Dominic Mazzoni and

Roger B. Dannenberg
Computer Science Department
Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213 USA
{dmazzoni,rbd}@cs.cmu.edu

For some time, ordinary personal computers have
been powerful enough to allow people to edit, fil-
ter, and mix digital audio without any special
added hardware. The earliest editors, such as those
described by Freed (1987), Kirby and Shute (1988),
and Moorer (1990), were modeled after tape-based
editors, with similar control panels and basic
operations; the main advantage of this is that edits
could be performed non-destructively and then
changed or “‘undone’’ later. However, these types of
editors still force users to keep track of all of the
original audio clips that are used to create the final
mix, and once the editing is complete, an addi-
tional step is required to actually produce the out-
put audio file from the originals. As personal
computers have grown faster and more powerful,
new audio editors have emerged that more closely
resemble a computer word processor or computer
painting program than a reel-to-reel tape editor.
These editors allow users to perform many opera-
tions on their audio files in place, with all changes
affecting the original waveform data on disk. Fur-
thermore, the visual display reflects the results of
all edits, which is not always the case for non-
destructive editors. This makes editing much sim-
pler and faster, especially for small files, and
eliminates the extra step at the end, because the
current copy of the entire project is always stored
on disk. However, these “in-place’”’ audio editors
are not usually able to provide more than a single
level of undo, and they are often very slow in deal-
ing with large files. Today, one can find a variety of
both types of audio editors for personal computers.
Some popular in-place editors are SoundEdit 16
from Macromedia, CoolEdit from Syntrillium, and
Sound Forge from Sonic Foundry. Non-destructive
editors include Cubase from Steinberg Media Tech-
nologies AG, Digital Performer from Mark of the
Unicorn, Inc., and ProTools from Digidesign, a di-
vision of Avid Technology, Inc.

Computer Music Journal, 26:2, pp. 62—-76, Summer 2002
© 2002 Massachusetts Institute of Technology.

62

A Fast Data Structure
for Disk-Based
Audio Editing

Nomenclature is not always consistent; for ex-
ample Peak from BIAS, Inc., is called a non-
destructive editor, but it performs most operations
by creating temporary files on disk to hold the
changes, and it displays the actual values of edited
samples. This is closer in behavior and perfor-
mance to in-place editors. Also, most in-place edi-
tors are designed for single small files with the
assumption that a separate, non-destructive editor
will be used to combine many smaller files into a
final mix. We think a well-designed editor ought to
be able to perform well in both sorts of tasks.

This article examines how to combine the
strengths of both in-place and non-destructive ap-
proaches to audio editing, yielding an editor that is
almost as fast and reversible as a non-destructive
editor, while almost as simple and space-efficient
as an in-place editor. Although we create an inter-
face that looks like that of an in-place editor, we
also support multiple tracks with editable ampli-
tude envelopes. This allows us to manipulate and
combine many audio files efficiently.

We think this work is particularly interesting to
the computer music community for several rea-
sons. First, longer works of music require larger
files; editors that suffice for 3-minute pop songs
may not work well with larger works. Second,
computer music composers may want to see the ef-
fects of signal processing effects or to apply effects
that are too slow for real-time processing. The non-
destructive editors do not support these capabilities
directly. Finally, composers might want fast undo
for many levels and quick redisplay to facilitate ex-
perimentation and creative exploration. We believe
our approach offers good support for all of these
features and suffers from fewer problems than
other editors we have seen. Ultimately, the best ap-
proach is determined by the application and per-
sonal preferences, and we will compare all three
approaches later. We believe computer music com-
posers and researchers will find our approach espe-
cially attractive.

Computer Music Journal

Figure 1. Audacity, a free
cross-platform digital
audio editor that uses a
novel data structure for
fast editing.

+ did_you_know__live_.mp3 - (O] X]
File Edit View Project Effect Help
e
|0
|15.0|s | |18.0|S L |17.QS L, |13.QS L, |19.0|s | |20.0|S \ |21.0|S \
| Track 1 =
Channel: Left
Rate: 44100

Display: Wavefm

Track 2
Channel: Right
Rate: 44100
Display: Wavefm

I

Click and drag to select audio

Project rate: 44100

Selection: 16.602268 - 19.945341 s

The idea for our approach came in part from the
work of Charles Crowley of the University of New
Mexico, in his examination of the various data
structures used by word processors in a paper enti-
tled ““Data Structures for Text Sequences’’ (avail-
able online at www.cs.unm.edu/~crowley/papers
/sds/sds.html). In designing a word processor, it
would not make sense always to store an entire file
in one contiguous block, because inserting a char-
acter at the beginning would be unreasonably slow.
However, it would also make no sense for a word
processor to use an entirely non-destructive ap-
proach, because as the number of edits grows, the
time required just to render a page of text would
also grow. Crowley showed that most of the ap-
proaches used by existing word processors were
variations of a general data structure called a se-
quence, which is optimized to allow fast insertion
and deletion of contiguous blocks of data. The next
section describes the functional requirements of a
sequence structure for digital audio editing.

In the Implementation section of this article, we
propose a particular variant of the sequence data
structure that is well suited for storing large audio
tracks. Our basic idea is to store a large audio track
as a set of small files of approximately equal size.

We demonstrate that, by imposing certain simple
constraints, only a small constant number of these
files must be read or changed on disk to perform
simple editing operations such as insertions and de-
letions of arbitrary size, or undoing the last opera-
tion. By reducing the number of disk operations to
a small constant, editing operations can be made to
seem almost instantaneous. The Undo section of
this article discusses how our sequence structure
can provide very fast multi-level undo. Following
that, we discuss how to store reductions of the au-
dio data for fast screen display, and how this is af-
fected by storing the data in blocks.

To demonstrate the effectiveness of our solution,
we measured its performance, as described in the
Performance section. We also implemented a free-
ware cross-platform audio editor called Audacity
(see Figure 1), and we invite readers to experience
this approach first-hand.

After the detailed description of our approach, we
present a discussion of the advantages and disad-
vantages of the three approaches we have identi-
fied: in-place editors, non-destructive editors, and
sequence-based editors. This is followed by conclu-
sions about some of the major trade-offs that seem
inherent in these different approaches.

Mazzoni and Dannenberg 63

The original motivation for this work included
the need for a music data-visualization tool. We
want to display audio, continuous parameters,
spectral information, and discrete information such
as MIDI data and labels. A good tool should allow

flexible display and editing of various forms of data.

Our program, Audacity, fulfills many of our music
data-visualization needs, and its clean design and
open source allow researchers to build customized
data visualizers, starting from an already powerful
base. Although data visualization is not the focus
of this article, we encourage readers to use Audac-
ity as a visualization tool.

Data Structure Requirements

Suppose that we have a single sequence of consecu-
tive audio samples that we would like to store in a
data structure. The sequence data structure sup-
ports the following operations:

Get(s, I): Retrieve I consecutive samples
from the ith sample.

Set(, 1): Change I consecutive samples
from the ith sample.

Insert(i, I): Insert I consecutive samples before
the ith sample.

Delete(i, I): Delete I consecutive samples from

the ith sample.

Let there be n samples in the entire sound file (not-
ing that n is often orders of magnitude larger than
I). A naive implementation of Insert and Delete
would require shifting O(n) samples on disk every
time. (A note on notation: we use O(n) to mean
that the worst-case computation time grows line-
arly with respect to the parameter n.) However, it
is possible to implement these operations so that
Delete changes only a constant number of samples
on disk. Furthermore, it is possible to implement
Insert so that only O(I) samples are changed if the
data being inserted is in an array, or a constant
number if the data being inserted is already in an-
other sequence structure on disk. In addition, this

64

data structure and its associated algorithms can be
augmented to support an undo history with very
little space overhead.

A primary concern for us is that our solution is
not only theoretically preferable but actually fast in
practice. Specifically, we want to ensure that edit-
ing operations take much less than 1 sec to per-
form on a typical computer and that a large
number of tracks can be played from the disk in
real time.

Implementation

At first glance, it is tempting to think that a tree-
like structure would be a good approach. Ignoring
the memory overhead, suppose that we stored each
sample in its own node in a balanced binary tree
(such as a Red-Black Tree or a Splay Tree). Insert-
ing a single sample would always take O(log n)
time, which is reasonable enough, but then insert-
ing I consecutive samples would take O(I log n)
time, which is definitely wasteful. Storing samples
in a tree this way ignores the fact that most opera-
tions tend to work on large consecutive chunks of
samples.

The idea of the binary tree is fine, but instead of
storing one sample per node, consecutive samples
(maybe about 32 kB) could be stored in each node.
In fact, this tree resembles what is known as an in-
terval tree, with each node containing a pointer to
the samples in that interval. While this idea is
good, let us simplify it even more and instead con-
sider a simple linked list of such nodes. If the num-
ber of samples pointed to by each node is allowed
to vary, then inserting or deleting samples within
one node would not have to affect any of the neigh-
boring nodes. Unfortunately, if the number of sam-
ples in one node could grow without bounds, then
there would be no way to achieve Insert and Delete
in constant disk time. By cleverly enforcing a mini-
mum and maximum size for most nodes, however,
we can achieve our goals in the following manner.

Let k be the minimum number of samples that
should be stored in each node. The constant k

Computer Music Journal

Figure 2. An illustration of
the operation Delete(i, 1)
where sample i is in node a
and sample i+1 is in node
b. To complete the opera-

reapportioned to satisfy

in the text).

tion, blocks may need to be

the

size constraints (described

0 1 a-1 a a+1 b-1 b b+1 m-2 m-1
[] L] 1] | | | | | []
| T | L]
sample i sample i+]
0 1 al | a link a+l | a2

/] £

create new blocks

[

|

L]

deref split blocks

should be chosen as large as possible, while small
enough that shifting 2k samples in memory or on
disk still takes a negligibly short amount of time.
Now make the restriction that all nodes in the
linked list must have between k and 2k samples
(inclusive), except for the first and last nodes,
which are allowed to have fewer. We found that
storing between 32 kB and 64 kB of data per block
was ideal on our test system, which translates to
k = 16 k, assuming 16-bit samples. However, this
value is highly dependent on the efficiency of the
implementation, the transfer rate to and from the
hard disk, and the operating system used.

The intuition behind this restriction is that,
given a block of at least k samples (but possibly
many more), one can always split it into some
number of nodes such that each node contains be-
tween k and 2k samples. This is the secret to how
we will be able to perform a Delete or an Insert
without ever modifying the samples in more than
small constant number of nodes. Essentially, we

a

perform the Delete or Insert as normal, and then if

a couple of nodes end up with too few or too many
samples, we just combine them with several neigh-
boring nodes and reapportion the samples between
them so that they all obey the k-2k restriction.
What we have now is one of the variants of the se-
quence data structure described by Crowley for text
editors. Let us examine the details of how to insert
or delete samples from this structure.

Consider the operation Delete(i, I) illustrated in
Figure 2. By traversing the linked list, we find that
sample i is in node a, and that sample i+ is in
node b. We remove the deleted samples from the
end of a and the beginning of b, taking time
bounded by the maximum size of any one node, 2k.
The nodes strictly between a and b contain all de-
leted samples, so we can remove them from the list
immediately. Note that a and b are just indices
(not names), so after the deletion, node b becomes
a+1. Now, as shown in the lower part of Figure 2,
one or both of nodes a and a+ 1 may contain fewer
than k samples. We now combine node a and node
a—1, and then we combine node a+ 1 with node

Mazzoni and Dannenberg 65

a+2. (If node a is the first, or node a+1 is the last,
then this step is not necessary, because the first
and last nodes have no minimum number of sam-
ples.) It is easy to see that the number of samples
in the sum of nodes a and a— 1, and similarly in
the sum of nodes a+1 and a+2, is between k and
4k. The samples can thus be reapportioned into ei-
ther a single node or two nodes such that all nodes
in the list now satisfy the k-2k property, and this
has only taken constant time (plus the time search-
ing through and manipulating the pointers in the
linked list, which we will address below).

Next consider Insert(i, I). Suppose that the sam-
ples to be inserted come from another sequence
structure, so they have already been grouped into
nodes of length k-2k, except for the first and last
nodes, which are allowed to contain fewer samples.
First, we find the node containing sample i—say
it is the ath node. We split this node in two so
that node a contains the samples before i, and the
new node a+ 1 contains those after i. We want to
insert the new nodes between a and a+ 1, but we
have a potential problem. Owing to the split, a
and a+1 may be too small, and the first and last
nodes we are inserting may also be too small.
Thus, it is not clear how to join the nodes such
that all of these nodes contain between k and 2k
samples.

While there may be an optimal solution that in-
volves examining a number of special cases, we can
solve the problem very easily in just two cases
while still only forcing a constant number of nodes
to be reapportioned. The first case occurs when the
number of nodes to be inserted is three or fewer. In
this case, we temporarily join node a, all of the in-
serted nodes, and node a+1 into one contiguous
block. This block has size at least k and at most
8k, and therefore it can be split evenly into be-
tween one and four nodes, depending on the exact
number of samples. Because all of the nodes before
a and after a+ 1 already had an appropriate number
of samples, we are finished.

The other case occurs when we are inserting four
or more nodes. In this case, we join the first two in-
serted nodes with node a into one temporary block,
and we join the last two inserted nodes with node

66

a+ 1 into another temporary block. Then, we split
these blocks into appropriate sets of nodes, just as
in the previous case. The remainder of the inserted
nodes can be inserted as is, preserving the property
that we wanted, that only a constant number of
nodes would have to be affected by the operation.
In fact, this last case involved the largest number of
nodes: six. Thus, an Insert operation will affect at
most six nodes.

One minor detail is that a search of the entire
linked list could be required just to find the nodes
needed to modify. In practice, we have found that
this is insignificant, as the number of nodes in
even a large audio track is far smaller than the
number of samples in one node. However, one
could simply replace the linked list with a binary
tree of nodes, still requiring the k-2k property, and
then finding a node would be even faster. There are
a few special cases that have not been addressed in
the above descriptions of Insert and Delete, such as
inserting exactly between two nodes, inserting
fewer than k samples, or deleting samples that ap-
pear in just one node, but these are all relatively
straightforward to work out. The interested reader
is referred to the source code to Audacity, available
online at audacity.sourceforge.net/.

Undo

Fully non-destructive editors can easily implement
an undo feature simply by ““backtracking’ in the
edit decision list; no waveform data has to be
changed on disk. It is more difficult for in-place ed-
itors, because they must save a copy of the samples
before the edit, which can take time proportional
to the size of the edit. With a simple modification,
our sequence-based approach can be used to imple-
ment an unlimited undo mechanism that runs in
constant time and wastes very little space. To do
this, let each block of samples to which every node
points be a reference-counted object instead of just
a simple array. That way, two different nodes can
point to the same set of samples, and the samples
are not destroyed until both nodes pointing to
them are deleted. Then, we make a copy of the en-

Computer Music Journal

tire node structure (i.e., the linked list of nodes) be-
fore any undoable operation and push the copy
onto a stack representing the undo history. To
undo, we simply revert to the most recent node
structure on the stack. If the user then performs a
new operation, the node structure that was undone
can be thrown away, and if any of the blocks’s ref-
erence counts reach zero they can be disposed of.

We have found that this very simple implemen-
tation of undo is efficient in practice, despite the
fact that copying the entire node structure is a
linear-time operation. The number of nodes is a
small fraction of the number of samples in the
track, so it is much faster to make a copy of the
nodes than it is to make a copy of all of the sam-
ples. In practice, we have found that it is fast
enough not to be noticeable, even when the total
number of samples exceeds 1 GB. However, if time
or space considerations prohibit copying the entire
node structure after every operation, one can imag-
ine implementing the equivalent of an edit deci-
sion list for the node structure instead. This would
require very little time or space for each operation.
We did not investigate this potential optimization.

Compared to a non-destructive editor or an in-
place editor, our solution wastes more disk space in
order to support undo. Clearly, it wastes more than
a non-destructive editor, because such editors do
not change any samples on disk when one performs
an editing operation. In-place editors do change
samples on disk, so they save a copy of the samples
that are being changed to allow undo. Our system
requires that one save their files a little more fre-
quently, because, in a sense, users are “‘rounding”’
data to the nearest block boundary. Because we
used block sizes of at most 64 kB, a single opera-
tion could result in 128 kB of wasted disk space,
plus an entire copy of the linked list of nodes in
memory. However, the average wasted disk space
per operation in practice is not 128 kB but 64 kB,
which is quite negligible compared to the size of
most audio files. Clearly, it does not prohibit sup-
porting a dozen or more levels of undo.

Note that reference-counting the blocks provides
an additional feature: if we copy a large chunk of
data (large enough to contain many blocks) and

then paste it into a different place in the same file,
all of the blocks except the ones on the boundaries
can be copied by reference instead of by value, sav-
ing valuable disk space. This could be very useful,
for example, for a long passage that repeats itself, or
for stereo channels that are actually identical cop-
ies of one another except for a few small segments.
Note that if either the original or ““copied”” data are
subsequently modified, the modification appears
only in one place. For example, if a sample is in-
serted into one copy, a new node will be allocated
to contain the modification, but the copied regions
continue to share other nodes.

Storing Reductions for Screen Display

Although it is occasionally useful to see the indi-
vidual samples of a waveform, most of the time
users want to see a few seconds, or even minutes,
of audio on the computer screen at once. Moorer
(1990) noted that it is impractical to scan through
minutes’ worth of audio just to render an image of
the waveform on the screen, and thus audio editors
need to cache a reduction of the audio somewhere
in order to render it more quickly when the level of
magnification is small. The most common type of
reduction is to display the peaks (i.e., the mini-
mum and maximum amplitudes of the samples
represented by each pixel).

From a theoretical standpoint, a binary tree
would be a perfect way to store these maxima and
minima for easy retrieval. Suppose we have a track
containing exactly 2% samples. Imagine a tree
where each node contains the minimum and maxi-
mum values of some range of samples, and its chil-
dren contain the minima and maxima of the left
and right halves of that range of samples. So the
root would contain the minimum and maximum
of the entire track, and there would be a total of
2k+1 — 1 nodes. Of course, the tree could easily be
truncated at some earlier depth, so that the leaves
would actually store the minima and maxima of,
say, 256 samples each. Then the tree would take up
only about 1/128 of the memory of the entire track
(assuming the tree is stored in a compact format

Mazzoni and Dannenberg 67

without pointers). However, the minimum and
maximum of any range of samples could be calcu-
lated exactly in logarithmic time (i.e., time-
proportional to k, which is small). The problem
with this minimum/maximum tree is that, as de-
fined above, it would need to be recalculated every
time a change was made to the audio. Worst of all,
deleting a single sample from the beginning would
potentially force the entire tree to be recalculated.

Instead, we can take advantage of our sequence
structure and store separate reductions in every
node. By design, we have chosen our block size so
that the time needed to process the samples in a
single block is almost negligible. In our particular
implementation, we calculate the minimum and
maximum of each group of 256 samples within
each block, and then we store these numbers at the
beginning of the file on disk for fast lookup.

Next, we describe how to use this data to display
a graphical image of the waveform peaks at some
level of magnification (where each pixel represents
more than 256 samples), using only the reductions
and none of the original waveform data. Suppose
there are P pixels visible on the screen, and we
wish to display n samples in this space. From our
assumption about the level of magnification, n/P >
256. Our goal is to calculate the function max(p)
for0 = p = P — 1, which represents the maximum
value attained by the waveform in the region repre-
sented by the pth pixel (and the corresponding min
function, obviously):

max(p):= max(samp le < [%} >

21221)

However, because the floor of np/P and n(p + 1)/P
are not likely to be multiples of 256, this function
cannot be calculated given only the reductions. In-
stead, we define the approximate max as

_ ap
approx max(p): max(samp]e<256[2561’]>
i))
...sample<256[w !

This simply rounds down the left and right sides of
our range to the nearest multiple of 256. However,

68

because we have already stored the maximum of
every set of 256 samples in our reduction, we can
equivalently define the approximate max as

n-p

approx max(p) = max(wd“”‘quD

...reduction<[%} — 1>)

Clearly, it is faster to calculate this approximate
maximum than it is to calculate the true maxi-
mum function for screen display, but how do we
approximate it? Note that if max(p — 1) - max(p),
then max(p — 1) - approxmax(p) - max(p), and oth-
erwise max(p — 1) - approxmax(p) - max(p). Thus,
the approximate maximum function is never incor-
rect by more than one pixel, which seems like a
reasonable compromise when the goal is fast screen
display. (The user can always zoom in to get more
precise information.) The algorithm for calculating
the approximate maximum is complicated slightly
by the fact that we must deal with block bound-
aries, but it can still be done in one pass. The fol-
lowing pseudocode illustrates how we calculate the
min and max values to display for each pixel in the
range 0. . .P — 1 using pre-calculated reductions:

0; // current pixel
0; // current sample
0; // current block
= 0; // current sample within this block
= j div 256; // current reduction within
//this block
tmin = +Inf;
tmax =-Inf;
while(p < P) {
tmin = min(tmin, block[b] .min[k]) ;
tmax = max(tmax, block[b] .max[k]) ;
k+ +;
j + = 256;
i+ = 256;
if (j > block[b]l.len) {
// Go on to next block

muoo e
[

b+ +;
j=0;
k =0;
i = block[b].start;

}

Computer Music Journal

if ((i*n/P) >p) {
// Output min and max and go on to next
//pixel
output p, tmin, tmax;
tmin = 4+ Inf;
tmax =-Inf;
pt++;

Data Integrity

With audio data spread out among many files, a
real concern is what happens if there is a computer
system failure. It is tempting to think that we
could store the filenames of the next and previous
nodes inside each data file, so that even if the proj-
ect file gets corrupted, the data files themselves
contain enough information for the linked list of
nodes to be reconstructed. Unfortunately, this is
not possible, because we allow one data file to be
pointed to by multiple nodes. Still, in designing
Audacity, we took some steps that should make
users feel safe that even in the event of a crash or
other system failure, they will be able to revert
back to the last saved version of their project.

First, Audacity project files are stored in a plain
text, human-readable format, so that if all else fails,
even a non-technical user could open the file and
read the appropriate ordering of the data files. Sec-
ond, the data files belonging to a saved project are
never modified or deleted while the user is editing
a project in place. To support undo, new data files
are created very frequently to store new sample
blocks, and so the ones belonging to the original
saved project are marked. When the user saves a
project, a new project file is created, and only when
this has been written to disk will the old project
file or old data files be deleted.

Performance Measurements

Once we had implemented this data structure and
its associated algorithms, we tested the speed of ed-
iting operations and of playback. In order to verify

that our implementation really can insert and de-
lete quickly independent of the total file size, we
set up the following benchmark: Using a fixed
value for k (corresponding to nodes containing be-
tween 16K and 32K samples), we take audio files of
sizes varying from 1 MB to 512 MB and import
them into the data structure. Then we perform 100
random edits, where each edit consists of cutting a
random segment out of the file and inserting it at a
different random location. Each benchmark was au-
tomated and run several times on our test com-
puter, a Linux-based system containing a Pentium
III at 500 MHz, and an Ultra ATA hard drive. The
results of our experiment are shown in Figure 3.

We had hoped to find that the total time to per-
form this sequence of operations was constant in-
dependent of total file size. However, we found
that there is a small trend toward a slight increase
in time to perform the operations as the data size
increases. Because the trend is not linear, but has a
large jump, the most likely cause is disk caching:
as the file size grows, less and less of the total file
can be kept in the disk cache, and so the probabil-
ity that the samples at the boundary of a cut or
paste are in the cache goes down. The data points
to the left of the large jump in the graph would
thus represent files that fit entirely into the disk
cache, and the points to the right are from files that
are larger than the cache.

We are pleased to note, though, that the average
time per editing operation is still only about an
eighth of a second, even when the total file size is
half a gigabyte. Note that if we stored our audio
data in a single large file instead of smaller ones,
then a single cut and paste would take longer than
it takes to perform a hundred cuts and pastes with
our sequence structure. Therefore, despite the fact
that the performance decreases slightly as the data
size increases, it still provides an enormous in-
crease in speed over the conventional method for
storing audio.

So far, we have been concerned with minimizing
the number of disk operations needed to perform
an edit, and we have been ignoring the amount of
time it takes to work with the list of nodes in
memory. If we were to store the nodes in a bal-
anced binary tree instead of a linked list, we could

Mazzoni and Dannenberg 69

is affected by the total size
of the file, probably due to
less disk caching.

Figure 3. These performance
measurements show that

the time to perform one ed-
iting operation, while small,

140

120

100

Average Time per Editing Operation (ms)

80 —
60 | -
40 g
ol R |
* * E
0 1 1 1 1 1
1 4 16 64 256

1024

Total file size (MB)

perform insertions and deletions in logarithmic
time. However, if we are going to implement undo
in the simplest possible manner, as discussed
above, then we must make a copy of the whole
node structure after every operation anyway. Even
if we are working with 3,000 nodes in our structure
(enough to store about 30 min of 44 kHz audio on
average), our measurements show that it takes only
about 12 msec to duplicate this structure in mem-
ory, including updating the reference counts of all
of the blocks. In contrast, it takes over 100 msec on
average to perform an editing operation (unless the
files needed are already in the disk cache). There-
fore, we feel justified in ignoring the cost of the
memory-based operations, because they are domi-
nated by the cost of operations that must go to
disk.

Disk Bandwidth
Besides testing the speed of editing operations, we

also need to test the speed of playback. Specifically,
we want to make sure that storing audio data in

70

small files does not limit performance. Small files
have the advantage that less data needs to be cop-
ied for insertions and deletions, while large files
have the advantage that less time is spent finding
and opening files during playback. This is consis-
tent with the discovery of Abbott (1984) that, by
using large enough buffers, one can achieve high
bandwidth reading blocks of audio that are scat-
tered all over the disk. More recent work, for exam-
ple by Anderson et al. (1992), has described designs
for real-time file systems capable of supporting
many streams of audio. It should be noted that we
are working with ““off-the-shelf”” file systems that
do not make any performance guarantees. The best
we can do is to design applications that are likely
to perform well.

As an example, Figure 4 illustrates an experi-
ment comparing the disk performance in our ap-
proach with that of an in-place editor reading a
single file sequentially. The experiment writes 1
GB of data in files of uniform size (s = 64 kB, 256
kB, and 1 MB) to disk. These files are read sequen-
tially (in the same order written) and in random or-
der. We also wrote a single large file (1 GB) to the

Computer Music Journal

Figure 4. Data rates for dif-
ferent file sizes measured by
reading 1 GB of data in the
order the files were created,
or in a random order that

are expressed as a number
of 16-bit, 44.1 kHz audio
channels.

Read Rate vs Node Size

160 -

120 +
| [0 Sequential-WWin2K

= Random-Win2K
% Sequential-Linux
¥ Random-Linux

Read Rate (channels)
[e2]
o

D000 OO0 0000

9s0599,9,9,0,0,9,0,9,0,9,9,9,9,

A
A
A
A
A
A
A
A
A
A
A
A
A
A
~
A

AV

64K 256K iMB

Node Size (bytes)

Infinite

same disk and measured the time it takes to read it
sequentially. (This is the “Infinite” category in Fig-
ure 4.) The test was performed using both Windows
2000 Professional and Linux running on the same
hardware, an IBM A21p ThinkPad. The results are
reported in average bytes per sec divided by 88,200.
In other words, the vertical scale shows how many
channels of audio (16 bit, 44.1KHz) are supported
by the measured data rate.

According to these measurements, even random
reads of 64 kB files supports 26 (Windows) to 41
(Linux) channels of audio. This number increases
as the file size increases. Reading the files in the
order written is faster than random order, indicat-
ing that the file system is allocating files in a
roughly sequential manner on the disk, and that
within files, blocks are allocated roughly sequen-
tially. If the goal is to maximize the data rate, 1 MB
nodes achieve 80% (Windows) to 93% (Linux) of
the highest measured data rate.

It is important to realize that even if audio data
is stored in one large file, there is no guarantee that
it is stored contiguously on disk. In fact, any suffi-
ciently large file on a hard disk is likely to be
highly fragmented.

Editing Speed vs. Bandwidth

By using large block sizes, we can achieve excellent
playback performance, but editing times suffer be-
cause more data is copied for each edit. Thus, there
is a tradeoff between editing performance and play-
back performance. With 1 MB nodes, average edit-

reads each file once. Results

ing times are about 1 sec, depending upon
hardware and the operating system. Because even 1
sec can be annoying to users, block sizes should be
chosen just large enough to guarantee sufficient
data rates for the maximum number of simultane-
ous tracks anticipated. For example, if one wants to
play eight 16-bit tracks, the block size can safely be
set to 64 kB while allowing fast editing times. On
the other hand, if one wants to mix 64 24-bit tracks
at once, edits may take about one sec at a block
size of 1 MB.

Further Optimizations

It is not a good idea for the editor to open too many
files at once, so our implementation opens files as
needed and closes files after reading them. This ad-
ditional overhead is already included in all of our
measurements.

To optimize disk performance during playback,
the editor should issue many file read requests, al-
lowing the operating system to minimize seeks and
to allow files on separate disks to be read in paral-
lel. We have not implemented this optimization,
and in practice, we achieve good performance with
sequential, blocking reads. Note that typical file
systems automatically pre-fetch data from files that
are accessed sequentially.

An early implementation of Audacity required
that audio files be imported to our data structure
before editing or even viewing them. This resulted
in an unacceptable delay when files were opened.
An optimization now allows ordinary audio files to
be used by the editor without copying data. It is
still necessary to read the data to compute the dis-
play, but this is true of other editors as well.

Random-access memory (RAM) is inexpensive
enough now to consider an editor that is entirely
RAM-based. Our data structures are ideal for a
RAM-based implementation, because they avoid
copying samples for insertion and deletion opera-
tions. At present, however, a RAM-based imple-
mentation would not support large audio files or
many levels of undo on typical machine configura-
tions, and a virtual memory scheme could lead to
inconsistent performance.

Mazzoni and Dannenberg 71

Table 1. A comparison of three implementation strategies for audio editors

Non-Destructive

Sequence-Based

Random access to source files
and real-time DSP.

No disk copy.

Deferred to playback time.

Based on source data.

Source files plus edit list.

Non-cumulative.

Copies at most a small number
of nodes.

Predictable performance, many
files.

No disk copy.

New samples written to disk.

Based on edited data.

Many small files.

Sometimes cumulative.

In-Place
Insert/Delete May copy whole file. Fast.
Playback Fast, sequential access.
Undo Requires data copy on disk.
DSP/Effects Overwrite old samples.
Display Based on edited data.
Files and One sequential file (plus undo
Fragmentation data).
Quantization Cumulative.
Error

Another implementation possibility is to use a
single file and allocate nodes from within the file.
This is essentially the same task as implementing a
file system, and we find it preferable to rely on the
operating system to manage files.

Yet another consideration is the use of disk ar-
rays. A disk array offers high disk bandwidth by
distributing each file across many disks so that the
file can be read in parallel (Chen et al. 1994). Be-
cause disk bandwidth is the limiting factor of in-
place editors, disk arrays offer a way to increase
in-place editing performance. However, the editing
speed-up offered by disk arrays is small compared
to the speed-up offered by the sequence data struc-
ture.

One could also use disk arrays with a sequence-
based editor. This would provide some performance
improvement by reading nodes faster, and it is
fairly easy to configure a computer system with a
simple disk array. Unfortunately, the total number
of seeks in a disk array increases, because each file
is spread across the array of disks. A better ap-
proach is to allocate whole audio tracks to each
disk. That way, all operations to read a track can be
performed in parallel, and performance will be even
higher than in a disk array. Asynchronous or multi-
threaded I/O would be used to keep disks operating
in parallel. Of course, this would require a more
complex implementation, careful configuration to
use available disk parallelism, and perhaps new
disk allocation strategies.

72

Comparison of the Models

Audio editors can be evaluated along many dimen-
sions. In this section, we will concentrate on
fundamental properties that derive from the under-
lying models, and we will ignore superficial fea-
tures, that, while important, could generally be
implemented within any model. Table 1 summa-
rizes properties that we will discuss below.

Insert/Delete

As discussed earlier, in-place editors must copy
disk data to perform insertions and deletions, and
this can take many seconds if the file is large. Non-
destructive editors simply modify edit decision
lists, so the cost of insertion or deletion is negligi-
ble. Our sequence structure must update the disk,
but this is typically very fast because a limited
amount of data is copied.

Playback

In-place editors play directly from a sequential file,
obtaining the best possible performance without
implementing a custom file system. Non-
destructive editors typically perform well because
they read from sequential source files, but edits
may require rapid disk seeks. Closely spaced edits

Computer Music Journal

can arbitrarily degrade disk bandwidth. Further-
more, effects processing adds an unlimited compu-
tational load during playback. Both of these
problems can be handled by computing samples
and storing them on disk, but this complicates the
model implementation and/or user interface. Our
sequence-based model provides more predictable
disk-performance by setting a lower bound on the
length of sequential data so that most disk reads
are sequential. A typical implementation will apply
an envelope to each track and mix multiple tracks,
so the load depends only upon the number of si-
multaneous tracks.

Undo

Undo operations require data to be copied from an
undo buffer back to its original location with an in-
place editor, so undo can be time consuming. With
non-destructive editors and our sequence-based ap-
proach, undo merely modifies RAM-based data
structures and updates the display. When reference
counts go to zero, the sequence approach must free
files on the disk, but this is faster than copying
data.

DSP and Effects

With an in-place editor, effects such as equaliza-
tion, reverb, and pitch shifting overwrite the file,
requiring disk reads and writes. In contrast, non-
destructive editors perform signal processing in real
time, so effects can be applied and adjusted with no
apparent computation, as long as there is sufficient
processing power. Our sequence approach must
compute effects and store them to disk, much like
an in-place editor. However, because effects can
usually be undone, and undo requires a copy, an in-
place editor performs about twice as many disk
operations as our sequence-based approach to apply
an effect to data.

Typically, in-place editors apply amplitude con-
trols and envelopes as effects; that is, the data on
disk is modified immediately. On the other hand,
non-destructive editors apply amplitude controls

during playback. Our sequence-based implementa-
tion allows users to edit envelopes interactively
and view the results on the display without actu-
ally changing data on disk. Because adjusting am-
plitudes, fading sounds in and out, and shaping
sounds with envelopes are common operations, we
decided to support them using a non-destructive
approach.

Display

In-place editors and sequence-based editors always
display the result of all editing operations, while
non-destructive editors base the display on source
files before any effects are applied. It is conceivable
that non-destructive editors could compute the ef-
fects and render the results on the display, but this
is not done in practice. Thus, there is a fundamen-
tal tradeoff here: to see the results of applying an
effect, one must accept the delay of computing and
storing the results.

Amplitude envelopes in our sequence-based edi-
tor do not actually modify samples until playback,
so we scale the displayed values according to enve-
lopes (see Figure 1). This has no impact on the dis-
play speed, because the computation is just one
multiply per pixel, and it maintains our interface
model that the user sees the results of applying
each editing operation.

Files and Fragmentation

An in-place editor maintains one file of edited data
and possibly some temporary files for undo data.
This is the simplest format for users to manage. A
non-destructive editor may refer to many source
files. Typically, users must be aware of what source
files have been incorporated into an editing project,
because changes to any file may adversely affect
the project. To copy the project, the user must copy
all source files. In-place editors and non-destructive
editors can typically open and edit a standard audio
file quickly without copying to another format.
Our editing model maintains many files within a
directory. These are managed automatically, al-

Mazzoni and Dannenberg 73

though it is slower to copy a directory of files than
to copy a single large file. ““Standard” file formats
are typically copied to a sequence structure before
editing, which makes files slower to open than
with in-place or non-destructive editors. However,
as noted earlier, it is also possible to be “lazy”
about copying sound data into a sequence structure
to improve the time it takes to open a standard au-
dio file. In this case, users may need to be aware of
file dependencies as with non-destructive editors.
In addition, audio data and projects can be saved in
the sequence structure format, which can be re-
opened very quickly.

Disk fragmentation occurs when disk blocks are
partially filled. On average, each sizeable file is ex-
pected to have its last block only half full. Thus,
the amount of fragmentation is proportional to the
number of files. The sequence structure, with a file
for each node, has a potential fragmentation of
about 4% (assuming the average node size is 96 kB
and the file block size is 8 kB), but even this would
occur only after extensive insertions and deletions.
To minimize fragmentation, files can be created
initially without fragmentation simply by making
their length an exact multiple of the block size.
(One must be careful to allow for any file system
overhead and storage for peak amplitude values.)

There are some file systems in use with large
block sizes that would lead to greater fragmenta-
tion. Fortunately, small files are very common, and
file systems are designed accordingly. The excep-
tions we know of arise when legacy file systems
are used on modern (large) disk drives. This seems
to be a temporary problem that we do not need to
be too concerned about.

In contrast to internal fragmentation, where
blocks contain unused space, we should also con-
sider external fragmentation, where blocks between
files are unused and unallocated. File systems even-
tually use all available blocks, but doing so may
cause file blocks to be scattered randomly across
the disk rather than sequentially. This in turn de-
grades file system performance. Disk de-
fragmentation software offers one remedy.
Alternatively, exporting to a single large file on an-
other disk, deleting all nodes, and then recreating
nodes should eliminate external fragmentation, but

74

this requires space for the exported file. In-place
and non-destructive editors should generate less
disk fragmentation.

A final issue relating to files is the question of
operating system support. It is possible to create
many thousands of files in a directory. It is incon-
venient and slower to make backups, copies, and
even to view these files in a browser, and the single
file representation of an in-place editor offers a
much more manageable representation outside of
the editor program.

Quantization Error

When samples are read, manipulated, and stored,
quantization noise can be added. This matters par-
ticularly if data are stored as 16-bit samples. Non-
destructive editors can minimize quantization error
by reading data once, converting to a high-
resolution format such as 32-bit floating point or
integers, performing all processing at high resolu-
tion, and then writing the final samples to disk or
directly to an audio output device. Because process-
ing is performed in real time as files are read, the
larger format samples do not need to be stored.
In-place editors typically read and write samples
many times, once for each operation. If levels are
adjusted many times, significant quantization noise
is at least possible. This is especially true if 16-bit
samples are stored on disk. Our sequence-based ed-
itor performs mixing and applies envelopes in real
time, avoiding any accumulation of quantization
error as audio levels are adjusted and refined. How-
ever, effects such as equalization could cause accu-
mulated quantization error if applied repeatedly.
The efficient undo mechanism can help avoid this.
In addition, we are modifying Audacity to allow a
choice of either 16-bit integers or 32-bit floating
point numbers for the disk-based representation.

Conclusion
We have found that by storing audio data in small

blocks, we can achieve the speed and responsive-
ness of non-destructive editors, with the conve-

Computer Music Journal

nience and simplicity of design of in-place editors.
Not only can cuts and pastes be done in near con-
stant time, but also unlimited undo and redo can
be implemented with very little extra space over-
head. The entire data structure can be abstracted by
a C++ class that allows the programmer to treat
the structure as if it were a flat file and allow the
class to handle the internal details of the structure
itself. As a result, we believe that many people
would benefit from using this data structure as an
alternative to storing audio data in a large flat file
or using edit decision lists.

The major difference between non-destructive
editors and our sequence-based approach is the
handling of effects and signal processing. Non-
destructive editors have the advantage of instant
changes to effects parameters. Our sequence-based
approach has the advantages that effects need not
run in real time, and the results of effects are visi-
ble on the display. Another advantage is greater
predictability of playback performance, because
files have a minimum length, and effects (other
than simple mixing) are not computed in real time.

Both systems seem superior in almost all ways to
in-place editors. The single advantage of in-place
editors is that the state of audio is always main-
tained in a single contiguous file. A single file is
easy for users to copy or import into another appli-
cation. In contrast, non-destructive editors rely on
a set of source files that the user must manage. Our
sequence structure uses a directory of small files,
and while it can be annoying to deal with large
numbers of small data files manually, users do not
need to manage source and intermediate files ex-
plicitly. Any modern operating system can handle
tens of thousands of files in a single directory with-
out any problems. However, the user interfaces by
which people interact with file systems often have
issues with this number of files, whether one uses
UNIX command-line tools or Microsoft’s Windows
Explorer. It is also noticeably slower to delete one
thousand files than one big one.

The best editor depends upon the application and
user preferences. Non-destructive editors seem
well-suited to routine studio production, where ef-
fects are applied after selecting, sequencing, and
mixing. In many cases, it is more desirable to hear

the results of many simultaneous mixer and effects
settings than to see them on screen or to perform
and audition each step in sequence. The ability to
render equalization, panning, mixing, and reverber-
ation effects all at once is important for studio pro-
duction work. In more creative and experimental
situations, we believe our new approach may be
preferable, because it allows editing operations in
any order and full display of the results of each
step, all with reasonable efficiency.

Hybrid Approaches

Based on our observations of advantages and disad-
vantages in current editors and in our own ap-
proach, it may be that a hybrid approach could be
even better. We are already implementing some
non-destructive editor concepts in Audacity. In par-
ticular, we allow standard audio files to be edited
without copying their data into a sequence struc-
ture. Instead, we build the structure with pointers
to the original file. We also allow amplitude enve-
lope editing without computing and storing sam-
ples, and we perform multiple-track mixing during
playback. Further enhancements could allow for
real-time post-processing effects, making Audacity
more suitable for conventional studio production
work.

In-place editors might consider using sequence
structures to optimize performance with larger
files. To avoid additional cost, the sequence struc-
ture could be constructed the first time the user
performs a large undoable edit or an operation that
requires copying most of the file. Alternatively, the
sequence could be created incrementally as the
user works or in the background as the user thinks.
The edited structure could be “flattened” back into
the original file when the editing session is closed.

Non-destructive editors could use our sequence
structures to hold the results of non-real-time ef-
fects. The reference counting and undo mecha-
nisms we describe might allow users to work with
less explicit management of intermediate files.
Sequence-like structures could also be useful for re-
gions where there are many edits. For example,
some non-destructive editors compute fades and

Mazzoni and Dannenberg 75

store them on disk (Moorer 1990). If there are many
short edits and fades in succession, the computer
may not be able to seek to and open files rapidly
enough for real-time playback. In contrast, a se-
quence structure merges short edits and fades,
maintaining a minimum node size on disk. This in
turn provides more efficient playback.

Audacity

Audacity is quite fast and offers many useful edit-
ing functions. The editor’s functionality has been
enhanced by an interface to VST plug-ins so that
Audacity can take advantage of many effects for
multi-channel panning, equalization, compression,
etc. It also calculates and displays spectrograms
and supports text annotations, making it useful for
research in sound analysis and synthesis. In the fu-
ture, we plan to add an interface to Nyquist (Dan-
nenberg 1997), allowing users to create their own
effects in a high-level language.

We find this approach to be attractive for data vi-
sualization. It is fast, convenient, and always dis-
plays the actual results of signal processing
operations. Our cross-platform implementation has
already become popular (based on download statis-
tics) for general-purpose audio editing, even though
our implementation lacks an elaborate user inter-
face such as those found in high-end commercial
editors. We invite researchers to try Audacity and
to collaborate on its further development. Even if
Audacity does not become one’s favorite editor, we
think the combination of high performance with a
simple interface will exert a positive influence on
many commercial systems as they evolve. We hope
that our analysis of editor performance and fea-

76

tures, as well as the features of our new approach,
will inspire others to make further improvements.

Acknowledgments

The authors are grateful to Bernard Mont-Reynaud
and Andy Moorer for offering perspectives on digi-
tal audio editors. This material is based upon work
supported by NSF Award #0085945, an IBM Faculty
Partnership Award, and an NSF Graduate Research
Fellowship.

References

Abbott, C. 1984. “Efficient editing of digital sound on
disk.” Journal of the Audio Engineering Society
32(6):394-402.

Anderson, D. P, Y. Osawa, and R. Govindan. 1992. “A
File System for Continuous Media.”” ACM Transac-
tions on Computer Systems November:311-377.

Chen, P. M,, et al. 1994. “RAID: High-Performance, Reli-
able Secondary Storage.” ACM Computing Surveys
26(2):145-185.

Dannenberg, R. B. 1997. “Nyquist, a Language for Com-
position and Sound Synthesis.” Computer Music Jour-
nal 21(3):50-60.

Freed, A. 1987. “Recording, Mixing, and Signal Process-
ing on a Personal Computer.” Proceedings of the AES
5th International Conference: Music and Technology.
New York: Audio Engineering Society, p. 158.

Kirby, D.G., and S. A. Shute. 1988. ““The exploitation and
realization of a random access digital audio editor.”
IEEE Broadcasting Convention. New York: IEEE Press,
pp. 368-371.

Moorer, J. A. 1990. “Hard-Disk Recording and Editing of
Digital Audio.” Proceedings of the 89th Convention of
the Audio Engineering Society. New York: Audio Engi-
neering Society.

Computer Music Journal

