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ABSTRACT

Tempo change is an essential feature of live music, yet it
is difficult to measure or describe because tempo change
can exist at many different scales, from inter-beat-time
jitter to long-term drift over several minutes. We
introduce a piece-wise linear tempo model as a
representation for tempo analysis. We focus on music
where tempo is nominally steady, e.g. jazz and rock
Tapped beat data was collected for music recordings,
and tempo was approximated as piece-wise linear
functions. We compare the steadiness of tempo in
recordings by accomplished, professional artists and in
those by amateur artists, and show that professionals are
steadier. This work offers new insights into the nature of
tempo change based on actual measurements. In
principle, improved models of tempo change can be used
to improve beat tracking reliability and accuracy. In
addition to technical applications, observations of music
practice are interesting from a musicological perspective,
and our techniques might be applied to a wide range of
studies in performance practice. Finally, we present an
optimal function approximation algorithm that that has
broader applications to representation and analysis in
many computer music applications.

1. INTRODUCTION

Our goal is to study the nature of tempo change in music
where steady tempo is the norm. In principle, to measure
tempo, one can simply label beat times and calculate
beats per second. In reality, beats are perceptual and
have no direct physical manifestation. One can look for
acoustical features such as drum beats or note onsets, or
one can tap along with music and record tap times, but
either way, the observed times are the result of human
gestures which are ultimately imprecise. The error in
beat time estimates will give rise to errors in tempo
estimation. Smoothing to improve long-term tempo
estimates tends to remove variation in the shorter term,
but it is the short term tempo variation that has the
highest acceleration and is often the most interesting.
Therefore, we need to model tempo in a
representation that largely ignores short-term variations
due to jitter in beat times, yet captures the intricacies of
tempo variations. Tempo transcribed by beat tracking is
prone to outliers and random occurrences of incorrect
beat labels. Our approach to model tempo changes
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segments a performance into regions in which tempo is
changing approximately linearly. A segmented tempo
curve has the advantage of capturing the regularity and
predictability of tempo in the short term, while still
allowing us to model significant tempo changes that
occur occasionally. From this abstraction, we can
perform a statistical analysis of tempo variations in real-
time performances.

Musical tempo variation has been studied
extensively, but most existing studies focus on Western
art music and emphasize expressive and large tempo
variation. Linear and polynomial models (also used here)
of accelerandi and ritardandi are common. An article by
Honing [4] presents a nice introduction and references to
many other works. To our knowledge, this literature does
not address the tempo variation in popular music. Our
work is novel in that it introduces some optimal curve-
fitting techniques to music analysis, and we study the
typically small tempo variation in popular music.

Based on the data obtained from our tempo curve
approximations, we perform a study comparing
professional artists and amateur musicians. We study the
range of tempo with respect to the mean, and the
magnitude of tempo changes, and the degree of
acceleration or deceleration (accelerando or ritardando).

One of the motivations for studying tempo change is
to improve beat tracking systems, an important problem
in Computer Music research. Performers rarely maintain
a constant tempo throughout an entire performance, so
beat trackers must adapt to tempo changes. Assuming
that tempo is very steady tends to make a beat tracker
more robust in the face of ambiguous input where beats
are unclear. However, if the assumption is too restrictive,
the beat tracker will fail to adapt to real tempo changes.
Thus, the rate and extent to which tempo can change are
important parameters in these systems, but there are few
studies of actual performance practice to inform the
design of beat trackers.

Interactive music systems can use simple interfaces
such as foot tapping to acquire the tempo. Even insuch a
simple system, tempo models are useful. Linear
regression can be used to overcome jitter in the previous
foot taps and more accurately estimate the tempo and
predict future beat times. However, the best regression
length depends upon the expected amount of tempo
variation. Thus, in order to understand how to predict the
time of the next beat accurately, given previous beat time
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estimates, first we must study the amount of tempo
variation that actually occurs in live musical
performances.

The remainder of this paper is organized as follows:
Section 2 describes how accurate beat data has been
obtained using two sets of manually annotated tap data.
Section 3 presents the dynamic programming algorithm
used for converting the noisy measured tempo curve to a
segmented tempo curve approximation. In Section 4, we
present the statistics showing differences in the tempo
variation of professionals and amateurs. We describe
our conclusions and plans for future work in Section 5.

2. OBTAINING BEAT TIMES

A common technique for beat annotation is to tap along
with the audio and record the tap times. Labelling beats
by hand is subject to human inaccuracy. On the other
hand, automatic labeling is not reliable for most music,
and even using acoustic features is subject to question
because these features are, like tapping, the results of
human gesture. Furthermore, audio peaks or other
features may not align with perceptual beat times [§].
For this study, we accept tap-timing jitter as inevitable,
and our goal is to study longer-term phenomena.

Tempo is measured by tapping along with recorded
music. We tap on or near a microphone and record the
taps using the same audio system that is playing the
music. This ensures that the taps will synchronized with
the music except for some audio playback and recording
latency. The taps are converted to a sequence of times by
scanning the audio for high amplitude tap onsets
following silence. We tap twice and compare the two
sequences of taps in order to detect and remove errors.
We can also use the pairs of taps to characterize the
tapping accuracy [2]. Taps collected in this manner
typically have a Gaussian distribution with a standard
deviation of about 30ms. By averaging the two tap times
for each beat, the standard deviation is reduced to about
20ms.

If we plot beat number as a function of time, we get a
beat-vs-time curve. We can estimate the tempo (beats
per second) as the reciprocal of the period between each
successive pair of beats. We call this the tempo-vs-time
or simply “tempo” curve (see Figure 1).
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Figure 1. Tempo plot calculated from successive beat
times
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3. MODELLING TEMPO VARIATION

The tempo curve obtained by taps is noisy and implies
that tempo fluctuates a lot at every beat. Our goal is to
simplify this noisy tempo curve and convert it into a
cleaner, more realistic representation of tempo. Tempo
smoothing is one method of reducing the tempo graph to
a more realistic representation. This raises the question:
How much smoothing? An answer could be: Smooth on
a time scale where tempo is essentially steady. But the
original purpose of this study is to determine how tempo
changes at different time scales. How can we do
smoothing without assuming the answer to our question?
We need an approach by which we can remove noise and
model the “real” local tempo, but at the same time model
significant tempo variations that occur in the
performance.

In our approach, we segment a performance into
regions in which tempo is changing approximately
linearly. This is advantageous since it models a
predictable tempo in the short term, but at the same time
it can model significant sudden tempo changes when
necessary to fit the data. Also, a piecewise tempo curve
can be analyzed quantitatively to obtain important results
regarding when, and at what rate tempo changes occur in
musical performances.

It is tempting and common to model tempo as a
function from beat number to time, but it is also common
to use analogies to velocity and acceleration to reason
about tempo and tempo change. Under this physical
analogy, tempo is the analog of velocity, and beats are
the analog of position. Thus, the beat-vs-time curve is a
function from time to beat, not beat to time. The
derivative of this curve is the instantaneous tempo. If we
assume tempo change by constant acceleration, i.e. the
tempo curve is piecewise linear, then the function from
time to beat number is a second-order polynomial:

f(t) = at> +bt+c (1)

Let 8; ¢4 be the tapped time of beat i, and 0; gpprox
be the time of the beat generated by the approximated
tempo. To approximate the entire sequence 8;;qy of
length n, we will use multiple polynomials. We choose a
set of m + 1 inflection point positions p;, for 0 <i < m.
We then find the best fitting polynomials from 6, ¢4y, to
le‘tap, 9p1‘tap to sz_mp, ..., and 9pm—1,tap to 9pm_mp.
The polynomials are constrained to pass through the
inflection points, s0 6 approx = Opo,taps Op1approx =
le‘tap, etc.

Note that we have switched from discussing tempo-
vs-time curves to their integrals — beat-vs-time curves —
such as f{f). We work with beat-to-time curves so that we
can measure error in terms of predicted beat times. After
curve fitting, we can always take the derivative to obtain
the tempo curve.

Our intuition tells us to minimize timing errors when
fitting polynomials to data, whereas the physics analogy
and standard regression formulas would lead us to
minimize errors in position or beat. Thus, we will often
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work with the inverse function, f~1(-), that maps beat
numbers to time.

The sum-of-squares error we wish to minimize in
fitting a curve between points i and j is:

Eij = Zi<k<j(9k,tap - Qk,approx)z 2
where Oy gpprox = f 1 (k), the inverse of f as defined
above, which maps beat number £ to time.

Minimizing errors to best to approximate the tapped
data is a good start, but the approximation must also
offer a plausible fit to the tapped data. We require that
the approximated beat times, 8y gpprox fall within 1 of
the tapped times (see Figure 2):

|9i,tap - Qi,approxl =T 3)

Given this criterion, it might seem more natural to
minimize the absolute error rather than the sum of
squares, but a least squares approach seems to be better
at capturing the notion of overall goodness of fit. Thus,
we evaluate the goodness by summing the squared error
terms over all the segments:

Eall = Epop1 T Eprp2te -t Epmo1pm 4)

Thus, the problem of modeling beat-vs-time curves is
defined as such: find the minimum number of second-
order polynomial curves that form a piecewise
approximation of the observed tap times to within an
error threshold t. Given this minimum number of curves,
compute the specific curves that minimize the sum of the
squared timing errors. The tempo curve we will use for
statistical analysis is just the derivative of the beat-vs-
time curve.

»
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Figure 2. Quadratic curve fitting between true beat
points such that error lies within threshold.

In Figure 2, each of the values of ¢, &, ...., & < T.

3.1. Algorithm

This curve-fitting problem is difficult because there are
many ways to divide the beat sequence into regions of
constant acceleration. The number of ways to choose
inflection points that divide the sequence of beats into
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segments is exponential in the number of beats,
specifically (myi 1) where 7 is the number of points and m
is the number of segments. Enumerating all possible
choices and testing to find the optimal fit is not feasible.
Instead, the algorithm uses dynamic programming to
find the optimal solution, using a variation of methods
described by Glus [3]. The “trick™ is to store solutions to
sub-problems in a table to avoid recomputing them. The
matrix L;; holds the total error for a single polynomial
fit between points i and j. The matrix D,,; holds the
optimal (smallest possible) error using up to m segments
to fit the first 7 points in the total sequence. Each matrix
can be computed in 0(n®) time, making the algorithm
0(n®): slow, but quite tractable. The computation of
each matrix is now given in detail.

3.1.1. Creating the Look-up Table

An nxn look-up table L is created to hold data
regarding the error values and the best-fitting quadratic
curve between any two arbitrary points i and j on the

beat-vs-time curve. Note that we want to minimize
timing errors produced by a mapping from beat to time
(our f71), but the standard least-squares fit of a
polynomial (f) will minimize beat errors. Our solution
begins by fitting a polynomial (f) to the data. Then, we
compute the inverse f 1 of f in terms of coefficients a,
b, and c. Finally, we use gradient descent to adjust a, b,
and ¢ (but since the curve is constrained to meet the first
and last points in the sequence, there is really only one
free parameter) to optimize the fit of f~1. Since we are
starting with an excellent approximation, this step
converges rapidly, and for the purposes of algorithmic
complexity, we count this step as O(n).

Once we have a minimum error curve between
points ; and j, we check to see whether the error at each

point, &, lies within the threshold 7. If &, < 7 then we
add this error value to a sum ¢; ;, (initially 0). However,
if for some point £, &, > 7, then we set g;; = . The
look-up table L;; is set to the final ¢; ; value. (We also
save the coefficients of the best-fitting polynomial.) This
procedure is carried out for every pair of points(i, j)
suchthat 0 <i<j<n.

3.1.2. Create the Error Table

The next step utilizes a dynamic programming
approach to find the minimum error when choosing m
inflection points out of a sequence of n points. The error-
table D is also an n X n table. The value of D,, ; is the
total error (g4;;) given m inflection points and spanning
the first i out of n beats. The algorithm computes each
matrix value in terms of previously computed values
until the last value is obtained.

Figure 3 shows how to compute the value of D, ,,_4
in terms of D,,_;, through D,,_;,_,. Looking at the
figure, it is obvious that if there are m inflection points
(for m-1 segments), then the last point must be point n-1,



Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

and the next to last point must be somewhere between m
and n-2 (inclusive). If the next to last point is i, then
there are m-1 inflection points from 0 to i, and D,,_;;
tells us the sum of squared errors up to point i. L;,_;
gives us the error of the single remaining segment from i
to n-1, so Dy, _q ; + L; 4 18 the total error if the next-to-
last inflection point is at i. Thus, the optimal (smallest)
error is the minimum overiof Dy,_4; + L; 1.

ok int n
POt ..\ Fred —Rginti
Lot :

: £ ; Minimum error between i
Choosina (m-1% inflection and {n-1}
points between 0 and i

Figure 3. Understanding the error table dynamic
programming algorithm

Note that we need to initialize the first row of D, but
we have already computed the cases with only one
segment in L, so we simply set D ; to L ; for each i.

Thus, by dynamic programming we obtain the final
column of the error-table, which describes the total error
when m inflection points are chosen between points 0
and n—1.

3.1.3. Extract Number of Inflection Points

Our goal is to find the minimal number of segments. We
start to traverse from the bottom of the final column of
D. 1t is likely that the first value is infinity (recall that we
set the error value to infinity if any error exceeds the
limit 7). This occurs because no single curve is likely to
be a good fit to all the points. As we scan the column,
eventually we will reach an error value less than infinity.
The row number tells us the minimum number of
inflection points needed to fit curves within the error
limit 7. Once we know the number of segments, we can
reconstruct what they are. For example, we can use an
auxiliary matrix to save the value of i that minimized
Dpy_1; + Lip—4 for each pair (m, i) and use this data to
reconstruct the full set of m segments covering beats 0 to
n-1. For further details, please contact the authors for an
implementation in the Java programming language.

3.1.4. Optimizations

Rather than computing the entire n X n matrix D, we can
compute one row at a time. When the last element of a
row is not infinite, we can stop because we now hawe all
the information we need to compute the best curve fit
using the minimal number of segments.

When computing an element of L, if the error at (i, ;)
is infinite (meaning some timing error is greater than 7),
then the polynomial approximation from 7 to j+1 is not
likely to fit the data any better (although it is
theoretically possible). Thus, when we observe an
infinite error value for the curves fromi to j, i to j+1, and
so on until 7 to j+9, we simply stop fitting curves and fill
in the rest of the row with infinity. Since it is unlikely
that a single polynomial will fit a very long sequence of
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tap times, the true computation time for L, with this
added heuristic, is closer to O(x°) than O(’). Similarly,
it is sometimes possible to determine an element of D is
infinite ~ without looping through all possible
combinations of D,,_;; + L;,_1. If one can place an
upper bound on the length of any segment, the algorithm
complexity becomes O(?).

Thus, using this algorithm, we have successfully
generated a piecewise quadratic approximation to the
beat-time curve with the minimum number of inflection
points, such that the curve lies within the error threshold
at the temporal positions of true beats.

Taking the derivative of the newly generated beat-
time curve, we get our piecewise linear tempo graph
which effectively models tempo in live performances.

3.1.5. Value of t

We experimented with various different values for the
error threshold 7, to see what value would best model the
tempo curve accurately. We decided on using a threshold
value of 60ms to model the approximate tempo graph,
since this seemed to fit best with our perception of when
sudden tempo changes occurred, both in terms of
listening and of visually inspecting the tempo curve
graphs. As can be seen in Figure 5, the computed curve
gives a good summary of tempo trends in spite of the
noisy tempo values implied by the beat-to-beat time
intervals.
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Figure 4. Approximation graphs for different
thresholds
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Figure 5. Approximation graph for threshold 60ms

4. STATISTICAL ANALYSIS

We collected tap data for a diverse collection of
professional and amateur recordings. Our professional
recordings collected comprised of Miles Davis’ “Kind of
Blue” album and the Beatles “Please Please Me” album.
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We chose these particular albums for their relative
resemblance to live recordings and for their difference in
genres. “Kind of Blue” was recorded with minimal
practice among the musicians playing. The entire album
has been well documented in literature [6]. “Please
Please Me” was also recorded in one continuous session
without any modifications. These albums are ideal for
studying live performance by professional musicians.

Our amateur recordings were collected over a span of
a few months, recording practice sessions and live
performances of amateur artists (including some paid
performances). The amateur data set consists of amateur
rock recordings and some jazz performances. Table 1
summarizes the data collected.

Duration No of No of
(s) Beats Inflection Pts
Ama Jazz 12739 16898 467
Pro Jazz 2274 4424 63
Ama Rock 2749 6827 156
Pro Rock 1783 3689 66

Table 1. Overall statistics of data collected

The features that we want to compare for
professionals and amateurs are i) tempo relative to the
median tempo for a song, ii) relative tempo acceleration.
Both these features are related to the steadiness of tempo
in live musical performances.

Tempo relative to the median tempo represents the
actual tempo normalized by the median tempo within a
piece. If tempo is always steady, this value will always
equal one, thus we can compare pieces of differing
tempo. The second feature, tempo acceleration
(beats/second”) represents the rate of change of tempo.
One might expect acceleration to be higher with faster
tempos than slower ones. Therefore, we normalize
tempo acceleration by the tempo to obtain relative
acceleration. Both tempo relative to the median (relative
tempo in the graphs, Figure 6) and relative acceleration
(Figure 7) are plotted as histograms to study their
distributions.

We notice that amateur performers tend to deviate
from the mean tempo a lot more than professionals. The
histograms show they slow down to as much as
approximately -20% from the mean tempo. However,
during the course of one performance, they may speed
up to +10% of the mean performance tempo. It is also
observed that amateur rock performers have a roughly
similar distribution. Professional performers are much
steadier in their performances. From the data obtained,
we note that the tempo for professional rock and jazz
performers stays within one or two percent of the mean
tempo. For amateur rock performers, deviation ranges
between about —10% and +6%, whereas for amateur jazz
performers it ranges between +5%.

Since the mean relative tempo is expected to be 1 and
the mean relative acceleration is expected to be 0 (unless
there is a general trend to speed up or slow down), we
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can characterize the tempo steadiness by the variance of
these values.

From the histograms, it seems clear that the variance
is higher in amateur performances than in professional
performances. We used Levene's test for homogeneity of
variance [7] to compare professional vs. amateur
variance of relative tempo in rock, relative tempo in jazz,
relative acceleration in rock, and relative acceleration in
jazz. In all cases, variance of the professional data is
lower than that of the corresponding amateur data (p <
0.01).

5. CONCLUSION

The aim of this research is to understand how tempo
changes in live musical performances. We developed a
mathematical model by means of which noisy hand-
tapped beat data can be converted into a compact
summary which facilitates the study of tempo variations
in live performances. In particular, the model assigns a
rate of tempo change to every time point in the
performance, allowing us to quantify the steadiness of
tempo. We applied our model to data collected from
amateur and professional “live” musical performances.
We observed that the variance from the mean tempo of
the performance is dependent on the artist’s experience.
Professional artists deviate from the mean tempo less
than amateurs.

Our models were motivated by the problem of
predicting the next beat time given beat times in the
past. This is useful for computer accompaniment
systems where accurate timing is important. We believe
our characterization of the statistical distribution of
tempo change could also be useful in beat tracking.

Our models could also be useful for creating more
natural-sounding synthesized performances. Rock-
steady tempo gives the impression of mechanical
production. Some tempo variation according to
statistical models based on real performance data could
be a good way to generate musically plausible tempo
variation.

Our algorithm to fit polynomials to tempo curves
can be adapted to fit curves to any data. An apparently
open problem in the computer music literature is finding
the best piecewise approximation to amplitude and
spectral envelopes. For example, Horner and
Beauchamp [S5] explored this problem and suggested
genetic algorithms to search for good approximations.
Our approach can be adapted to many curve-fitting and
envelope approximation problems, producing optimal
results with reasonable computation times, eliminating
the need for heuristic search.

It should be mentioned that we used a fairly wide
range of amateur data but collected professional data
from only two groups. In the future, we hope to analyze
a larger set of professional groups to rule out the
possibility that the chosen works are atypical. We also
plan to look for musical explanations for the tempo
changes we observe in the data.
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