
*Published as: Roger B. Dannenberg, “Combining Visual and Textual Representations for Flexible
Interactive Signal Processing,” in The ICMC 2004 Proceedings, San Francisco: The International
Computer Music Association, 2004.

Combining Visual and Textual Representations for
Flexible Interactive Audio Signal Processing*

Roger B. Dannenberg

School of Computer Science, Carnegie Mellon University
dannenberg@cs.cmu.edu

Abstract
Interactive computer music systems pose new challenges for
audio software design. In particular, there is a need for
flexible run-time reconfiguration for interactive signal
processing. A new version of Aura offers a graphical editor
for building fixed graphs of unit generators. These graphs,
called instruments, can then be instantiated, patched, and
reconfigured freely at run time. This approach combines
visual programming with traditional text-based program-
ming, resulting in a structured programming model that is
easy to use, is fast in execution, and offers low audio latency
through fast instantiation time. The graphical editor has a
novel type resolution system and automatically generates
graphical interfaces for instrument testing.

1 Introduction
Flexible audio signal processing is a key ingredient in

most interactive computer music. In traditional signal-
processing tasks, audio processes tend to be static. For ex-
ample, a digital audio effect performs a single function and
the internal configuration of processing elements is fixed.
Non-interactive computer music languages, in particular the
Music n languages (Mathews 1969), introduced the idea of
dynamically instantiating “instruments” to reconfigure the
processing according to timed entries in a score file. In real-
time interactive music systems, software must be even more
dynamic, handling different media, performing computation
on both symbolic and audio representations, and reconfig-
uring signal computation under the control of various proc-
esses.

A popular approach to building interactive software is
that of MAX MSP (Puckette 1991) and its many descen-
dents. This visual programming language allows the user to
connect various modules in a directed graph. This represen-
tation is very close to the “boxes and arrows” diagrams used
to describe all sorts of signal processing systems, and it can
be said with confidence that this representation has with-
stood the test of time. However, visual representations have
problems dealing with dynamic structures. It is difficult to
express dynamic data structures or to reconfigure processing
graphs using MAX-like languages.

The main alternative is to use text-based languages.
SuperCollider (McCartney 1996) is a good example of a

text-based system for interactive computer music. Text-
based languages at least offer the possibility of reconfigur-
ing audio computation graphs, which is an attractive possi-
bility for music performance. The ability to decide at any
time to apply an effect or to change the way parameters are
computed can make programs more versatile while mini-
mizing the computation load that would occur if all options
were running all the time.

Aura is another text-based (until recently) programming
environment for interactive music performance systems.
Aura began almost 10 years ago as an object-oriented gen-
eralization of the CMU MIDI Toolkit. (Dannenberg 1986)
The Aura object model provides a natural way to create,
connect, and control audio signal processing modules. Aura
was designed with audio processing in mind, and it there-
fore offers multiple threads and support for low-latency
real-time audio computation.

The goal of this paper is to discuss software architecture
issues associated with interactive audio, especially in the
light of years of experience creating interactive composi-
tions with Aura. In particular, the latest version of Aura,
which I will call Aura 2, combines a visual editor with a
text-based scripting language in an effort to obtain the best
of both worlds of visual and text-based programming lan-
guages.

Aura 2 uses a visual editor to combine unit generators
into (potentially) larger units called instruments. At run-
time, under program control, instruments can be dynami-
cally allocated and patched to form an audio computation
graph. The periodic evaluation of this graph is scheduled
along with other events that can update instrument parame-
ters, create new instruments, and modify the graph. A
remote-procedure-call facility allows I/O, graphics, and
control computation to run outside of the time-critical
audio-computation thread.

Section 2 describes some related work, and Section 3
discusses design alternatives and the choices made for Aura
2. Section 4 describes the Aura Instrument Editor, a new
Aura component that allows users to edit signal-processing
algorithms graphically. This is followed by a description of
how instrument designs are incorporated into Aura pro-
grams and debugged there. Section 6 discusses the range of
programming styles supported, from static to very dynamic,
and the current status and future work are described in

2

Section 7. Finally, Section 8 presents a summary and
conclusions.

2 Related Work
There are many real-time audio processing frameworks

and systems, but space limitations prevent a detailed review.
Once the basic problems of audio I/O are surmounted (using
systems like PortAudio (Bencina and Burk 2001) or
RtAudio (Scavone 2002)), the next big issue is how to
modularize DSP algorithms for reuse. The standard ap-
proach is the unit generator concept, introduced in Music n,
in which signal processing objects have inputs, outputs,
some internal state, and a method that processes one unit of
input to produce outputs.

Systems vary according to how unit generators are
assembled and managed at run time. The simplest approach
is through mainly static graphs as in MAX-like languages.
(Chaudhary, Freed, and Wright 2000; Dechelle et al. 1998;
Puckette 1991; Puckette 1997; Puckette 2002a; Zicarelli
1998) Kyma (Scaletti and Johnson 1988) might also belong
in this category because it uses precompiled graphs.

A more elaborate approach is based on Music n in which
a group of unit generators (called a patch or an instrument)
is instantiated dynamically. A feature of this approach is
that instruments add their outputs to a global buffer. The
instrument can be deallocated without leaving behind any
“dangling” pointers to deleted objects. The NeXT Music Kit
(Jaffe and Boynton 1989) and csound (Vercoe and Ellis
1990) adopted this approach, and to a large extent, this is
also the basis for managing instruments in SuperCollider
(McCartney 1996). Similar principles are also at work in
ChucK (Wang and Cook 2003) insofar as audio “shreds”
can be started or stopped independently.

Another way to structure computation is to use the tree-
like structure of nested expressions, e.g. mult(osc(), env()),
to denote a corresponding graph structure of unit generators.
This sort of implicit connection is found in SuperCollider,
STK (Cook and Scavone 1999), Sizzle (Pope and
Ramakrishnan 2003) and Nyquist (Dannenberg 1997).

Other systems, including CLM (Schottstaedt 1994),
JSyn (Burk 1998), and Aura 1 (Dannenberg and Brandt
1996) impose even less organization upon programmers,
allowing arbitrary patching and repatching at run-time.

3 Design Issues
The premise of this work is that current systems suffer

because they focus too narrowly on a single paradigm.
Graphical editing systems are simple to learn and facilitate
rapid experimentation, but patches are hard to reconfigure
under program control. Text-based languages offer more
flexibility, but lose some of the intuitive feel and debugging
support of a visual representation.

Beyond the question of “graphical vs. textual,” there is a
deeper issue that I call “static vs. dynamic”: to what extent

are interconnections known at design time vs. run time?
When connections are known in advance, they can offer
more efficient compilation, more context for debugging, and
faster instantiation at run time. On the other hand, when
connections are made at run time, configurations and recon-
figurations can be generated interactively under computer
control. This is certainly more flexible.

 Aura 2 includes a new audio subsystem that supports a
range of processing models, from fully static audio proc-
essing graphs to fully dynamic ones. Static graphs of unit
generators are configured using a graphical editor (see
Figure 1) to form instruments, members of the Aura Instr
class. These instruments can be flexibly interconnected at
run time under program control.

Experience with fully dynamic and reconfigurable
graphs in the first version of Aura indicates, not surpris-
ingly, that most audio processing designs are mainly static.
While there may be good reason to allow and even promote
dynamic changes to audio signal processing graphs, in
practice, most connections are set up when an instrument is
created and stay that way for as long as the instrument
exists. Often, boxes-and-arrows diagrams are used at the
design stage, even when this must be translated to a textual
implementation, so Aura 2 supports this style of working by
providing a graphical patch editor.

By organizing collections of unit generators into instru-
ments, we benefit in several ways. First, we do not pay for
the overhead of dynamic patching when statically allocated
unit generators executed in a fixed order will suffice.
Second, when problems occur, symbolic debuggers tend to
provide more useful information when unit generators have
names and exist in the context of a larger object than when
they are dynamically allocated individually on the heap.
Third, in-lining unit generators and other compilation tricks
can improve the performance of the instrument model.
Finally, and most importantly, users can reason about their
own code more easily when more of the design is static.

The latest version of SuperCollider reflects some of
these thoughts and design principles; in particular, Super-
Collider 3 instruments are compiled into a single object as
opposed to composing unit generators at run time. The
justification is in part to avoid heavy computation in order
to instantiate a new instrument. (McCartney 2002)

Aura 2 also pays attention to the problems that arise
when graphs are more dynamic. As graphs are reconfigured,
Aura automatically calculates the instrument execution
order so that an instrument’s outputs are always up-to-date
before another instrument reads them. Instruments have
infinite fan-out – the output of one instrument can be shared
by any number of other instruments. Because instruments
can be referenced by many others, reference counting is
used to delete an instrument only after there are no more
references to it. This makes it unnecessary to explicitly
delete modulation sources and other signal sources that may
have been attached to a sound generator that has terminated.
Reference counting also eliminates the problem of deleting

3

an instrument too early. Finally, Aura 2 uses global names
for instruments (and all Aura objects) and a remote-
procedure call system. Instruments can be fully controlled
from processes running asynchronously with respect to the
time-critical audio processing loop.

4 The Aura Instrument Editor
The Aura Instrument Editor (AIE) is a graphical editor

for combining unit generators into instruments. (See Figure
1.) This is conceptually very similar to a number of
programs used for various systems (Bate 1990; Helmuth
1990; Minnick 1990), so I will try to focus only on some of
the interesting features.

One feature is an attempt to integrate the visual editor
with text-based programming. When the user creates a new
instrument, the editor can automatically update the user’s
Makefile and write scripting language functions to create an
instance of the instrument. In this way, new instruments are
automatically integrated into the user’s program. In
addition, the editor can automatically process unit generator
source code to add new unit generators to the AIE menus.

Although not shown in Figure 1, when the mouse is
positioned over a unit generator, a description appears on
the screen. Similarly, the full parameter name appears when
the mouse is moved over an input.

Figure 1. The Aura Instrument Editor. Instrument inputs

and outputs are color coded to indicate signal types.

4.1 Type Resolution
For efficiency, Aura supports various types of signals,

and the editor helps the user by automatically selecting
suitable types and compatible unit generators. The types are:
• Audio-rate (“a”) signals are streams of floating-point

numbers processed one block at a time (typically 32
samples per block).

• Block rate (“b”) signals are computed synchronously
with audio, but consist of only one sample per block
(similar to csound’s k-rate signals).

• Constant rate (“c”) unit generator inputs remain at a
constant value until changed by a message.

• Interpolated (“i”) inputs accept a block rate signal and
interpolate it to audio rates internally.

In the AIE, audio rate, block rate, and constant rate
signal inputs and outputs are color coded using red, yellow,
and green, and lines representing signals are coded using
different widths. The user selects unit generators by their
generic name, e.g. “osci” is an interpolating oscillator with
frequency, initial phase, and wave table parameters. It is the
editor’s job to select the correct implementation, which may
be one of Uosci_acc_a, Uosci_bcc_a, Uosci_ccc_a,
Uosci_bcc_b, Uosci_ccc_b. Note how the names encode the
input types and the output type.

To determine the unit generator types, the editor must
label the signal paths with their types. Among the con-
straints are:
• Signal (connector) types must match the type of the

input to which they are connected;
• Signal types must match the type of the output to which

they are connected;
• Only one block rate or audio rate signal can be

connected to a given input;
• Unit generator inputs that do not have any incoming

signal must be of type constant-rate.
These constraints do not always lead to a unique solution, so
a heuristic is used to guess what the user wants: When in
doubt, prefer block-rate over audio-rate. In addition, the user
can “pin” the type of any signal to the preferred rate to
override the editor’s choice.

This type resolution problem is NP-complete (using two
types to represent Boolean values, it is straightforward to
reduce type resolution to circuit satisfiability), so a general
solution would require backtracking and could take time
exponential in the size of the graph. In practice, labeling
“real” graphs is not so difficult. I created an iterative
algorithm that runs in O(n2) time, where n is the total
number of graph nodes and edges. The algorithm can fail to
find a valid assignment of types, but in this unlikely event,
the user can always label a signal explicitly. The gist of the
algorithm is in Figure 2. Steps are executed in order unless
otherwise specified. The algorithm terminates when all steps
are executed with no changes to the labeling.

4

This algorithm will iterate as long as progress is being
made. Since there is no backtracking or “unlabeling,” the
algorithm will eventually halt. If all inputs, outputs, and
signals are labeled, the algorithm succeeds. When a valid
labeling is not possible, the offending unit generators and/or
signals are labeled in bright red. Usually this means that one
or more inputs or outputs are unconnected.

Typically, this algorithm terminates in just a few itera-
tions, which is fast enough that the entire graph can be
relabeled after every editing operation. Thus, the user
receives instant visual feedback about the types of all
signals.

Initialization. For each unit generator in the graph, there
is a set of possible implementations; each implementation
specifies the type of each input and output. Begin by
labeling the type of each unit generator input and output as
—unknown“ and label the type of each signal as —unknown“
Signals that are explicitly labeled by the user are marked
accordingly, and inputs with no attached signals are labeled
as —constant rate.“

Propagate types. Examine the inputs and outputs at the
end-points of each signal. If the type at one end is known,
set the signal type and the input or output at the other end-
point to the same type. Note that progress has been made.

Check for ambiguity. For each unit generator,
enumerate the set of implementations that match the known
input and output types. For each unknown input or output
type, do all of the implementations specify the same type?
If so, then set the input or output type accordingly. For
example, if there are three possible implementations, but all
three have an audio-rate output, the type of the output is
—audio rate.“ If a type is resolved, note that progress has
been made.

Iterate. As long as progress is being made, repeat
—Propagate types“ and —Check for ambiguity.“

Fan-in. If an input has more than one connected signal,
set its type to —constant rate“ and Iterate.

Prefer block rate heuristic. If the possible
implementations for a unit generator include both —audio
rate“ and —block rate“ for the output, label the output type
as —block rate“ and Iterate.

Figure 2. The type resolution algorithm.

4.2 Buffer Allocation and Performance
After the user creates a valid instrument, the editor can

generate an implementation in C++. The implementation
declares each unit generator and defines a method to
perform one computation step that invokes each unit
generator. A topological sort is performed on the graph to
order the unit generators so that signals flow from input to
output in a single pass. Buffers are allocated to hold
intermediate results (the signals connecting unit generators),
and buffers are reused where possible to minimize storage.
Since buffers are temporary, they are allocated on the stack.

A common assumption is that buffer organization is
important for good cache performance in signal processing
applications. By modifying the AIE, we can evaluate the
impact of different buffer allocation policies. I compared the

performance of a simple patch using optimal buffering and
with no buffer optimization (each signal has its own buffer
of 32 floats). The patch is a simple FM instrument with
vibrato and a resonant filter. It has 6 audio-rate unit
generators and 10 block-rate unit generators, four of which
are envelope generators.

I modified Aura’s audio output object to time how long
it takes to compute a given number of sample blocks
(without writing them to the DAC). Interestingly, there is no
measurable difference between the optimized and unopti-
mized buffer allocation policy. In tests with from 1 to 128
copies of the instrument using either optimized or unopti-
mized buffer allocation, the run time per computed block
only varies by 0.5 percent.

I also measured the performance using Aura’s old unit
generator model where each unit generator is dynamically
allocated and patched to form a graph at run time. In this
case, the performance is about 16% slower than the new
model. This is because of the overhead to access a unit
generator includes testing to see if each input is valid, and if
not, calling a unit generator to provide the input, then
making a C++ virtual method call to run the unit generator.

The old unit generator model allocates a buffer on the
heap for each unit generator output. Figure 2 shows a graph
of performance as more copies of the graph are executed.
The graph is essentially flat until around 64 copies, after
which the execution time increases. 128 copies corresponds
to about 100KB of buffer data (not to mention other object
data), so it seems plausible that at this point, buffer writes
are forcing object data out of the 256KB secondary cache
and causing cache misses. Even then, the penalty is less than
a factor of two, in part due to the prefetching behavior of the
cache. (Dannenberg and Thompson 1997) Furthermore, this
particular processor is only able to run about 64 voices in
real time, so any performance degradation with more voices
would not show up in practice.

Excution Time

Linked Unit
Generators

Compiled
Instruments

0

5

10

15

20

1 2 4 8 16 32 64 128 256

Number of Copies

Ti
m

 e
 p

er
 b

lo
ck

 (u
se

c)

Figure 3. The instrument model with optimized buffer

allocation and sequentially executed, in-lined unit
generators performs slightly better than a graph of unit

generators linked and accessed via pointers.

5

5 Debugging Support
When a new instrument is created, it is often necessary

to build some scaffolding to test and debug the instrument.
Because the Aura Instrument Editor knows all the inputs
and outputs of an instrument design, it can automatically
create a graphical user interface to streamline the testing
phase. Figure 3 shows the control panel created for the
instrument named “Simple” in Figure 1. The AIE also adds
the instrument to a “Test” menu, so when the user runs
Aura, control panels are immediately available for all
instruments.

To test Simple, the user selects “Simple” from the “Test”
menu and the window shown in Figure 4 appears. At the
upper left corner is a “play” button. This creates an instance
of the Simple instrument and connects it to the audio output.
Below the play button, you can see labels that correspond to
the instrument inputs: “in,” “level,” and “hz”.

Figure 4. Automatically generated control panel to test the

"Simple" instrument shown in Figure 1.

Audio inputs such as “in” have fairly elaborate controls.
The audio source can be silence, a sinusoid (as shown),
white noise, an audio file, or real-time audio input. A slider
is provided to set the sinusoid’s frequency, and a level
control sets the input level.

Constant and block-rate inputs are controlled by sliders
as shown next to “level” and “hz.” The range of the slider
defaults to 0 to 1, but the user can change the range using
the AIE.

At the bottom of the control panel, there is an oscillo-
scope display that can be used to probe the signals within
the instrument. Notice the set of buttons labeled with unit
generator names (“lfo,” “amp_mod,” etc.) These select a
signal for display and correspond to the unit generator
names in Figure 1. Figure 4 shows the instrument output on

the oscilloscope. In steady-state, this simple instrument
produces very boring displays, so I wiggled the frequency of
the sinusoidal input just before the screen capture.

At the left edge of the oscilloscope signal display, there
is a short horizontal line segment above an upward-pointing
arrow. This indicates that the oscilloscope begins a sweep
when the signal crosses the indicated threshold in the
upward direction. The threshold and direction are set by a
mouse gesture: mouse down on the desired threshold, and
drag in the direction of the threshold crossing. This is a
simple refinement, but it is quite handy in practice.

The oscilloscope display is enabled by an option in the
AIE (notice the label “DEBUG MODE” at the upper right
of Figure 1). When the debug mode is selected, all signal
buffers become instrument outputs. An instrument of class
Probe is used to collect samples in the high-priority Aura
audio thread and send them via Aura’s remote procedure
call (Dannenberg 2004) to the Oscilloscope object in the
user-interface thread. The Probe object collects samples
only on request to avoid overloading the interface and
overflowing buffers.

6 Dynamic Configuration
So far, I have emphasized a more static instrument

model, and nothing has been said about dynamic alterations
to the signal computation graph. Aura 2 instruments can be
connected and disconnected from one another at run time.
For each signal input, a “set” method is generated. The user
can make a remote procedure call from anywhere to connect
the output of one instrument to the input of another. (Keep
in mind that an “instrument” is Aura’s generic term for any
source of audio or control signals. Instruments can serve as
controllers, digital audio effects, synthesizer voices, sound
file players, mixers, filters, etc.) Programming can be done
in C++ or Serpent, Aura’s real-time scripting language.
(Dannenberg 2002)

For example, to create and play an instance of Simple
with input from My_source, one can write:

simple = simple_create(my_source_create())
aura_play(simple)

To dispose of the input and replace it with audio input,
one writes:

simple_set_in_to(simple, audio_io_aura)

To delete this instance of Simple, one disconnects it
from the audio output object:

aura_mute(simple)

To create several instances of Simple at random times,
first define a function to create, play, and end a Simple:

def simple_player():
 var simple = simple_create(audio_in_aura)
 aura_play(simple)
 // optional parameters say to end after 3 seconds:
 aura_mute(simple, 0, after(3))

6

Then, we can use cause to invoke possibly overlapping
copies of simple_player after random delays:

for i = 0 to 5:
 cause(random() * 10, 'simple_player')

One could also save references to these instances, allowing
interactive, ongoing update messages to control them. This
sort of dynamic configuration and control is very difficult to
achieve in purely visual music programming languages.

To avoid dangling pointers to instruments, reference
counting is used. By default, instruments are deleted when
no longer attached to the graph. Thus, if you attach a special
modulator to a sound and the sound is deleted, the attached
modulator will also be deleted. Alternatively, the reference
count can be incremented by the creator of the instrument.
The instrument will then be retained for reuse as long as the
creator holds the reference.

6.1 Unit Generator Order of Evaluation
Aura uses the instrument graph structure to determine

the order of execution of the instruments. If the graph
changes, the user does not have to worry about execution
order because it is implicitly recomputed on every graph
traversal. In contrast, SuperCollider places order largely
under manual control, MAX compiles a fixed order for the
entire (static) graph, and CSL/Sizzle requires special fan-out
objects to allow a signal to be shared by multiple readers.

Aura’s algorithm is described here using pseudo-code.
Each instrument object computes samples by processing
samples from other instruments, and computed samples are
retained in the instrument’s output buffer(s). References to
other instruments are stored in the inputs array. Instruments
are visited using a form of topological sort: a sample block
counter keeps track of when it is necessary to calculate
samples, which are calculated just before the first reader
needs them. The graph traversal is started by calling run in
the audio output object, and run operates recursively to
traverse the graph. The pseudo-code for run is shown in
Figure 5.

method run(newcount):
 foreach input in inputs:
 if input.count < newcount: input.run(newcount)
 real_run() –compute the samples for this ugen,
 reading samples from inputs
 count = newcount –this instrument is up-to-date

Figure 5. The run method is used to traverse the instrument
graph in the data-dependent order.

This algorithm adds a simple compare and a store to the
overhead of traversing the graph, which is negligible given
that this cost is amortized over all the unit generators within
an instrument. Figure 6 illustrates the traversal path of a
small graph. Within an instrument, the configuration is
fixed, so the AIE-generated real_run method consists of a
sequential execution of the instrument’s unit generators.

Figure 6. Traversal order of the instrument graph, shown in

gray curve, is computed on the fly.

6.2 Support for Multiple Styles
My goal is to support various approaches to audio proc-

essing. The very static style of MAX-like languages is
easily accomplished by assembling a graph of instruments
and leaving it in place. The more dynamic Music n and
SuperCollider style, where notes or sounds are dynamically
instantiated, play to completion, and are deleted, are simple
to implement using timed messages to create and delete
sounds and the reference counting scheme to clean up. More
general schemes are supported by giving the user the full
ability to repatch the graph at run time.

7 Current Status, Future Work
Aura 2 is running under Linux, using PortAudio

(Bencina and Burk 2001) and PortMidi (http://www.cs.cmu.
edu/~music/portmusic) for I/O, Serpent (Dannenberg 2002)
as a real-time scripting language, and wxWidgets (formerly
wxWindows, http://www.wxwindows.org) for the graphical
user interface. The Aura Instrument Editor is implemented
in Serpent. Source is freely available, but Aura is not yet
packaged as easy-to-use, well-documented software.

Many enhancements are possible. The Aura Instrument
Editor would benefit from more direct manipulation as
opposed to menus and pop-up forms. It also needs an undo
facility and scrolling, and it would be nice to represent at
least multiplication and addition with special small icons.

The editor does not currently support any kind of hierar-
chical description. It would be nice to allow structured
elements such as Aura instruments to be inserted in place of
a unit generator. This would be especially useful in multi-
channel instruments where two or more copies of the same
graph are needed.

7

It might be desirable to extend Aura signal types to
include spectral frames and other types. While most systems
avoid this by coercing spectra into signals, the type resolu-
tion system might make it more practical and even desirable
to let types proliferate.

Since Aura instruments are compiled, it should not be
difficult to allow users to insert expressions and function
calls into their instrument designs. (Chaudhary, Freed, and
Wright 2000) This could be especially useful for processing
“constant rate” inputs. A constant rate input is updated with
a message, and sometimes it is desirable to perform actions
upon the receipt of a message.

Another optimization for signal processing is to merge
the inner loops of unit generators to form larger loops.
(Dannenberg and Thompson 1997) Signal values then can
be passed through registers rather than memory buffers, and
there is less loop overhead. The AIE could be extended to
perform this sort of optimization.

The integration of scores with real-time interactive sys-
tems (Puckette 2002b) is not well-understood, and this is
certainly an area for future exploration in Aura 2. Aura’s
new support for dynamically instantiated instruments should
allow a conceptually simple mapping from score to run-time
processing.

8 Summary and Conclusions
Aura 2 is a new version of the Aura platform for con-

structing real-time, interactive music systems. Changes have
been made based on experience and lessons learned from
the creation of many interactive pieces using Aura.

One lesson learned is that even when audio computation
can be completely reconfigured on-the-fly, it is easier to
think of the system in terms of fairly significant modules or
subgraphs that are never reconfigured internally. In fact,
these modules are often designed and documented using a
boxes-and-arrows diagram even when the implementation
uses a text-based language. The second lesson is that
supporting reconfigurability requires extra layers of
abstraction that ultimately make systems more complicated
and difficult to debug.

With these lessons in mind, I created a graphical instru-
ment editor to better support the programming style that
seemed most natural. Two nice side effects of this approach
are (1) signal processing is slightly faster due to a reduction
in processing overhead, and (2) the instrument editor is able
to automatically generate control panels that greatly
facilitate experimentation and debugging. The editor also
updates the user’s Makefile, simplifying the integration of
new instruments into programming projects.

A key feature of the editor is its type resolution system,
which automatically deduces appropriate signal types and
selects optimized unit generator implementations. By
performing this resolution at design time, the user can see
visually how the system is implemented, and instruments

with many unit generators can be instantiated very quickly
at run time, reducing system latency.

The availability of an instrument code generator facili-
tated a study of the effect of buffer allocation on perform-
ance. Current “wisdom” or folk lore dictates that buffer
allocation is important to performance. In our experiments,
buffer optimization had no measurable effect on run time
when buffers are allocated temporarily on the run-time
stack. When buffers are allocated statically (one per unit
generator), there is performance degradation, but not in real-
time operating ranges below 100% CPU utilization. Systems
with larger blocks sizes (Aura uses 32-sample blocks) or
faster processors without correspondingly larger caches
might want to consider schemes for reusing buffers. If
instruments combine unit generators and buffers are local
(on the stack), it is unlikely that any further optimization
will help.

While the graphical instrument editor facilitates the
programming of fixed audio processing patches, careful
attention also has been given to text-based programming
support. Aura instruments automatically compute the correct
execution order, reference counting facilitates the sharing
and automatic deletion of instruments, and Aura’s remote
procedure call mechanism makes it easy to configure audio
processing from a process outside of the time-critical audio
processing loop. By compiling unit generator graphs,
dynamic instantiation and deletion of audio processing
objects is faster.

In conclusion, real-time audio processing has become an
essential part of interactive computer music. It is important
that we understand the degree to which our languages and
systems determine what we create. Coming from the other
direction, it is important to design our languages and
systems to support rather than limit the creative process.
Towards this goal, Aura 2 offers an easy to use editor for
signal processing, combined with a flexible run-time system
that supports dynamic, on-the-fly reconfiguration.

9 Acknowledgments
Eli Brandt implemented Aura’s first audio processing

system, which formed the basis for this new work. I have
benefited from conversations with many audio system
developers, including Ron Kuivila, James McCartney,
Stephen Pope, and Amar Chaudhary. Thanks to Ning Hu
and Eli Brandt for helpful comments on this paper.

References
Bate, J. 1990. "UNISON - a Real-Time Interactive System

for Digital Sound Synthesis." In 1990 International
Computer Music Conference. San Francisco: Interna-
tional Computer Music Association, pp. 172-174.

Bencina, R., and P. Burk. 2001. "PortAudio - An Open
Source Cross Platform Audio API." In Proceedings of
the 2001 International Computer Music Conference. San

8

Francisco: International Computer Music Association,
pp. 263-266.

Burk, P. 1998. "JSyn - A Real-Time Synthesis API for
Java." In Proceedings of the 1998 International
Computer Music Conference. San Francisco: Interna-
tional Computer Music Conference, pp. 252-255.

Chaudhary, A., A. Freed, and M. Wright. 2000. "An Open
Architecture for Real-Time Music Software." In
Proceedings of the 2000 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 492-495.

Cook, P. R., and G. Scavone. 1999. "The Synthesis Toolkit
(STK)." In Proceedings of the 1999 International
Computer Music Conference. San Francisco: Interna-
tional Computer Music Association, pp. 164-166.

Dannenberg, R. B. 1986. "The CMU MIDI Toolkit." In
Proceedings of the 1986 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 53-56.

Dannenberg, R. B. 1997. "Machine Tongues XIX: Nyquist,
a Language for Composition and Sound Synthesis."
Computer Music Journal, 21(3), 50-60.

Dannenberg, R. B. 2002. "A Language for Interactive Audio
Applications." In Proceedings of the 2002 International
Computer Music Conference. San Francisco: Interna-
tional Computer Music Association, pp. 509-515.

Dannenberg, R. B. 2004. "Aura II: Making Real-Time
Systems Safe for Music." In (in review).

Dannenberg, R. B., and E. Brandt. 1996. "A Flexible Real-
Time Software Synthesis System." In Proceedings of the
1996 International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 270-273.

Dannenberg, R. B., and N. Thompson. 1997. "Real-Time
Software Synthesis on Superscaler Architectures."
Computer Music Journal, 21(3), 83-94.

Dechelle, F., R. Borghesi, M. D. Ceccco, E. Maggi, B.
Rovan, and N. Schnell. 1998. "jMax: a new JAVA-based
editing and control system for real-time musical
applications." Computer Music Journal, 23(3), 50-58.

Helmuth, M. 1990. "PatchMix: A C++ X Graphical
Interface to Cmix." In 1990 International Computer
Music Conference. San Francisco: International
Computer Music Association, pp. 273-275.

Jaffe, D. A., and L. R. Boynton. 1989. "An Overview of the
Sound and Music Kits for the NeXT Computer."
Computer Music Journal, 13(2), 48-55.

Mathews, M. 1969. The Technology of Computer Music:
MIT Press.

McCartney, J. 1996. "SuperCollider: A New Real Time
Synthesis Language." In Proceedings of the 1996
International Computer Music Conference. San Fran-

cisco: International Computer Music Association, pp.
257-258.

McCartney, J. 2002. "Rethinking the Computer Music
Language: SuperCollider." Computer Music Journal,
26(4), 61-68.

Minnick, M. 1990. "A Graphical Editor for Building Unit
Generator Patches." In 1990 International Computer
Music Conference. San Francisco: International
Computer Music Association, pp. 253-255.

Pope, S. T., and C. Ramakrishnan. 2003. "The CREATE
Signal Library ("Sizzle"): Design, Issues, and
Applications." In Proceedings of the 2003 International
Computer Music Conference. San Francisco: Interna-
tional Computer Music Association, pp. 415-422.

Puckette, M. 1991. "Combining Event and Signal
Processing in the MAX Graphical Programming
Environment." Computer Music Journal, 15(3), 68-77.

Puckette, M. 1997. "Pure Data." In 1997 International
Computer Music Conference. San Francisco: Interna-
tional Computer Music Association, pp. 224-227.

Puckette, M. 2002a. "Max at Seventeen." Computer Music
Journal, 26(4), 31-43.

Puckette, M. 2002b. "Using Pd as a score language." In
Proceedings of the 2002 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 184-187.

Scaletti, C., and R. E. Johnson. 1988. "An Interactive
Graphic Environment for Object-oriented Music Com-
position and Sound Synthesis." In Proceedings of the
Conference on Object-Oriented Programming Lan-
guages and Systems. New York: ACM Press, pp. 18-26.

Scavone, G. P. 2002. "RtAudio: A Cross-Platform C++
Class for Realtime Audio Input/Output." In Proceedings
of the 2002 International Computer Music Conference.
International Computer Music Association, pp. 196-199.

Schottstaedt, B. 1994. "Machine Tongues XVII: CLM:
Music V Meets Common Lisp." Computer Music
Journal, 18(2), 30-37.

Vercoe, B., and D. Ellis. 1990. "Real-Time CSOUND:
Software Synthesis with Sensing and Control." In 1990
International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 209-211.

Wang, G., and P. R. Cook. 2003. "ChucK: A Concurrent,
On-the-fly, Audio Programming Language." In
Proceedings of the 2003 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 219-226.

Zicarelli, D. 1998. "An Extensible Real-Time Signal
Processing Environment for Max." In Proceedings of the
1998 International Computer Music Conference. Inter-
national Computer Music Association, pp. 463-466.

