
619 ARCTIC - PROOAAAHNtS MANUAL NO TUTORIALUD ini
CARIEIE-NELLON MNY PITTS8WGNH PR DEPT OF COMPUTER
ANLRS F. R~-TR-S7-1169 F33615-64-K-1526 F/0 12/S

, EASIICs CIEnCRSSE LDC6 N-SS-

EEEEEEEmi



'-53

11j1 IM3

*1I~ll______ Lel..0"3o1



PHOTOGRAPH THIS SHEET

(0LEVEL INVENTORY

co z
00 0

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT

ACCESSION FOR
NTIS (;RA&I

DTIC TAB T I
UNANNOUNCED ELECTE

JUSIl IIICATION 09i8

BY
DISTRIBUTION/
AVAILABIIITY ['ODFS

D9ISl AVAIl. AND/OR SPRl'(IAL

DATE ACCESSIONED

I)ISTRIBJT:ON STAMP / -

DATE RETIURNE)

88 2 O5 100

I)AI I RE('\ I I) IN I)TI( RU.(;ISTFRFI) OR ('FRI-IFI) NO.

PHOTO(IRAPII llS Still-F] ANI) Rl' I URN 10 I)iI(-I)l)A('

DTIC FORM 70A DO('UMENT PROCESSING SIET 'vJs V 1)k 1 N MAV WN MAY IH WA T I L
D E C 8 3 S 1 C , JS I X IIA .lJ T I .

2 7,



AFWAL-TR-87- 1169

0 ARCTIC - PROGRAMMERS'S MANUAL AND TUTORIAL

Dean Rubine and Roger Dannenberg

Carnegie-Mellon University
S Computer Science Department

Pittsburgh, PA 15213-3890

' December 1987

Interim

Approved for Public Release; Distribution is Unlimited

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

' 'z'



i ft

Vo.

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection witb a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in 01
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

0'7?

CHAHIRA M. HOPPER RICHARD C. JONES.

Project Enzineer Ch, Advanced Systems Research Gp

Information Processing Technology Br

FOR THE COMMANDER

EDWARD L. GLIATTI
Ch, Information Processing Technology Br

Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

V- W'¢2 2 m ' 2" ¢ £W ¢2 -
•

".' ". )'2.) . ":-" €" ." ft.



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE .

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRiBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

CMU-CS-87-1 10 AFWAL-TR-87-1169

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable) Air Force Wright Aeronautical Laboratories

Carnegie-Mellon University AFWAL/AAAT-3

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Computer Science Dept Wright-Patterson AFB OH 45433-6543

Pittsburgh PA 15213-3890

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIrICATION NMBER
ORGANIZATION (If applicable) F33615-84-K-1520

Sc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK uNIT
ELEMENT NO NO NO ACCESSiON NO

61101E 4976 00 01

11. TITLE (Include Security Classification)
Arctic
Programmer's Manual and Tutorial

12. PERSONAL AUTHOR(S)

Dean Rubine, Roger Dannenberg
13a. TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Interim FROM TOI 1987 December 42

16. SUPPLEMENTARY NOTATION

17. COSATi CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROuP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

-- ARCTI iS -j pr-oq)rmrlire I Ilqjq3 for cisc o nc real-time .'terns with runny, concur oct u-dviti@,.,
Unlike conve~ntio ana,1 ( eItfS ia , r ,cx I: j concurrency ;C ImuLIltiple ScO ,fI2'1 lhri-;J.. ( corl ,.( ,
AIIC[ IC models concUI.I( Or C , Is Ilt if)l-1 fUlCo s of tiine., whuzCi.,

,uI C~ r/S f ti e, wh so (OnML~iI ' ; \ , e1rt,::i). Titis: ;:JL!
departure from c i COnv O many (lJiLIrIC:5S including a d( clarotir'e pf'r.12,Irnl, .yt
synclIroniz ation (.oj , -ni,; . '4iocific. l on a.n dmil g rclationshlp., 01 nd .:'n ir atcJ ippI ;0ch (o

event-drivc n an d C)C.i - iv( II ' -thno Cin'ljU t Jiii .

This document is a cpr if on o1 ilt1 Al-f.TII' larc-age LxOml;L, h:,, 1 _ If , 20 Ill ,,
that t1i1M 5pQcif:cntior may he Oia() Iuo jd ;a.,:' ([o1i( l. Detail of a pr lun!I;IO:iI., IIThLilU t <,L f

ArICTIC rc givCn in til io :-pcdi;.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 2- ABSTRACT SECuRiTY C ASS;F'CATION

• UNCLASSIFIED/UNLIMITED 0 SAME AS RPT E: DTIC USERS tunc']s- i f i ied
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONEIn r FF, E Sn" 0

Chahira M. Hopper (513) 25 8  Ar FW A AAT-]

DD Form 1473, JUN 86 Previous editions are obsolete SECURTY CLASSFCAT ON O' 'HS PACE___
Unclassified

, ,." -. ~ J' - - -u -.- -.
Or ~~~.~ -'* -. ~-. ~ V



Table of Contents1. Introduction 
12. Lexical Conventions 23. Identifiers 3

4. Keywords 3
5. Constants 3
6. Syntax Notation 3
7. Scope and Visibility 3
8. ARCTIC Types 3
9. Expressions 5

9.1. Variable Names 5
9.2. Attribute Selectors 6
9.3. Builtin Operations 7

9.3.1. Arithmetic Operations: + - / 89.3.2. Relational Operations: = 0 <= >= < > 8
9.3.3. Logical Operations: and or not 9
9.3.4. Time Operations: - ~~ @ @@ 109.4. Assignment Operators 109.5. Applications 13

9.6. Collections 
159.7. Alternative Expressions 159.8. Until Expressions 179.9. Event Expressions 17

10. Declarations 17
11. Programs 1020 [12. Implementation Considerations 

2112.1. Evaluation Order 
2212.2. Function Representation 
2212.3. Data Dependencies 
2313. Conclusions 
24I. Builtin Prototypes 25

II. Interpreter Implementation Details and Limitations 2811.1. Using the Interpreter 
2811.2. Restrictions and Deviations 2911.3. Input/Output File Formats 2911.4. Porting Considerations 
3011.4.1. machdep.h 
3011.4.2. Graphics 
30Ill. Some Examples 
32

32I

V 
I.=

I

o%'



List of Figures
Figure 9-1: Example arithmetic expressions 8
Figure 9-2: Example relational expressions 9
Figure 9-3: Example time operations 11
Figure 9-4: Example sum assignment operation 13
Figure 9-5: Example collections (x is plotted) 16
Figure 9-6: Example of until 18

S.

-S

-4

2.

,9.,

p
i
.

'.

vi '9.



1. Introduction

The Traltamadorians can look at all the different moments just the way we can look at a
stretch Of the Rocky Mountains, for instance. They can see Plow permanent all the
moments are, and they can look at any moment that interests them. It is just an illusion we
have here on Earth that one moment to/lows another one, like beads on a string, and that
once a moment is gone it is gone forever.

Kurt Vonnegut, Jr., Slaughterhouse Five (1971)

ARCTIC is a language based on a new way of thinking about real-time programs. The fundamental

idea in ARCTIC is that changing values of program variables can be described as functions of time.

The same concept is at work when a logic designer draws a timing diagram, illustrating logic states as

functions of time, or when a biologist plots cell populations as functions of time. In each case, the

time dimension is transformed from a linear sequence of states to one or more functions, making the

system's behavior much easier to specify and reason about.

To illustrate this, suppose we wish for the value of a variable to increase smoothly from 0 to 1 in 2

seconds and then remain at 1 for 5 seconds. (This variable might determine the position of a servo-

controlled actuator in a mechanical system, for example.) In a sequential language, we might write

something like the following:

while current-time < 2 do
x :=current-time / Z;

x :z 1;
while current-time < 7 do {nothing )

Notice how much effort is involved in sequencing. The programmer must make sure that in addition

to computing the right sequence of values, his program computes them at the right time.

In contrast, ARCTIC programs are not sequential and values are functions of time. The following

expression is functionally equivalent to the program above:

x := (ramp - 2) + (unit - 5 @ 2);

This expression says that x is the sum of a ramp of length 2 and a unit function whose value is 1 for

an extent of 5 time units, starting at time 2.1

Notice how easy it is to specify rather complex functions by combining primitive functions and by

using explicit operators to shift and stretch functions. The notation is declarative in the sense that we

describe values by writing expressions, but we do not need to provide a sequential, imperative

program that tells how to compute the values or in what order to compute them.
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The idea that we should explicitly indicate timing rather than allow timing to exist as a consequence

of sequential execution can be applied to discrete events as well as to continuously changing

variables. For example, suppose that we want to perform two actions at specified time delays after an

event occurs. In a sequential language, we might write the following program:

start := currenttime;
WaitUntil (start + delay,);
action,;
WaitUntil (start + delay 2 );
action 2 ;

However, this program will only work if delay2 is greater than delay1 and if action, completes before

it is time to perform action Of course, it is possible to write a more robust version of this program,

but our point is to illustrate that the semantics of sequential languages can make programming

difficult.

Sometimes, it is more convenient to say when actions should happen without explicitly ordering the

actions. In ARCTIC, timing is nearly always explicit and order is implicit. The program given above

can be rewritten in ARCTIC as follows:

[ action, @ delay,; action 2 @ delay2 ]

In this ARCTIC expression, the actions occur at the indicated delays relative to the instantiation time

of the overall expression. The semicolon in ARCTIC implies parallelism, so the order of instantiation is

determined by the values of delay and delay2, not by the lexical order of action1 and action2.

What follows is an ARCTIC specification and manual; a bottom up description of ARCTIC concepts

and constructs. The text contains many examples in the hope that these will serve as a tutorial aid.

2. Lexical Conventions
There are five classes of tokens: identifiers, keywords, constants, operators, and other separators.

White space (blanks, tabs, newlines, and comments) is ignored except as it serves to separate

otherwise adjacent identifiers, keywords, and constants. The characters -" introduce a

comment, which terminates with a newline character.

5,,
U.
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3. Identifiers
An identifier is a sequence of letters, digits, and underscores: the first character must be a letter.

U.-per and lower case letters are distinct. All characters are significant.

4. Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

and if start
causes in stop
do is sum
else length then
elseif not true
end or until
event out value
false prod

5. Constants
There are two kinds kinds of constants in ARCTIC, real and boolean scalar constants.

Real constants consist of an integer part, a decimal point, and a fraction part. The integer and

fraction parts both consist of a sequence of digits. Either part, but not both, may be missing.

There are two boolean constants: true and false.

6. Syntax Notation
Syntax is described in this document using a variant of BNF. Non-terminals are indicated in italic

type, and literal words and characters in bold type. Alternative categories are listed on separate

lines. An optional symbol has the subscript "opt."

7. Scope and Visibility
For each declaration there is a certain portion of program text called the scope of the declaration.

By definition, the scope of any entity (variable or prototype) declared by a declaration is the scope of

the declaration. An entity may be visible over a portion of its scope; there and only there the identifier

that names the entity may be used to refer to the entity. Scoping in ARCTIC is static in the sense that

given a use of an identifier it is possible by examining the text of the program to determine which

declaration is referred to by that use.

There is also a dynamic aspect to variables and their scopes. Variables and scopes are contained

......... .-.. '.' '. ,, .- "' ."-"." -':,..' .'A."."..---" ," "- .. - '-.'. .
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within prototy, j.s. which may be instantiated any number of times during the execution of an ARCTIC

program. It is even possible for there to be multiple instantiations of a prototype executing

simultaneously. Each instantiation of a prototype will have its own instances of variables (including

parameters) declared in the prototype, and each instance of a variable is unrelated to other instances

of the same variable. In other words, instantiating a prototype is equivalent to textually copying the

prototype, renaming it and all of its variables, and instantiating the derived prototype. When not

ambiguous, the phrase "an instance of the variable" will be replaced by "the variable." In particular,

it is understood that when discussing the value of a variable what really is meant is the value of a

particular instance of the variable.

There are four places where a variable declaration may occur: at the top level (an item, see section

11), as a parameter declaration (sections 9.5, 11), as a collection declaration (section 9.6), and in an

event expression (section 9.9). In the latter case, the declaration of the variable is implicit; i.e. the

syntax of Section 10 is not used. A variable declared at the top level is known as a global

variable - the scope of a global begins at the point of its declaration and ends at the lexical end of the

program. A variable declared as a prototype argument is a parameter - the scope of a parameter is

the body of the prototype in which it is declared. Each instantiation gets a new set of parameter

instances unrelated to the parameters of different instantiations of the same prototype. A variable

declared in a collection is known as a local variable -the scope of a local begins at the point of its

declaration and ends at the end of the collection in which it is declared. Locals in multiple evaluations

of the same collection are unrelated. Finally, the scope of a variable declared by an event expression

is the innermost until clause in which the event expression is lexically enclosed. Event variables are

also considered to be local variables.

ARCTIC prototypes are analogous to functions or procedures in other languages. There are two

classes of prototypes: builtin prototypes and user-defined prototypes. Builtin prototype are ,..licitly

declared at the beginning of every ARCTIC program. The scope of each builtin prototype and user-

defined prototype declaration is the entire program. Thus, user-defined prototypes may be mutually

recursive without the need for forward declarations.

An identifier is potentially visible throughout its scope - it may however be hidden by a variable of

the same name declared in an inner scope. Globals and prototypes are declared in the outermost

scope. A parameter will hide a global or prototype of the same name over the scope of the parameter.

Similarly, a local may hide a parameter, global, or prototype within the local's scope, and a local may

be hidden by another local declared in a subexpression in the scope of the first local. This is the

standard form of hiding seen in lexically scoped languages - each use of an identifier corresponds to

the innermost declaration of the identifier whose scope includes the use.

A

o , . . . . . . . , o • .1

.. ., ,. - .--. -..,-.,:..,.., ,- ..-. _ .' ;_'._ ,':' :....' :.'1.''.".,''. ".:. ","..i. '.';.".-.-.-, -':..''"."-. - -..- ,, e:
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It is an error for a name to be declared more than once as an item (e.g. as both a builtin prototype

and a global variable). Similarly, it is an error for more than one parameter of a single prototype to

have the same name, for more than one local declared in a single collection to have the same name,

and for more than one event variable declared in the same until clause to have the same name.

8. ARCTIC Types
In ARCTIC, values are typed. A variable may contain a value of any type, and a prototype may return

a value of any type. It is not possible to declare the type of a variable or prototype in ARCTIC.

ARCTIC supports five different types:

Type Example Expressions

boolean true, 4 < 10
function of boolean ramp < 0.5
real 10, 105.7-6
function of real unit, ramp*sin(1)
null []

The two ground types are boolean and real. A non-null ARCTIC value will either be a scalar of one of

the ground types or a function whose range is one of the ground types. The domain of the functional

types is the reals; the functions are normally considered to be functions of time, measured in seconds.

The origin, time = 0, is the time that the ARCTIC program begins to run.
",-.
-4.-

Functional values have three attributes: start, stop, and length. The start of a function is the

ordinate of the first point in the function. Similarly, stop is the ending time of the function. Functions

may be non-zero (true) between their start and stop times, but are by definition zero (false) outside

the range start to stop. The length attribute of a function is its start attribute subtracted from its

stop attribute. The interval between start and stop is open on the left but closed on the right.

Some constructs and builtin prototypes return the null value, which is the only member of the null

type. It is an error to use the null value as an operand of a builtin-operation or as an argument of a

builtin prototype.

9. Expressions
Most ARCTIC constructs are expressions:

expression:
variable-name
attribute-selector
builtin-operation

%
.,.;,,.,.;..:.,. .,.;.,.,...:,:..:... ... ,:....,.....,,-.,.-...--------..----,------......-.----.,----.----,-------,---.-,--,---,.-----,---,--,-.,-..,,.-.,-**-.- ,4
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assignment
application
collection
alternative -expression
until-expression
event -expression
(expression )

All expressions are evaluated in an environment where three implicit variables are defined. time. dur,

and quit. Intuitively, time and dur may be thought of as the desired start time and duration that the

result of an expression should have, if it is a function. Quit arises from until- expressions. and may be

considered the abort time of an expression. An expression that normally evaluates to a function of a

wd given duration will evaluate to a truncated version of the function if the start time plus the normal

duration exceeds quit. In this case the stop time of the function will be quit.

* The implicit variables time, dur, and quit are of type real, and they can affect the result of an

* expression in one of three ways. An implicit variable can be named, and its value used directly. A

builtin prototype may make its result dependent on these three variables, as well as its parameters.

* Finally, the variable quit may affect the value bound to a variable in an assignment statement. The

three variables are dynamically inherited from expression to sub-expression; in addition, certain

ARCTIC constructs alter these variables to modify the environment in which their sub-expressions are

evaluated.

9.1. Variable Names

variable-name:
identifier

A variable name. used in an expression context, evaluates to an ARCTIC value. Each variable has a

value. In ARCTIC the value of a variable does not change over the course of a program. 1,2 Values are

* normally bound to variables by assignment statements, and only one assignment per variable is

* allowed. If the variable has a value which is a function, the value of the function at a particular time

may be used before the value of the function at a later time has been calculated.

Thus, the result of evaluating a variable name is the value the variable denotes. This value is the

value bound to the variable name with the same declaration.

1The word 'variable' is perhaps a misnomer, but it does have many of the correct connotations so we adopt it here.

2A mentioned in Section 7, we are using the term 'a variable" to mean "an instance of a variable.

-:-% -- - - - - - - . . .-;.r.~~~~- I~ ~ : *-
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9.2. Attribute Selectors

attribute-selector:
variable-name . start
variable-name . stop
variable-name, length

The variable name must denote a value which is a function. The result is a real number, the

requested attribute as described in Section 8. It may be possible to determine an attribute of a

variable by examining the assignments to the variable, without necessarily determining the value of

the variable.

9.3. Builtin Operations

builtin-operation:
expression + expression
expression - expression
expression expression
expression / expression
- expression
expression = expression
expression > expression
expression < = expression
expression > = expression
expression < expression
expression > expression
expression or expression
expression and expression
not expression
expression - expression
expression - - expression
expression @ expression
expression @@ expression

Builtin operations include the arithmetic operations, comparisons, logical operations, and time

operations. The precedence of the operators is given from lowest to highest by the following list, with

operators on the same line having the same precedence. p
- -- @@@
or
and
not
= 0 <= >= ( >

- (unary minus)

jw ,. ..-._w-. ',K , .. ' .'k '. ., -." ...+ .. ..- .. .-., -. '. '. .. '. +' .'.-, .'. .' .'. .. '. -, .. '.. .. '.. '. ... .'. -... ... .. - . ... ",. .. ..' , '.
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9.3.1. Arithmetic Operations: + - " /

Addition, subtraction. and multiplication are defined over real scalars and real functions. If both

operands are scalars the result is a scalar; otherwise the result is a function. If one operand is a

scalar and the other is a function, the scalar in converted into a constant function whose start and

stop attribute are those of the other operand. The start attribute of the result is the minimum of the

start attributes of the operands, and the stop attribute of the result is the maximum of the stop

attributes of the operands. Division is only defined on scalar operands. The arithmetic negation

operation - expression is equivalent to 0 - expression. The result of an arithmetic operation

approximates the corresponding operation on real numbers or real functions. See figure 9-1 for some

examples of arithmetic operations on real functions.
a

0 2

-1

b

.0 '2

" -1

Figure9-1: Example arithmetic expressions
'

9.3.2. Relational Operations: = > <= >z < >
The relational operators all take real scalars or real functions as operands. In addition, equality and

00

inequality ( and 0) are defined over boolean scalars and functions. The same conversion rule as in

.* the arithmetic operations apply when one operand is a scalar and the other is a function. The start

and stop of the result are also determined as in arithmetic operations. If both operands are scalars,

the result is a boolean scalar: otherwise the result is a boolean function. Conceptually, the result of

comparing two functions will be at every point the result of comparing the values of the two functions

at the point. An implementation must take into account the fact that equality may hold only at one

.3

. . . . . . . .... .. . . . . . . . . . . . . . . . . . S. # * "." ."p5* = q
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point, for example in the expression ramp = 0.5 (ramp is a builtin function that increases linearly from

0 to 1 on the interval (0, 1] as shown in Figure 9-3). In such a case, the implementations may

approximate the resulting boolean function with one that is true (or false) on a very small interval

beginning very near the point in question. Section 9.8 describes and illustrates another related

constraint on implementations. Figure 9-2 shows some examples of relational operations on real

functions.
a

b

0 1 2

ue a= b

I i2
10 ~112

true a>b

false F -.
I '2,•0 i1 i

Figure 9-2: Example relational expressions

9.3.3. Logical Operations: and or not

The logical operators and and or take boolean scalars or functions as operands and result in

boolean scalars or functions. Analogous to arithmetic operations, if both operands are scalars, the

result is a scalar; otherwise the scalar argument is converted to a function, and the result is a

function. At each point, the result of and (or) of functional operands is the and (or) of the values of

the functions at the point. The start and stop of the result are determined as in arithmetic

operations.

The logical operator not applied to a boolean scalar results in the logical complement of the scalar.

If the operand is a boolean function, then the result has the same start and stop attributes as the

operand. Between start and stop, the value at each point of the result is the complement of the

operand at the same point.
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9,3.4. Time Operations: - -@ @@

The time operations modify the implicit variables time and dur. There are four time operations: @
(read "shift") produces a time shift relative to the current time. @@ (read "at') produces an

absolute time shift, i.e. a time shift relative to time zero, the starting time of the program. - (read

"stretch") produces an increase in duration relative to the current duration. Finally, - - (read
"stretch stretch") produces an absolute duration, independent of the current duration. These are

now explained in detail.

The operator @ affects the time variable. Assume time = to and dur =do* Then evaluating the

expression

expr @ ti

is the same as evaluating expr in an environment in which time = to + tid and dur = do* The

effect is to evaluate expr t1 units in the future, where the time unit is the current duration.

Similarly, evaluating

expr @@ ti

is the same as evaluating expr where time = ti and dur = do* The effect is to evaluate expr at

absolute time ti seconds.

Evaluating

expr - d

is the same as evaluating expr where time = to and du r = do di. Lastly, evaluating

expr -- d

4is the same as evaluating expr at time = to and dur = di,

Figure 9-3 gives some examples of time operations. It is important to notice that time operations do

not operate on the result of an expression by applying some transformation. Instead, time operations

serve to modify the environment in which expressions are evaluated.

9.4. Assignment Operators

assignment:
variable-name :=expression
variable-name + =expression
variable-name - =expression
variable-name *=expression

There are a number of assignment operators, all of which group right to left. The result of

evaluating an assignment is the right operand, even for the cumulative operators + :-,and

we "



ramp

ram Ca,.

12 13 14

ramp -~ 2 ,

2 3 111 1ramp - 2

ramp -@ 12

012 134

I 2 13 14
ramp - 21.

12 3 1
ramp @@- 15

2 l13214
Figure 9-3: Example time operations
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A variable on the left side of a simple assignment (:)must have been declared value or out. The

value of the variable is the result of evaluating the right side expression. (There is an exception to this

rule, see the paragraph reguarding quit, below). Assigning a value to an out parameter has the

effect of binding that value to the corresponding actual parameter (which must be declared value or

out),

A variable bound using +. and/or -=must have been declared sum or out sum. The value of

the variable is the accumulation of the right sides of all the assignments to this variable that have been

evaluated (over the course of the entire program). (But see the discussion of quit, below). Values

assigned using +. are accumulated by addition; those using - are accumulated by subtraction,

the initial value of the accumulator is zero.

Similarly, a variable assigned using * must have been declared prod or out prod and is

accumulated in the same manner as sum variables except that multiplication is used, and the initial

value is unity between its start and stop attributes. Let us call all instances of expressions appearing

on the right hand side of :assignments to a particular variable its factors. Then the start (stop)
attribute of the variable must be the minimum (maximum) of the start (stop) attribute of each factor.

The implicit variable quit is normally positive infinity, and does not affect assignments. However,

when quit has a finite value, its effect is this: It a function value to be assigned (using any assignment

operator) has a stop attribute greater than quit, the value assigned will be the portion of the function
value from its start to quit (i.e. the assigned value will have the value of quit as its stop attribute).
On its interval, the assigned value has the same value as the function value before the truncation.

If assignments to a variable and uses of a variable conceptually occur in parallel, ARCTic arranges

that all assignments occur before any uses are evaluated. It is an error if there is no ordering of
evaluation that allows assignments to occur before uses.

Figure 9-4 shows the value of the variables in the following example.

SUM X;
value a, b;
a :i=-amp;
x += a;
b :=unit @ 1;
x +=b
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Figure 9-4: Example sum assignment operation

9.5. Applications

Application is the collective term in ARCTIC that refers to the instantiation of a prototype or the

evaluation of a function value at a point.

application:
identifier
identifier (.expressions

optidentifier ( expressionsopt ) (expressionso t ) '
expressions:,

expression

expression, expressions

An application with no parameter list is syntactically equivalent to a variable name, just an identifier.

The identifier is an instantiation of a prototype with no parameters if the identifier is visibly declared to

be a prototype. An identifier followed by a parenthesized list of expressions may either be an

instantiation or the evaluation of a function at a point. These are distinguished by the (innermost)

declaration for the identifier. If and only if the (innermost) declaration is a prototype declaration (or

there is no declaration but the identifier names a builtin prototype) then the application is an

instantiation. The form of application with the two parenthesized expression lists must be an

instantiation of a prototype. The result of this instantiation must be a function, which is evaluated at a

point.

Instantiations are evaluated as follows: The actual parameters in the call are matched positionally

with the formal parameters of the prototype declaration. For user-defined prototypes, it is an error for

......................... .-. -.- -
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there to be a different number of actual and formal parameters. However, somne builtin prototypes

44 may take a variable number of arguments. After the matching. all actual parameters that correspond
% to in parameters are evaluated in the environment of the caller. These are bound to their respective

formal parameters and the body of the prototype is evaluated with the same time. dur, and quit as
the caller. The result of the instantiation is the result of the evaluation of the body. The values of all

out parameters are bound to their corresponding actual parameters. It is an error if the actual

parameter corresponding to a formal parameter is not a variable declared value or out. Notice that if

an actual parameter is paired with a formal out parameter. then there can be no other assignments to

the actual.

An in formal parameter is declared using the in declaration form. The corresponding actual

parameter may be any expression. As stated, that expression is evaluated and bound to the formal

(as if with :)when the prototype is instantiated.

An out formal parameter may be decl ared out, out sum, or out prod. (Out parameters are not

allowed in certain prototype declarations, see Section 10). The corresponding actual parameter must

* be a variable that is capable of being bound using :,+ =, or * respectively.3 Upon completion of

the instantiation, the value of each formal is bound to its corresponding actual using the appropriate

assignment operator.

z An application may also be the evaluation of a function at a point. The first argument is an
expression which gives the ordinate at which the value of the function is desired. If the ordinate is

outside the interval of the function, the result of the evaluation is zero. It the function is continuous at
the ordinate, the value of the application is the value of the function at the ordinate. If the function
has a jump discontinuity at the ordinate, the result of the evaluating is the value of the function,
approaching the discontinuity from the left. This is consistent with the view that functions are defined
on intervals open to the left and closed to the right.

The result of evaluating a function at a discontinuity may be modified by a second argument to the

evaluation. If the value of the second argument is negative, the application results in the value of the
* function approaching from the left. if positive, the ordinate is approached from the right. If zero, it is

an error if the ordinate refers to a discontinuity.

3At the time of this writing, other parameter binding rules are under consideration For example. it might be useful to allow
out sum formals to be matched with value actuals, or to allow out formals to be matched with sum actuais. While evaluating
the instantiation, the formal parameter would be bound using its appropriate assignment operator. and upon completion of the
instantiation the value of the formal would be bound to the actual using the appropriate assignment operator for the actual.
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9.6. Collections

There are two forms of collections: parallel and sequential.

collection:
parallel
sequential]

parallel:
expression -or-declarationop
expression-or-declarationot ; parallel

sequential:
expression -or-declaration .
expression -or-declarationo ; j sequential

expression -or-declaration:
expression
variable-declaration

A collection is a sequence of expressions and variable declarations, separated by vertical bars or

semicolons. In the degenerate case where there are no expressions in the collection, the result of the

collection is null. If there is only one expression in the collection, the result of the collection is the

result of evaluating the one expression.

Each expression in a parallel collection is evaluated with the same time, dur, and quit as the

collection itself. The result of the collection is the result of the first expression in the collection.

For a sequential collection, the first expression is evaluated with the same time, dur, and quit as

the collection itself. Each subsequent expression is evaluated with the same dur and quit as the

collection, but with time equal to the stop attribute of the previous expression. All expressions in a

sequential collection must evaluate to functions. The result of a sequential collection is the sum of

the results of the constituent expressions. See figure 9-5 for some examples of collections.

Any variables declared in a collection are local to that collection. The only allowable declarations in

a collection are value, sum, and prod.

9.7. Alternative Expressions

alternative-expression:
if expression then expression elseif-parto t else-partoot

elseif -part:
elseif-clause
elseif-clause elseif -part

elseif -clause:"

%%
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sum X; [ x + = ramp x + = cos(1)]

0

value x; x = ramp I cos(l) 1;
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Figure 9-5: Example collections (x is plotted)

elseif expression then expression

else-part:
else expression

An alternative-expression is evaluated as follows: The expression specified after the if, and any

expressions specified after elseif, are evaluated up to and including the first expression whose value

is true (treating a final else as elseif true then) and the corresponding then expression is

evaluated. The result of this evaluation becomes the result of the alternative-expression. If none of

*, the expressions after if or elseif evaluate to true and there is no else part. the result of the

alternative-expression is null. It is an error if one of the expressions after if or elseif evaluates to

something other than a boolean scalar.

Examples
.5

5' if vibrato then freq += sin(6) * 0.3;

if AlarmEnabled then RingBell else BlinkLight;

S,

.
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9.8. Until Expressions p

until-expression:
do expression until-clauses

until-clauses:
until-clause ON
until-clause until-clauses

until-clause:

until expression then expression

Intuitively, the intent of an until-expression is simple. The expression after the do is evaluated until

one of the expressions after until becomes true, then the expressions after the corresponding then

clause is evaluated. The result is the sum of the evaluated do and then expressions. Also, any

assignments that happen while evaluating the do expressions are abruptly truncated when the first

until expression becomes true.

Abstractly, an until-expression is evalpated in a rather roundabout manner. The first expression

after until in each until clause is evaluated, and each expression must be a boolean function. If none

of the functions are true after time, the result of the until-expression is the result of evaluating the

expression after the do, using the environment of the until.
-%

Otherwise, there must be a minimum time trn at which some function becomes true after time.

The expression after do is evaluated in the same environment (time and dur) as the until clause

except quit is tmin This result is truncated, so that its stop attribute is at most the value of quit. This

truncated value is added to the result of evaluating the then part of the until clause that gave rise to

the minimum time. When evaluating the expression after this then, time is set to tmin, while dur and

quit are that of the until expression.

Figure 9-6 shows the value of the following expression.

do x [ ramp + sin(2) ] - 3
until x > 1.5
then (unit * x(time)) -- (3 - time);

This expression computes a function of length 3 in which the first part is terminates as soon as its

value reaches 1.5. The functions is then given a constant value of 1.5 until time 3.

9.9. Event Expressions

event-expression:
event application

Informally, an event expression denotes a demon that waits for the instantiation of a prototype.

% -
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0 1 2 3
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Figure 9-6: Example of until

When the prototype is instantiated, the demon becomes true and event variables take on values of

parameters passed to the instances of the prototype. This is something like an Ada rendezvous entry

or an exception handler.

An event-expression can only appear in the conditional part of an until clause. In an event

expression, the identifier of the application-must be the name of a prototype. The expressions of the

application must all be legal variable names, as if the prototype required all out parameters. Although

the syntax is that of an application, the parameters are all formal arguments called event variables,

which are declared by the event-expression. The scope of these variables are the innermost until

clause in which the event expression is lexically enclosed. The actual parameters of every

instantiation of the prototype must be scalars. An event-expression results in a boolean function that

is true only at the instantaneous times that the named prototype has been instantiated. At these

times, the event variables will be bound to values of the corresponding actual parameters.

A semantic problem arises if two instantiations of a prototype occur simultaneously with different

actual parameters and there is a corresponding event expression. What values do the event variables

take on? We would like to avoid this problem by assuming no two events happen at the same time,

but this raises more problems than it solves. Instead, the problem is solved by saying that a

conditional containing an event expression must be evaluated once for each instance of the

corresponding prototype, even if two or more instances are concurrent. In implementations on a

sequential processor, instantiations will naturally be ordered even when they are specified to occur

simultaneously, so the problem is likely to exist only in the formal model.

Example

This example illustrates the use of an until expression as an exceptional condition handler. The

prototype Operate is instantiated with a quit time corresponding to the time of the first instantiation of

StopRequest(Emergency) or StopRequest(Normal). Depending on the value of the argument to
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StopRequest, either EmergencyShutdown or NormalShutdown is instantiated.

do Operate
until event StopRequest(reason) and reason = Emergency

then EmergencyShutdown;
until event StopRequest(reason) and reason = Normal

then NormalShutdown; r

V

10. Declarations
declaration:

prototype-declaration
variable-declaration

There are two kinds of declarations: prototype declarations and variable declarations. Prototype

declarations define new prototypes. Variable declarations define new variables.

prototype-declaration:
identifier formals is expression
identifier formalsop t causes expressionopt
identifier formals in causes expressionopt
identifier formalsopt causes out

formals:
(formal-list )

formal-list:
variable-declaration
variable-declaration ; formal-list

variable -declaration:
in identifier-list

out identifier-list
out sum identifier-list
out prod identifier-list
sum identifier-list
prod identifier-list
value identifier-list %,4.

identifier-list:
identifier
identifier , identifier-list

There are four forms of prototype declarations. The first two (is and causes) are semantically

identical in all but one respect. An instantiation of the is form is equivalent to the result of evaluating

its body expressions with each actual parameter bound to its corresponding formal. The cause form

also causes the evaluation of its body expressions as in the is form, but if the result if a scalar, null is

=%
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returned and ifteresult is a function the result has the same start and stop attributes but the

function value is undefined. Thus. the is form is used when a value is to be returned. and the cause

form is used when no meaningful value is to be returned. The start and stop attributes are returned

for use in constructs like the sequence.

Parameter passing is accomplished as defined in Section 9.5. Because of the single- assignment

rule, it is an error for two out formal parameters to be aliases for the same actual. In, out, out sum,

and out prod declarations are allowed for the formal parameters of these first two forms of prototype

declarations.

The third form (in causes) is equivalent to the cause form except that it can be instantiated by an

external event. It is only allowed to have in parameters. The mapping of an external event to a

particular input prototype name is undefined in the language. When such a prototype is instantiated

* from an external event, dur is 1, quit is positive infinity, and start is the time at which the event

* occurred.

The fourth form (causes out) defines an external event. It is only allowed to have in parameters.

Instantiating a prototype of this form causes the external event to occur at time time. The external

* event has access to any actual parameters as well as the values of the implicit parameters time, dur,

and quit.

There are seven forms of variable declarations. A variable declaration may occur in one of three

contexts: as an item (Section 11) in which case the variable is global, in a prototype declarations

(Section 10) in which case the variable is a parameter, and in a collection (Section 9.6) in which case

the variable is local. Not all five forms are allowed in all three contexts - see the section noted for the

* restrictions of each context. The scope and visibility of variables in each context is discussed in

Section 7. The various kinds of assignment to each variable declaration for is discussed is Sections

9.4.

11. Programs
The constructs group into two main classes, expressions and declarations.

arctic-program:

items

items:
item
item items

item:

V . . . . . . .
ft~ -Y
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expression;
declaration

A program is a list of declarations and expressions. An ARCTIC program may have at most one

expression at the top level. This expression, if given, is evaluated at time = 0 and du r = 1 . In any

case, prototypes instantiated by external events are evaluated. The result of an ARCTIC program

consists of the values of all the global out variables together with any external events instantiated by

the ARCTIC program.

All other items are declarations. Prototype declarations have been discussed in Section 10. Items

that are variable declarations declare global variables. All seven forms of variable declarations are

allowed for global variables. Globals declared in are inputs to the ARCTIC program: they correspond

to external (physical) inputs. Globals declared out, out sum, and out prod are the outputs of the

ARCTIC program; they correspond to external outputs. Globals declared value, sum, and prod do

not refer to inputs or outputs of the ARCTIC program. The method by which global inputs and outputs

are assigned to actual physical inputs and outputs is undefined in the language.

Example

This program specifies a simple music synthesizer. The input consists of instantiations of the note

prototype, whose parameter is the desired frequency. The output consists of two functions,
frequency and amplitude, that control the instantaneous frequency and amplitude of an oscillator.

sum amp, f req;
out amplitude, frequency;

note(in pitch) inputcauses[
amp += [ ramp -0.1 I(1 -ramp) -0.9 ]
freq += unit *pitch;

[amplitude :=amp; frequency :=freq 1

12. Implementation Considerations
Because Arctic programs ordinarily describe parallel activities and manipulate data structures

(functions) that change over time, there is no simple translation from an Arctic program into a
conventional uniprocessor instruction set. Implementation of Arctic is still an area of research, but a
discussion of implementation strategies is warranted nevertheless. An implementation can be

categorized with respect to several orthogonal characteristics or dimensions. The first of these is
whether or not the implementation computes entire functions at a time or computes functions
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incrementally in time order. The second characteristic is the representation of functions, either with

splines or in sampled form. The third characteristic is the manner in which data dependencies are

handled. Each of these characteristics is discussed in greater detail below.

12.1. Evaluation Order

Let us start with the first characteristic. Our interpreter has the property that it computes one entire

function as the value of an Arctic expression or subexpression before going on to the next. This
implies that the implementation cannot operate in real time because it does not use on-line methods.
For example, to compute the result of the following expression:

(ramp + a) *b

the interpreter first constructs a representation for ramp. Then it evaluates a and adds the result to
* ramp. This intermediate result is then added to the value of b to form the result. Note that the entire

futures of a and b must be known before any of the result can be computed. Therefore, the
interpreter requires that inputs are presented in advance. Output functions are computed one at a

time and plotted or written to a file.

The second approach is essential to achieve real-time execution. In this approach, all functions are

computed in a quasi-parallel fashion. That is, the values of all functions at time t are computed before
any values are computed at times greater than t. For example, to compute the value of the expression

* given above at time t, we could compute
(ramp(t) -- a(0)) * b(t).

* This would only compute one point of the resulting function, so the implementation must iterate the

* computation, interleaving it with the computation of other functions.

12.2. Function Representation
The second characteristic of an implementation is its representation of functions. Our interpreter

* uses piece-wise linear approximations in all of its computations. The functions are stored as linked
lists of x-y coordinate pairs, where each pair represents a point of inflection. This provides an
efficient representation where functions are often simple ones like ramp and unit, and computation

* time is linear in the number of inflection points computed. Another advantage of this representation is
* that very simple hardware (basically just an adder and two registers) can be used to interpolate
* between the inflection points to produce a smoothly changing function in real time.

p A real-time implementation of Arctic using this representation would be difficult because in order to
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compute the value of a function at time t, one must have the coordinates of the first points of inflection

before and after t. For functions produced by prototypes like ramp. the future is known, but for

real-time input functions, the future is not known. One can. however, sample inputs sufficiently often

to obtain a good approximation in piece-wise linear form. The implementation then becomes event-

driven, where events are the computation of points of inflection for various functions.

Another approach is to represent functions as a sequence of samples. This representation is almost

universal in the field of digital signal processing and has the desirable property that the
representation uses a constant amount of storage per unit of time. Furthermore, most operations like

function addition or multiplication take a constant amount of computation time per unit of function

time, facilitating a real-time implementation. If only the current value of a function is needed at any
given time, then functions can be represented by using a single scalar storage cell whose content is

updated every sample period.

12.3. Data Dependencies

The final important characteristic of an implementation is the manner in which data dependencies
are handled. Our interpreter assumes that the order of execution can be statically determined,
Furthermore, it assumes that a prototype can be evaluated in full before a prototype instantiated in

parallel is evaluated. The following example illustrates how this implementation can fail:

value x, y;

A is [y; x := ramp];

B is y x]

[A; B ]

The interpreter must either evaluate A first, in which case y will be undefined, or it must evaluate B
first, in which case x will be undefined.

It is also possible to deal with dependencies dynamically. Think of each assignment statement as a

process that produces values that are in turn used by other processes. These processes must be

executed in an order such that values are defined before they are used. The order can be determined
by a topological sort or by synchronization primitives, but neither of these methods is ideal. The

problem with topological sorts is that the sort must be performed each time a new process is created,

corresponding to the instantiation of a new assignment expression. On the other hand,

synchronization mechanisms add considerable overhead when performed at such a fine granularity

of computation. Special hardware, as in data-flow processors, could reduce this synchronization

% %
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overhead considerably.

13. Conclusions
The design and ongoing implementation of ARCTIC has been a useful and illuminating task. Beyond

the routine applications of ARCTIC as a tool to compute functions of time, the language has given us a
way to formalize the notion of behavior and response. It has also provided a new way to think about

real-time computation.

As a practical language, ARCTIC has found many applications in the production of computer music

and other digital audio sounds. ARCTIC is used to generate control functions for parameters such as
amplitude and frequency. These functions are then used to control software or hardware digital
oscillators which produce sound. ARCTIC has been used to generated sounds ranging from the
simulation of a music box in a musical composition to the generation of the international standard for
nuclear power plant alarm signals proposed by Westinghouse.

ARCTIC has also been useful as a conceptual tool. Behaviors that are difficult to specify verbally or

in sequential languages are often easy to program in ARCTIC. The explicit specification of timing in
ARCTIC tends to make programs easy to read, write, and modify. ARCTIC also leads to modular
program construction. In particular, complex computations that must take place simultaneously in
real-time can be specified and tested separately. They can then be combined using arithmetic

operators or a collection construct. This sort of modular program construction is often difficult in

N sequential languages. Another attraction of ARCTIC has been that computed behaviors can be plotted
and studied visually. This can be of enormous help in debugging and understanding programs, but it
is not a usual feature of sequential programming languages.

Finally, ARCTIC has led us to think about alternative paradigms for implementing real-time programs.

While we do not have a real-time implementation at this point, some of the techniques developed for
ARCTIC have already been used to advantage in complex real-time program for controlling a signal

processor. We believe that we will be able to run ARCTIC programs in real-time using similar

techniques, and that ARCTIC will then become a practical language for a large class of real-time

systems.
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I. Builtin Prototypes
The following is an alphabetized list of prototypes built into an interpretive, non-real-time

implementation of ARCTIC. Each prototype name is followed by a short description of its operation.

Most prototypes are 'normal' in the sense that they evaluate their arguments as described in section

9.5, execute, and return a value and possibly have side effects. There are a few 'special' prototypes

that either do not evaluate their arguments or evaluate them more than once. If a prototype is special,

it will be noted in its description. Some prototypes affect the operations of the interpreter itself; these

too will be noted.

cos(frequency, initialphase)
returns a cosine function on the interval (time, time + dur]. frequency gives the
frequency of the cosine in Hertz, and initialphase gives the initial phase of the
cosine, in degrees. The initialphase argument is optional, and defaults to zero.

error(argl, ... ) enters the interpreter debugger. In the debugger the values of the arguments to
error and other variables may be examined; type '?' for help.

exit causes the interpreter to exit. The currently running ARCTIC program is

terminated abruptly, and control is returned to the shell.

exp(f) returns et . f may be a real scalar or a real function.

extract(f, btime, etime)
returns the function f on the interval (btime, etime]. The resultant function equals
f on the intersection of (f.start, f.stop] and (btime, etime] and is zero elsewhere.

fnorm(f) returns (f. fmin) / (fmax - fmin). f must be a real function, and fmax and fmin are
the maximum and minimum of the function, respectively. If fmax equals fmin, then
the zero valued function of the interval (f.start, f.stop) is returned.

fullnorm(f) returns fnorm(tnorm(f)).

int(s) returns the integer part'of s, truncating toward zero.

interp(fl, f2, m) returns the result of interpolating f1 and f2 with interpolation factor m. fl and f2
must be real functions: furthermore, they must be piecewise linear functions (see
pwl) with the same number of inflection points. For each (xl,yl) and (x2,y2) that
are corresponding points in a fl and f2, the result will have a point
(xl °(1 - m) + x2*m, yl "(1 - m) + y2"m). Note that extrapolation may be achieved
with m less than zero or greater than one.

irnd(s) returns an equally distributed integral random number between zero and s - 1
inclusive.

ln(f) returns the natural log of f. f may be a real number or a real function.

max(f) returns the maximum abscissa of the real function f.
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min(f) returns the minimum abscissa of the real function f.

norm(f) returns f shifted and stretched so that the result is defined on the interval (time,
time + dur f.ength).

osc(amp, freq, wave, voice, nvoices)
is the oscillator allocation function. First, a search is made for an integer N with
the following properties: 1) N has remainder voice when divided by nvoices, and
2) the time interval of the values of the global variable ampN does not intersect the
interval (amp.start, amp.stop]. Given N, the expression [ ampN + = amp; freqN
+ = freq: waveN + = wave ] is performed. As many ampN, freqN, and waveN
function must be declared as are necessary. It is an error if no N can be found.

play causes the output file to be written, and the shell command "p!ay.sh file.out" to be
executed.

plot(f1, f2, ... ) does not evaluate its arguments. During interactive mode, the variables fl, f2,
are plotted after each interactive expression is evaluated. Each fi is plotted only if
it is a function of time.

print(al, a2, ... ) returns al, with the side effect of the interpreter printing al, a2...

proto(f) returns f shifted and stretched so as to be defined on the interval (f.start + time,
f.start + time + f.length ° dur].

pwl(xl,yl, x2,y2, ... , xn,yn)
returns a piecewise linear function constructed by connecting the points (0,0),
(xl,yl), (x2,y2), ... (xn,yn), (xn,0) and then stretching and shifting the function to
lie on the interval (time, time + dur]. A missing yn is taken to be zero.

ramp returns pwl(1,1).

randomize causes the random number generator to be given a random seed, and returns
null.

repeat(expr, n) returns [ expr I expr I ... j expr ] where there are n expr's in the above collection.
-This is a special form; expr is evaluated n times.

md returns a random number between zero and one.

sin(frequency, initialphase)
returns cos(frequency, initialphase - 90). The initialphase argument is optional,
and defaults to zero.

tnorm(f) returns f shifted and stretched so that the result is defined on the interval (time,
*! time + dur].

undef causes the values of all global variables to be forgotten.

unit returns pwl(0,1, 1,1).
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unplot(fl, f2, .. ) does not evaluate its arguments. During interactive mode. the variables fl1, f2,
are no longer plotted after each interactive expression is evaluated.

zero returns pwl(1 ,O).
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II. Interpreter Implementation Details and Limitations
There is a non-real-time interpreter of ARCTIC available on UNIX. This implementation currently

runs on both a DEC VAX (running a CMU-modified 4.2bsd) and a SUN workstation (running 42bsd

with modifications for Andrew). The interpreter is written in C and it is expected that it will be portable

to most any computer system with a C compiler. The interpreter has the ability to graphically display

functions of time if there is hardware to support this.

11.1. Using the Interpreter

The interpreter is invoked with the command:

arctic [ options ] [ file.a ]

If a file (whose name must end in '.a') is specified, that file is read for the ARCTIC program (see Section

11). If it exists, the file whose name is formed by changing to '.a' suffix to '.in' is read to get the values

of global in variables as well as input events (see Section 11.3).

If the file contains an item that is an expression, that expression is evaluated (as well as any

prototypes instantiated by extern events in the '.in' file). The result of the expression is printed and, if

possible, plotted. If there are any global out declarations or prototypes defined using causes out, a

'.out' file is written. The interpreter then exits.

If no input file is specified, or if file.a does not contain an item that is an expression, the interpreter

reads the '.in' file and then prompts for items. Each item has its effect as soon as it is entered.

Variable and prototype declarations hide previous global declarations of the same identifier, and

expressions are evaluated immediately.

The following command line options effect the operation of the interpreter.

-v turns on verbose mode. The most noticeable effect of this option is that when
printing functions of time all inflection points are listed, rather than just the start
and stop attributes.

-p turns off plotting mode. This options tells the interpreter not to bother to plot the
results of top-level expressions. This mode is useful for the common 'batch mode'

, case where, given the '.a' and '.in' files, one is not interested in seeing the result of
the expression item, but only the '.out' file.

When the interpreter encounters an error during the execution of an ARCTIC program, it enters a

debugging mode. In this mode the user can, among other things, examine the values of variables and

parameters. Type '?' for help in this mode.

- .% , 60 .. .... .
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11.2. Restrictions and Deviations

The interpreter does not implement exactly the language specified in this manual. This section

describes the differences between the implementation and specifications. The differences occur in

due to the treatment of two issues: function representation and evaluation ordering.

The interpreter represents functions of time as piecewise-lnear functions. A real function is

approximated by a sequence of points ordered by non-decreasing ordinate. Jump discontinuities are

represented by two successive points with the same ordinate and different abscissa. The value of a

function at an ordinate between (the ordinates of) two successive points is the result of linear

interpolation between the two enclosing points. The value of a function at a jump discontinuity is

generally the value obtain from approaching the discontinuity from the left, though there are ways

(see Section 9.5) to get the value approaching from the right. The value of a function outside the

endpoints of the function (typically the start and stop attributes of the function) is defined to be zero.

This implementation of ARCTIC does not per se restrict the language. What does restrict the ..,

language is the interpreter's strategy of evaluating a function of time all at once. This prevents the

value of function at some time from depending on its value at an earlier time. For example the

interpreter is unable to evaluate the expression in Figure 9-6 since the value of x at later times is

dependent of the values of x at an earlier time. (In this case, due to the semantics of until, the stop

attribute of x is exactly the point where x first has value greater than 1.5. The interpreter needs x to

compute x, and fails.) The fragment that actually generated the picture is:

do d until d > 1.5 then (unit d(time)) (3-time);
d ( ramp + sin(2) ) ~ 3;

The limitations of the interpreter's function representation and evaluation order have already been

discussed in Section 12.

11.3. Input/Output File Formats

The '.in' and '.out' files are ascii files with a rigid format. These files may contain two kinds of data:

(piecewise linear) functions of time, and discrete events. Each kind, function or event, has the

following form:
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function-or-prototype-name
datum-I
datuin-2

datum-n
a blank line

In the case of functions, each datum is a pair of numbers, representing the ordinate and abscissa of
the startpoint and/or endpoint of each segment in a piecewise-linear function. The ordinates of the

points are in non-decreasing order, and by convention the abscissa of the first and last points should

be zero. The ordinate of the first and last points are the start and stop attributes of the function,

respectively.

In the case of discrete events, each datum represents one event. Each datum contains at least one

number. The first number in each datum is the instantiation time of the event that the datum
represents. Remaining numbers are the parameters to the instantiation of the event. These actual

parameters are mapped to the formal parameters of the named parameters by position. In this

implementation all input and output events are required to have only real scalar in parameters.

11.4. Porting Considerations

Porting ARCTIC to a new environment is a straightforward task. First, the file 'machdep.h' should be

modified to reflect the characteristics of the new environment. Next, a set of low-level plotting

routines must be written it the graphical display of the interpreter is to function.

11.4.1. machdep.h

The only non-obvious issue in porting this file is the definitions of the two quantities PLUSINF and
NEGINF. PLUSINF and NEGINF are double precision constants that must be larger (in absolute

value) than any quantity likely to be encountered in the interpreter. In particular, they must be larger

than the maximum time ever to be encountered. Also, it must be possible to add and subtract any

plausible quantity to PLUSINF and NEGINF without overflow occurring. This is because additions
involving these arise in the denominator of interpolation calculations whose numerator is zero. In

these case the result must be zero, and no overflow should occur.

11.4.2. Graphics

Porting the ARCTIC graphics is also straightforward. The interpreter routine b plotterm() is called to

plot the desired functions on the screen. It in turn calls the following functions, all of which use

integers as coordinates:

PlotGetCorners(llx, Ily, urx, ury) int "llx, "Ily, °urx, "ury;
The parameters are pointers to integers which are set to the x and y coordinptes
of the lower left and upper right of the screen respectively The i.terpreter
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depends on the fact that *llx < *urx and *lly < *ury. This is true for the normal
Cartesian plane, but for many plotting devices the upper left corner is the origin so
that, at least at first glance, *Ily > *ury. When this happens it is easiest to set *ury
to zero and "lly to the negation of the size of the y dimension. Then all the
routines PlotLine, PlotPoint, and PlotText need do is negate the y coordinates
before they are used.

PlotGetMiscParameters(interfunctiondistance, charx, chary) int *interfunctiondistance, *charx,
*chary;
Sets "charx to the average width of a character, *chary to the average height, and
*interfunctiondistance to a value that makes a pleasing break between functions,
usually between 1 * *chary and 3 * *chary.

PlotStartDraw0 is called just before a new plot is to be made. It should clear the screen in
preparation for the new plot.

PlotLine(fromX, fromY, toX, toY) int fromX, fromY, toX, toY;
This function should draw a line from (fromX, fromY) to (toX, toY). Remember to
negate fromY and toY if you played the negation game in PlotGetCornerso.

PlotPoint(X, Y) int X, Y;
plots a point at the passed coordinate. Again, remember to negate Y if necessary.

PlotText(X, Y, text) int X, Y; char *text;
prints the passed string so that the lower left corner of the first character is at (X,
Y). Again, remember to negate Y if need be.

PlotEndDrawo is called afterthe new plot is complete. This routine should do things like cause
the screen to be updated if, for example, the previous plot routines have been
buffering up commands without redrawing.

PlotTerminateo is called just before the ARCTIC interpreter exits. It should do any major cleanup
required (like the removal of temporary files).

The function b-plotterm0 may be invoked when the screen needs to be refreshed. If, for example,

the size of the plotting window is changed, all that needs to be done is to call bplot_termo, which will

call PlotGetCorners0 to get the size of the new window and redisplay.

.,,

.4
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III. Some Examples
This appendix shows an example session using the ARCTIC interpreter on a SUN workstation.

Typed input is shown in boldface, output is shown in italics or in graphical form, and comments on the

session are shown in the normal typeface.

In the first example, we will use ARCTIC to control a single sine-wave oscillator. The oscillator is

controlled by two functions of time: ampO controls the amplitude of the oscillator and should be

between zero and one hundred. freqO controls the frequency of the oscillator. The value is the

number of semitones above four octaves below middle C (i.e. 48 is middle C, and 57 is A 440Hz).

The file ampfreq.a contains the declarations of ampO and freqO.

% cat ampfreq.a
out ampO, freqO;
% arctic ampfreq.a

Now that the interpreter in invoked we execute some example expressions.

arctic> ramp;
result: = [0.0000, 1.0000]

result.61
0.8
0.61
0.4

0

arctic) [ ramp I unit I cos(2)- 2;
A result: = [0.0000, 4.0000)

., result

-1

We can use ARCTIC to generate a two second 440Hz sine wave and then listen to it.

S..o

5.
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arctic> ampO:: 50 * unit - 2;
Reinitializing ampO
result : = [ 0. 0000, 2.0000]
arctic> freqO 57 * unit - 2;
Reinitializing freqO
result: = [ 0.0000, 2.0000)
arctic) plot(ampO, freqO);
result:= NULL
arctic) play;
result: = NULL
writing ampfreq. out ,

ampO .

0 1 2fr eqO

0 '2 "

We can change the frequency to achieve a vibrato of increasing depth.

arctic> freqO: = (57 * unit + 4 ° ramp sin(3)) - 2;
Reinitializing freqO
result: [0. 0000, 2. 00001
arctic) play;
result: = NULL
writing ampfreq.out

ampO

0 12

freqO
AnI

w0l' 2

We now define a monophonic synthesizer. First, we make ampO and freqO sum variables (the

interpreter will now treat them as out sum varial:I-es). Then, undef is called to reset their values to a

zero. This is necessary, as sum variables would not by default be reset when assigned to during

interactive mode.

................................. . .. .- °. -
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arctic> sum ampO, freqO;
arctic> undef;
Reinitializing ampO
Reinitializing freqO
result: = NULL

Now, two prototypes are defined to implement the synthesizer.

arctic> Env is 90 * [ ramp - .2 1 (1 - ramp) - .6 1 zero - .2];
arctic) Note(in pitch) causes [ ampO + = Env; freqO + = pitch * unit ];

Given the Note prototype we can now generate some random notes and hear them.

arctic> repeat(Note(36 + irnd(48)), 40) - .2;
Not reinitializing ampO
Not reinitializing freqO
result: = [ 0.0000, 8. 0000)
arctic> play;
result: = NULL
writing ampfreq, out

ampO

80-1
601
40-

0 1 2 3 4 5 6 7 8

freqO

80-

40-

0 1 2 3 4 5 6 7 8

This example is finished, so we terminate the interpreter.

arctic> exit;

%S

In this next example we illustrate a prototype that performs a time warping. The prototype

warp(original, modulator) takes two functions of time, original and modulator, as arguments. Warp

returns a new function constructed as follows: The original function is chopped into N equal length

segments (N is set to 20 in this implementation). The modulator function is sampled at N equally

spaced points along its length. Each segment of original is then stretched to a length proportional to

the value of its corresponding modulator sample. The stretched segments are rejoined, and the result

of this rejoining normalized to be the same length as original. See the figures that follow for

examples.

Here is the code for warp, from the file warp.a:

%. -"-". "



warphelp(in orig, mod, i, n) is
if i < n then [

value segment. stretchfactor;
[ tnorm(segment) -- stretchfactor I

warphelp(orig, mod, i+I, n) ]:
segment := extract(orig, orig.start + i/n*orig.length,

orig.start + (i+I)/n*orig.length);
stretchfactor := mod(mod.start + (i+.5)/n*mod.length);]

else
zero - 0;

warp(in original, modulator) is
tnorm(warp help(original, modulator, 0, 20)) -- original.length;

Warp calls a recursive prototype warphelp to do the real work of extracting, stretching, and

connecting the segments. The arguments to warphelp are the original function, the modulator
function, the segment number currently being extracted (zero initially) and the total number of

segments to be extracted (20 in this implementation). The function returned from warp.help is

normalized using tnorm to be the same length as original.
'

Warphelp has a standard recursive form. The recursion terminates when the current segment, i, is

greater than or equal to n, the number of segments to be processed. If so, warphelp returns a zero %

length function. Otherwise, it returns the extracted segment stretched to a length gotten from

sampling the modulator, followed by the result of warp help of the next segment.

Note how warp help depends on the fact that a parallel collection has a value that is the first

expression in the collection, and the fact that the assignment to a variable happens before the value

of the variable is used, even though lexically the assignment is written after the use. Note also that it

would in general be impossible to evaluate warp in real-time (since it would be necessary to predict

the future), but it is easily evaluated by the non-real-time ARCTIC interpreter.

Now we test out warp.

P-

%a
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%arctic warp.a
arctic) value o, m;
arctic) o: = sin(1O0) -2;
Reinitializing o
result:= [0.0000, 2.00001

arctic) inm ramp + .1;
Reinitializing m
result: [0. 0000, 1. 00001

result

0.8
0.61
0.4 I

0

arctic) vary(o, mn);
result: = 0.0000, 2.0000]

result

arctic> in: pwl1(0,. 1, 1, 1, 2,.5, 3,.5,4,1);
Reinitializing m
result:: [0. 0000, 1. 00001

result

0.8
0.6

0.4 0

0a
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arctic> vary~o, in);

result: = [0.0000, 2.00001
result

arctic> exit;

V~ ~'d
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