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Abstract

This paper presents a new approach to the real-time gen-
eration of digital sounds. Our approach is based on the
interpolation of spectra over time, and leads to a com-
pletely automated analysis/synthesis algorithm for the re-
production of natural sounds. The technique enables ac-
curate reproduction of the spectral variations of acoustic
instruments. Furthermore, spectral interpolation synthe-
sis has a more efficient implementation than that of clas-
sical additive synthesis.

We have applied the spectral interpolation analy-
sis/synthesis technique to different instruments and have
obtained promising results. The technique greatly re-
duces the amount of data needed to represent a harmonic
sound; however, it fails to convincingly reproduce in-
harmonic sounds. To reproduce sounds with inharmonic
attacks we use a hybrid method which combines sam-
pling and spectral interpolation synthesis.

1. Waveform Interpolation Synthesis

Waveform interpolation synthesis is a method for ef-
ficiently reproducing the spectral variation of acoustic
instruments. Among existing real-time synthesis tech-
niques we can place it between additive synthesis[14]
and fixed-waveform synthesis[16,2]. Indeed, waveform
interpolation synthesis can be viewed as a technique that
reduces the cost of additive synthesis while allowing bet-
ter quality and control than fixed-waveform synthesis.
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Figure 1: The Waveform Interpolation Oscillator

1.1. The Waveform Interpolation Oscillator

Waveform interpolation is similar in implementation
to fixed-waveform synthesis but uses two phase-locked
wavetables, WX and WX, each one loaded with a dif-
ferent waveform (Figure 1). The two tables have the
same length M, and are indexed with the same phase
value P(n). Each wavetable has its own amplitude scal-
ing factor. The results of the amplitude scaling are added
together. The interpolation signal can be expressed as

¥(n) = c(WEP(n)] + d(m)W* [P(n))] m
where

n is the number (index) of the sample
being computed,
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¢(n) is the amplitude scale factor of the
left wavetable at sample n,

d(n) is that of the right,

P(n) is the phase accumulator at
sample n, and

¥(n) is the output signal at sample n.

A waveform interpolation oscillator is identical in effect
to two table-lookup oscillators whose phases P(n) are
constrained to be equal.

A simple special case of equation (1) is the time-linear
interpolation of two waveforms. This is obtained by
setting the two mixing coefficients c(n) and d(n) to two
opposite linear ramps whose sum at each sample equals
unity. We can write this special case of equation (1) as

¥ = (1 = r(n))WEIP(m)] + r(m)WH [P(n)] @
r(n)=n/N

where N is the duration (in samples) of the synthesized
signal y(n). Intuitively we expect that the time-linear in-
terpolation of the two waveforms is equivalent to the
time-linear interpolation of their respective short-time
spectra. Thus, we propose to generate spectral variation
through waveform interpolation.

1.2. Spectral Evolution via Waveform Interpolation

We are going to use waveform interpolation (equation
(2)) to generate a spectral evolution. By spectral evolu-
tion we mean a sound in which the ratios between the am-
plitudes of the harmonics change over time. To this end,
we modify the wavetable interpolation oscillator so that
it has pointers to the left and right wavetables rather than
the wavetables themselves. We can then achieve com-
plex spectral evolution by switching between wavetables
over the course of a sound. By repeating the interpo-
lation procedure (equation (2)) with different pairs of
waveforms loaded in the right and left tables, one can get
a succession of different dynamic spectral combinations.
To avoid discontinuities at the point when a waveform
is changed only one of the two waveforms is changed
at any one time, and the change occurs when the scal-
ing ramp associated with the wavetable being changed
is zero. As the ramp r(n) and its opposite (1 — r(n)) are
continuous the output of the oscillator will be free from
clicks.

Figure 2 illustrates the time-linear interpolation of a
succes-
sion of Q waveforms (Q = 4) taken in a time-ordered
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sequence {(no, Wo), (n1, W1), ..., (ng—1, Wo_1)}, where
n; represents the sample at which the reading of
waveform W; starts. At any point in time, we
are interpolating between one of the waveform pairs
(Wo, W), W1, W), ..., (Wo_2, Wg_1).

. As we see in the figure the scaling ramps (1 — r(n))
and r(n) (c(n) and d(n) respectively) are piecewise-linear
functions, each of which alternately has value zero at
some n;, rising linearly to unity at n;,; and again reach-
ing zero at mi2. To describe the waveform switching
mathcm.’nically, we define two functions L(n) and R(n).
Given the sequence of waveforms (Wo, ..., Wg_1), L(n)
and R(n) respectively determine the waveform in the left
and right wavetable of the interpolating oscillator. In
a hardware implementation, these functions are used to
trigger the changes of waveform for each table.

¥n) = (1 = r(n)Wrm[P(m)] + r(m)Wrem[P(n)]  (3)
r(n) = { (n—n2)/(nais1 — m2i) M < m< nyuny
(n2i = n)/(ngi — maic1) M1 Sn<my
For convenience, we set n_; = no and ng = np_;. The
left table will be filled with even numbered waveforms,
and the right with odd ones as follows:

Ln)=2i
Rm=2i+1

where ny < n < misp (©))
where nyi1 < n < nya

The criteria to avoid clicks when switching waveforms
are

when n=ny; (5)
when n=ny,

rim)=0
rin)=1

1.3. Spectral Interpolation Synthesis

Interpolating between waveforms is not necessarily
equivalent to interpolating between their corresponding
amplitude spectra. Since the spectra are complex, phase
cancellation and phase shifting may result from interpola-
tion. When corresponding harmonics in the spectra being
interpolated are out of phase, the amplitudes of those har-
monics do not change linearly with r(n). Furthermore,
such phase variations over time may result in an uninten-
tional but perceptible timbre change, often perceived as a
frequency shift. In order to get intuitive control over the
interpolation process, we avoid these effects by interpo-
lating between spectra whose corresponding harmonics
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Figure 2: Interpolation of successive waveforms

are all in phase.! We use the term synthesis by spectral
interpolation to mean that we have constrained the cor-
responding harmonics of each generator wavetable to be
in phase.

In spectral interpolation synthesis, we can express sim-
ply the result of the interpolation of two wavetables on
the individual harmonics. Expressing the left and right
wavetables of an interpolating oscillator as the sum of
their respective harmonics, we have

H-1
Wm] = Z s cos(2mhm/H + 6%)

h=0

©

H-1
WA lm) = > af cos(2mhm/H + 6F)
h=0
where @& and §% are the amplitude and phase of the hy,
harmonic in the left wavetable, and af and 6% are defined
analogously for the right wavetable.

Substituting (6) in (2) and assuming that the corre-

sponding harmonics in W* and W* are in phase (i.e.
6L = 6% =9,) we have

H-1
Ym) =3 (1 = r(m)dk + r(n)ak) cos2mhm/H +6,) (7)
h=0

! As is often done in additive synthesis and the phase vocoder [15],
we ignore the initial phases. We do, however, consider initial phase
differences in Section 2.6..
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Thus, the amplitude of the hy harmonic in the output
signal at sample n is

an(n) = (1 = r(m)aj + r(m)ak ®)
Thus, given the constraints of spectral interpolation, the
amplitude of a harmonic of the output of the oscilla-

tor at sample n ramps linearly from its value in the left
wavetable to its value in the right wavetable.

14. Reproducing a Tone via Spectral Waveform In-
terpolation

It is well known that a table lookup oscillator controlled
with slowly varying functions can generate only har-
monic sounds. The same result applies to the waveform
interpolation oscillator? Thus, we will be able to re-
produce only harmonic sounds. To reproduce a sound
with the generation model described by the equation
(3), we perform a sequence of interpolations between
pairs of waveforms. The waveforms {W;} used in equa-
tion (3) are called generator wavetables. Each generator
wavetable corresponds to a single period of the signal.
Because of the interpolation function, the number of gen-
erator wavetables will be less than the total number of

2]t is in fact possible to generate sounds with inharmonic partials
by interpolation between waveforms containing out-of -phase harmonics
[21, and this effect may be used, for example, to generate vibrato [17].
However we do not include this effect in the present study.
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periods in the signal. The time it takes for the interpo-
lation to go from one generator wavetable to the next
((nis1 — my)/srate) is called the interpolation interval.
The signal over a given interpolation interval is com-
puted with the interpolation formula (3). To select the
generator wavetables and the interpolation intervals, we
need an analysis preceding the synthesis. The function
of the analysis is to generate the control parameters of
the spectral interpolation oscillator, such that the resyn-
thesized signal sounds like the original.

2. Analysis/Synthesis by Spectral Interpolation

In this section we present the analysis algorithm that pre-
cedes the spectral interpolation synthesis. The analysis
algorithm takes as input the acoustic signal that we wish
to regenerate, and outputs the control data for the synthe-
sis. The analysis is performed in the spectral domain and
is based on the interpolation equation between harmonics
(equation (8)).

The analysis follows several consecutive steps: digital
recording of the sound, spectral analysis of the digitized
sound, and data reduction. At the end of the analysis we
arrive at a set of data describing (to some approximation)
the original sound according to the spectral interpolation
model. This set is then fed into the waveform interpola-
tion synthesizer (or its software simulation) to verify the
analysis.

2.1. Digital Recording

For the purpose of analysis we start to work with iso-
lated tones played (as nearly as possible) at a constant
pitch. These restrictions allow us to separately study
the reproduction of the amplitude spectral variations by
spectral interpolation. Some modifications to the analy-
sis and synthesis algorithms described here are required
for them to work for tones whose pitch is not constant.

The sound coming from the instrument is digitally
recorded using an A/D converter with a programmable
sample rate and anti-aliasing filter. The sample rate is
chosen so that there will be an integer number of sam-
ples per period® (see Section 2.2.).

31f it is not practical to record at arbitrary sample rates, an inter-
polation and decimation procedure [6) or other resampling algorithm
[19,23] can change the sample rate efficiently.
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2.2. Spectral Analysis

To measure the short-time spectrum, we use a pitch-
synchronous Discrete Fourier Transform (DFT). In par-
ticular, we compute a DFT on each period of the tone. If
the period is measured accurately, the DFT directly pro-
duces the amplitude and phase of each harmonic.® Once
the pitch modulations have been tracked and recorded,
we can measure the evolution of the harmonics. For
simplicity of presentation, we assume constant period P
over the entire tone. As the signal is real, we have at
most | (P — 1)/2| harmonics (ignoring the DC compo-
nent at A = 0). In actuality, we calculate # harmon-
ics, H < |(P — 1)/2], possibly ignoring some higher
harmonics.’

Extracting the vector of amplitudes of the DFT on each
period of the tone yields a list of spectra, one for each
period. We call S{? the spectrum measured at period i.
The total number of periods in the tone is denoted Np.

S0 = @ (i), a2(i), ..., awli), ..., an(i)) )
0 S i< Np

The list of DFT spectra with their time indices is
{(no, §1), (n1, Sy, ..., (nNp—1, SVF=1)}. We call this
list the spectral envelope of the tone. To reproduce the
tone using the spectral interpolation model, we want to
transform the list of DFT spectra into suitable data for the
waveform interpolation synthesizer. That is the subject
of the next section.

2.3. Spectral Ramps

In what follows we describe two algorithms that process
the time-ordered list of DFT spectra {(no, $'%), (n;, S,
vvvs (AN,~1, 8%r=1)}. The purpose of each algorithm is
to obtain the control data needed to drive the spectral-
interpolation oscillator (equations (9), (6), (3)): a list
of Q spectra with their associated times. The number of
spectra used for the synthesis Q should be much less than
the number of spectra coming from the Fourier analysis
Np.

4Since we recorded the tone at a sample rate o insure an integral
period, we need only to check that the penod is comect. We do this
using Moorer's optimum comb [13] and/or a simple peak detector.

h ber of

SWe ignore the higher for a : they
often have insignifi plitudes, the pitch-sy ous DFT com-
putes them inaccurately, and we want to avoid aliasing when the tone

is resynthesized at higher pitchs.
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Figure 3: Three Spectral Ramps

In order to explain how the data reduction works, we
first express the interpolation between two spectra S
and SY (successive in the synthesis) in terms of their
individual harmonics.® Analogously to equation (8), the
instantaneous interpolated harmonics at sample n within
the spectral ramp ', @ (n), are expressed as”

a? () = (1 = r(m)a? + r(myal? (10)
r(n)= Py _:‘
m<n<nm 1<h<H
The spectrum at sample n, S (n), is
S )= (1 = r)S? + rm)s 43))

nm<n<n

As the effect of interpolating between two spectra is that
the amplitude of each harmonic ramps linearly from its
value in the first spectrum to its value in the second, the
sequence of spectra S{)(n),n; < n < n;, is called the
spectral ramp from S to SU}. A spectral ramp consists
of the H amplitude ramps which connect each harmonic
of the initial spectrum S to the harmonic of same order
in the final spectrum SY). A spectral ramp is defined by
the set of H initial and H final values of the harmonic
amplitudes, together with the duration of the interpolation
(nj — n).

Figure 3 shows three successive spectral ramps. Rep-
resenting an amplitude spectrum evolution with spectral

SThis explanation assumes that the spectra uxed in the lynl.hem
have been selected from the DFT sp nputed in the lysi:
While this is often the case, one of our algorithms (see Section 2.4.2. )
computes the spectra used in the synthesis.

7For the inder of S 2. we without loss of general-
ity that the waveform for S{) is in the left le and the fi
for SU) is in the right. If this is not the case, as happens every other
pair of spectra, the roles of r(r) and 1 — r(n) must be interchanged.
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ramps is similar to using a piecewise linear approxima-
tion for the individual harmonics amplitudes. However,
in contrast to the usual representations used for additive
synthesis [8], the breakpoints that define the piecewise
linear function for each harmonic are simultaneous.

In order to ensure that the reproduced spectra are close
to the original spectra, the data reduction algorithm is
based on an error-minimization process. The next section
describes two different methods that are used to mlmmlze
our error criteria.

2.4. Data-Reduction using the Time-Linear Spectral
Interpolation Representation

The fitting of the spectral envelope with a small set of
spectral ramps is based on the following process: starting
with the spectrum of the first period of the tone, we com-
pute the spectral ramp to the spectrum of each successive
period in tum. For each successive period we calculate
an error measure based on the deviation between the har-
monic amplitudes of the original spectra and those of the
computed spectral ramp. When the error exceeds a given
threshold, the spectral ramp ending at the previous period
is stored. The process is repeated using the end of this
spectral ramp as the initial spectrum of the next spectral
ramp. This loop is executed until the entire spectral en-
velope has been approximated. There are two different
algorithms that compute the spectral ramps. The first al-
gorithm is called spectral ramp interpolation using orig-
inal spectra. 1t selects some of the DFT spectra in the
spectral envelope of the original tone as endpoints of the
spectral ramps. The second algorithm is called spectral
ramp interpolation using computed spectra. It uses a lin-
ear regression algorithm to compute the spectral ramps.
We discuss each of these in turn.

24.1. Spectral Ramp Interpolation Using Original
Spectra

Consider the equations (10) and (11) which define the in-
stantaneous interpolated spectrum S{¥) (n) on each sample
n within the ramp S{%), For the purpose of measuring the
error on the spectral ramp S{, we compare the succes-
sive interpolated spectra ) (n), n; < n < nj, to the cor-
responding sequence of DFT spectra S\? with i < I < j

" (since n; = iP and n; = jP). The interpolated spectra are

computed at the same rate as the DFT spectra, i.e.‘with
a time interval equal to the period P, i.e S (1) = St (n;)
with n; = [P. Given this notation, the analysis equation
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(10) is rewritten as:

a1y =a + "f_::‘Tf(a},” -dhy  i<i<j (2
Comparing the amplitudes of the harmonics of spectrum
S(’_) with values given by equation (12) produces an error
E{ . E{" s defined as the sum of the squared errors on
each of the H harmonics amplitudes:

H
Ef? =3 @ - 41y

(13)
h=l
Using the following notation:
Adi <)l add=dl ol
An' =nj—n; Anft=n—n;

combining equations (12) and (13) gives:

o I oAl ;
Ef‘}) = Z(AnijAa}uU) - Aa£10)2 5)

h=l

The global error E'#) within the spectral ramp St%
is defined as the sum of the errors on the individual
spectra:® ey

E = JZ £

lmiv]

If the error EV is less than the tolerated threshold Epa;
we extend the spectral ramp to the next period (j + 1)
and compute the new error E{W*!) using equation (16),
E{"*!) being computed with equation (15). Otherwise
we store the data defining the previous the spectral ramp
Stiv=1  and we compute the next ramp starting at spec-
trum (nj_l,SU'l)).

(16)

24.2. Spectral Ramp Interpolation Using Computed
Spectra

The Linear Regression algorithm is a way of fitting piece-
wise linear functions to a set of points [25]. We use a
variant of linear regression called anchored regression
[21]. Given a fixed point called the anchor and a set of
data points, the anchored regression algorithm finds the
slope of the line passing through the anchor which mini-
mizes the sum of squared distances from the data points

8We may start the sum from i+ 1 since as we use S as the initial
spectrum in the spectral ramp, we have Ef") =0.
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to the line. We use this algorithm for the k:omputation of
the H segments which define the spectral ramp. Instead
of processing each harmonic separately (which would in
general result in a set of segments of different lengths)
we perform H linear regressions on a fixed time interval,
and we compute a global error on the resulting spectral
ramp.

The anchors (i.e. the endpoints of the spectral ramps)
are notated §'{? . The prime is used to differentiate the
anchors from the DFT spectra. The anchored regres-
sion algorithm works as follows: We start with an an-
chor (m;, 7). For the first anchor we take (no, S(%).°
For each successive consecutive DFT spectrum (n;, S¥0),
J > i, we compute H lines. The Ay, line goes through its
anchor (n;, a;(i)) and comes closest (irf the least squares
sense) to the set of points (M1, an{i + 1)), . .., (1), ar{j)).
The error on the spectral ramp is computed as the sum of
the errors of the H individual lines. If the error is below a
threshold E ., the next DFT spectrum (41, SU*1) is ex-
amined. Otherwise the spectral ramp St~ 1) is used. In
this case the endpoint of the spectral ramp is (nj—1, S¥~1).
The H coordinates of S'V-1, gj(j~ 1), 1 < h < H, are
computed using the slopes of the H best lines. The end-
point (n;_1,8'U=1) is then used as the new anchor and
the process is repeated to get the next spectral ramp.

Using a simple least squares fit, it is straightforward
to compute the best spectral ramp. Since each of the H
lines forming the spectral ramp §'(¥} must go through the
coordinates (n;, a,(i)) each line is defined by an equation
of the form

a0 (1) = mi o — ) + 44i)
I<h<H i<I<j

an

where mf,‘” is the slope of the Ay, line of the ramp.

Defining E‘,,i’) to be the sum of the squared errors of
each harmonic within the ramp §'(¥), we have

o )
EP 23" @l - ol u~ ny + gy (19)
I=i+]
The total error on the spectral ramp EX¥ is the sum of

the errors on each harmonic:

H
E(‘}) = ZE'("}) (19)
h=1

9Here the prime subscript is omitted because the first anchor is not
computed.
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By using the notation previously defined (equation (14))
with a,(i) replaced by a;(i) we can write:

H . )
EW) = Z Z(Aa,("o - m? Any?

(20)
h=1 l=i+]
Setting 257 = 0 gives the slope of each line:
om,”
) e , Anilagl?
i o deleins S0 2 @1)

JI-M! (A”ﬂ)z

As we mentioned before, if the total error E\¥ is less
than the threshold, we add the next spectrum SY*1 to our
set, and calculate the error EV*)) | Interestingly, we do
not have to reevaluate from scratch the sums in equations
(20) and (21) when we add the new spectrum. We have
an incremental algorithm (not shown for brevity) which
allows us to do a small amount of work (proportional
to H) to compute the new slopes and error when adding
a spectrum to the regression. In other words, we can
compute every error E{? gthi*l) Eli) with the same
effort as it takes to just compute E{i,

2.5. Results

After computing the spectral ramps (using either
method), we resynthesize the tone by evaluating equa-
tions (6) and (2) in software. Each of the successive
spectrum defining the spectral ramps is used to compute
one period of the waveform defined in equation (6). The
phases of the cosine waves 8, are altemately set to —7/2
or /2, so that the waveform and its first derivative are
close to zero at the beginning and at the end of the table.!°

After two waveforms defining a spectral ramp have
been loaded in the wavetables, the wavetables are read,
scaled by two. opposite linear ramps (2) and added to
form the output signal. The process is repeated until
every spectral ramp has been synthesized.

The resemblance between the original signal and the
resynthesized signal depends on the number of spectral
ramps that are used to approximate the spectral enve-
lope. The number of spectral ramps can be modified by
varying the threshold E,,,. For each tone, we run the al-
gorithm several times using different thresholds. We then

19This is the technique used in the Bradford Musical I
Simulator [3].
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choose the synthesized signal with the smallest number
of spectra (largest threshold) that is perceptually indis-
tinguishable from the original tone. The chosen spectral
ramps are an accurate (and usually succinct) representa-
tion of the tone.

We have obtained very good results on a number of in-
struments belonging to the woodwind and brass families
(bassoon, clarinet, saxophone, trumpet, trombone). The
two algorithms, (using original spectra and using com-
puted spectra), were found to be almost identical in terms
of the data reduction they achieve and in their compu-
tational-cost. For an equivalent data reduction rate, the
two algorithms lead to a similar perceptual output. Using
computed spectra usually achieves a slightly greater data
reduction, since by computing spectra a given amount of
error can be spread over a longer spectral ramp than is
possible using original spectra.

Figure 4 shows a sampled trombone tone.!! Beneath
the tone are the spectra which resulted from the DFT
analysis of the tone. Under those are the spectra selected
by the data reduction algorithm. The synthesized tone is
shown under the selected spectra.

From our small sample, we conclude that we can pro-
duce high quality harmonics sounds with a relatively
small control bandwidth. The average number of wave-
forms per second in the synthesized tones is between 4
and 10. The average number of 8-bit bytes per second
sent to the synthesizer is between 150 and 400. The
synthesis takes approximately 10 operations per sample.
We have compared the number of operations needed for
additive synthesis and waveform interpolation synthesis
(including, in the latter case, calculation of the waveta-
bles) and we have come to the conclusion that waveform
interpolation synthesis is most profitable when the num-
ber of harmonics being synthesized is large. Interest-
ingly, waveform interpolation becomes relatively more
efficient as the sampling rate increases. On the other
hand, as the number of waveforms per second needed
in the synthesis increases, and as the wavetable size in-
creases, the relative efficiency of waveform interpolation
decreases. Empirically we have found that if a given
tone is able to be reproduced accurately by spectral in-
terpolation, we can always do so at a cost less than that
of additive synthesis.

As our analysis/synthesis method does not handle in-
harmonicity in general, the attacks of some tones (es-

't Actually, part of the sustain portion of the tone was removed so
we could fit the signal on the page.
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Figure 4: Synthesis by Time Linear Spectral Interpolation

pecially brass instruments) were not synthesized with
enough realism.!? In order to keep the advantages of the
spectral interpolation model while achieving more natu-
ral attacks, we have investigated a technique in which a
sampled attack is spliced onto a synthesized sustain, as
we describe and evaluate in the next section.

2.6. Combining Sampling and Spectral Interpola-
tion Synthesis

We now consider the problem of reproducing a tone by
connecting the attack portion of the tone to a synthesized
sustain portion gotten by analyzing the tone using one
of our algorithms previously described.)* We discuss
the techniques we tried for connecting the sampled and
synthesized portions.

Connecting a sampled attack to a synthesized sustain
requires that for each harmonic the phase of the sam-
pled harmonic matches the phase of the corresponding
synthesized harmonic at the transition point.'* If some
corresponding harmonic phases are not equal we may

12Both the pitch-synchronous DFT and the interpolation synthesis
cannot deal with inharmonicity.

13Here we are using the term ‘sustain’ to refer to the part of a tone
after the attack. It i what is lly thought of as the sustain

portion as well as the release portion of the tone.

Tordd

14The altemnative of crossfading between sampled and synthesized
signals without regard 1o phase has been explored and rejected by Smith
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hear a click in the signal due to the instantaneous phase
shifts. If the transition occurs at a zero crossing in the
signal, the click is attenuated, but often still perceivable.
We have tried two techniques for achieving smooth tran-
sitions, phase interpolation and simple phase matching.

In the phase interpolation technique we attempt to
gradually shift the phases of the harmonics in the sam-
pled attack to be /2.5 We wanted to find a way of
shifting the initial phases of the harmonics so that the
frequency shift resulting from the phase shift is imper-
ceptible. We tried to use a phase interpolation algorithm,
based on [18], where the phases are progressively in-
terpolated (using cubic polynomials) from their original
value to +7/2. Unfortunately, the phase interpolation
was always perceived as a frequency shift. While the
small frequency shift was unnoticeable when synthesiz-
ing speech[18], when reproducing isolated tones such a
shift becomes suprisingly obvious.

and Serra[10]). Our own experiments confirm the difficulty. Interest-
ingly, the Ensoniq SQ80{24] sampling synthesizer claims to employ
cross-fading successfully.

15We had an ulterior motive for trying 1o do this. We wish to use the
Rradford Mucical 1 Simulator (4] hard for our s :
This hardware currently requires the phases of the harmonics in the
wavetable to be £7/2. A ber of benefits come as a g
of this restriction: the ition b ive ble lookups
is continuous, the update rate of the amplitude scaling factors in the
oscillator can be low, only a small number of bits are needed to code
the amplitude factors, and very cheap multipliers (gate arrays) can be
used. We would have liked to maintain these advantages.

1CMC Procecdings 1988



Thus, we reverted to a simple phase matching tech-
nique. We use the phases extracted from the last period
of the attack to compute every waveform used during
the synthesis (equation (6)). By doing this, the transi-
tion between sampled and synthesized signal is faultless.
Computing the waveforms with the phases found at the
end of the attack did not alter the quality of the synthe-
sized signal. ’

Using the simple phase matching technique we have
obtained very high quality reproductions of brass and
woodwind instruments. Figure 5 shows the same input
tone as the one previous figure synthesized using a sam-
pled attack. The arrow in the figure points to the transi-
tion between sampled sound and synthesized sound.

In practice we find that we need from 30 to 60 mil-
liseconds of the sampled attack for good results (500 to
1000 samples at a 16 KHz sample rate). The typical data
rate needed to control the synthesizer, excluding trans-
mission of the sampled attack, ranges from 40 to 400
bytes per second. The hybrid technique, sampling and
spectral interpolation, can be applied without restriction
to any kind of sound whose sustain is harmonic, which
is the case for most orchestral instruments.

3. Related Work and Future Plans

We have presented and discussed the technique of spec-
tral interpolation for the analysis and resynthesis acoustic
instruments. We use a succession of wavetables that are
dynamically mixed to reproduce analyzed spectral evo-
lutions.

The analysis algorithm we presented in Section 2.4.
used linear interpolation in time to gradually change from
one waveform to the next. We have another algorithm
called nonlinear interpolation in which the scaling fac-
tors ¢(n) and d(n) (equation (1)) of the two wavetables
are arbitrary. Nonlinear interpolation generally reduces
the minimum number of spectra needed to represent a
given tone.

We have simplified our analysis by restricting our data
to relatively fixed-frequency examples. To relax this
restriction, it should be possible to resample the input
to obtain a fixed number of samples per period, per-
form the analysis, and then use a time-varying frequency
in the table lookup oscillator to reproduce the original
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frequency.'¢

The idea of mixing multiple waveforms to generate
sounds whose spectra change over time is not new. Sev-
eral commercial synthesizers have implemented this tech-
nique, among which the Matsushita digital instrument
[17], the Prophet VS [20,1] and the Keytex CTS-2000
[12]). The contribution of our work is that we provide
an automatic analysis to make possible the resynthesis
of acoustic instruments.

So far, we have not discussed the problem of control.
QOur plan is to develop a characterization of an instru-
ment, be it real or artificial, as 2 multi-dimensional space
of spectra. Typical dimensions would be amplitude and
frequency, which are input parameters to this synthesis
model. Other parameters, such as bow position, lip pres-
sure, etc. can be introduced as additional dimensions.
Variations in pitch, amplitude, and other parameters give
rise to a trajectory in this space, and spectral interpolation
can be used to reproduce the corresponding spectral evo-
lution. Variations of this technique have been alluded to
by Grey [8], Covitz and Ashcraft [5], Sazaki and Smith
[22], Bowler [9], Comerford [3,4], and Lo [11].

J. Smith and X. Semra [10] independently combined
sampled attacks with synthesized tones using the same
phase-matching technique described in Section 2.6..
Their synthesis technique was based on summation of
sinusoids rather than interpolation. The Roland D-50 [7]
seems to be able to combine sampled attacks with syn-
thesized sustains. At present we have no technical in-
formation on the method the D-50 uses to insure smooth
transitions.

4. Conclusions

We have described a technique for the automatic anal-
ysis and resynthesis of musical tones based on spectral
interpolation. This technique is interesting for several
reasons. First, automatic analysis is important when it is
desired to reproduce known sounds such as the sounds of
traditional instruments. Second, we have achieved a high
degree of data compression without perceptual degrada-
tion in quality or realism for a large and musically useful
class of sounds. Third, the computation rate for the syn-
thesis is low compared to other methods with equivalent

16To resample, the time-varying frequency maust first be determined
by some pitch extraction method. The signal can then be resam-
pled [23] at a sampling rate that varies in proportion to the d
frequency.
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Figure 5: Spectral Interpolation with Sampled Attack

generality. Finally, the data obtained from the analysis
is in a form that can be modified and manipulated in
various musically useful ways such as stretching, pitch
changing, and interpolation between the spectra of dif-
ferent tones. We are currently studying an extension of
this technique in which sequences of spectra are obtained
not from a specific tone being reproduced, but by sam-
pling an arbitrary trajectory in a precomputed spectral
space. This extension promises a combination of sim-
ple and intuitive control, computational efficiency, and
realistic production of traditional instrument tones.
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