, Alexander P.
A Data Structure for Computer Analysis of
Musical Scores. '
In Proceedings of the [CMC 1984, pages 233-242.
Computer Music Association, June, 198S.

2} Buxton, W., R. Sniderman, W. Reeves, S. Patel,
R. Baecker.
Evolution of the SSSP Score Editing Tools.

Computer Music Journal 3(4):14-25, 1979.

Byrd, Donald Alvin.
Music Notation by Computer.
PhD thesis, Indiana University, 1984.

Decker, Shawn L. and Gary S. Kendall.

A Unified Approach to the Editing of Time-
Ordered Events.

In Proceedings of the ICMC 1985, pages 69-77.
Computer Music Association, August, 1985.

Bl

[

Minciacchi, Marco and Diego Minciacchi.

Music Editing and Graphics (MEG 1.00): A
Personal Computer Based Operative System
for Editing and Printing Musical Scores.

In Proceedings of the ICMC 1984, pages 257-272.
Computer Music Association, June, 1985.

Bl

Maxwell, John Turner {1l and Severo M. Ornstein.
Mockingbird: A Composer’s Amanuensis.
Technical Report, Xerox PARC, 1983.

el

