
*Published as: Roger B. Dannenberg, “Combining Visual and Textual Representations for Flexible 
Interactive Signal Processing,” in The ICMC 2004 Proceedings, San Francisco: The International 
Computer Music Association, 2004. 

Combining Visual and Textual Representations for 
Flexible Interactive Audio Signal Processing* 

Roger B. Dannenberg 

School of Computer Science, Carnegie Mellon University 
dannenberg@cs.cmu.edu

Abstract 
Interactive computer music systems pose new challenges for 
audio software design. In particular, there is a need for 
flexible run-time reconfiguration for interactive signal 
processing. A new version of Aura offers a graphical editor 
for building fixed graphs of unit generators. These graphs, 
called instruments, can then be instantiated, patched, and 
reconfigured freely at run time. This approach combines 
visual programming with traditional text-based program-
ming, resulting in a structured programming model that is 
easy to use, is fast in execution, and offers low audio latency 
through fast instantiation time. The graphical editor has a 
novel type resolution system and automatically generates 
graphical interfaces for instrument testing. 

1 Introduction 
Flexible audio signal processing is a key ingredient in 

most interactive computer music. In traditional signal-
processing tasks, audio processes tend to be static. For ex-
ample, a digital audio effect performs a single function and 
the internal configuration of processing elements is fixed. 
Non-interactive computer music languages, in particular the 
Music n languages (Mathews 1969), introduced the idea of 
dynamically instantiating “instruments” to reconfigure the 
processing according to timed entries in a score file. In real-
time interactive music systems, software must be even more 
dynamic, handling different media, performing computation 
on both symbolic and audio representations, and reconfig-
uring signal computation under the control of various proc-
esses.  

A popular approach to building interactive software is 
that of MAX MSP (Puckette 1991) and its many descen-
dents. This visual programming language allows the user to 
connect various modules in a directed graph. This represen-
tation is very close to the “boxes and arrows” diagrams used 
to describe all sorts of signal processing systems, and it can 
be said with confidence that this representation has with-
stood the test of time. However, visual representations have 
problems dealing with dynamic structures. It is difficult to 
express dynamic data structures or to reconfigure processing 
graphs using MAX-like languages. 

The main alternative is to use text-based languages. 
SuperCollider (McCartney 1996) is a good example of a 

text-based system for interactive computer music. Text-
based languages at least offer the possibility of reconfigur-
ing audio computation graphs, which is an attractive possi-
bility for music performance. The ability to decide at any 
time to apply an effect or to change the way parameters are 
computed can make programs more versatile while mini-
mizing the computation load that would occur if all options 
were running all the time. 

Aura is another text-based (until recently) programming 
environment for interactive music performance systems. 
Aura began almost 10 years ago as an object-oriented gen-
eralization of the CMU MIDI Toolkit. (Dannenberg 1986) 
The Aura object model provides a natural way to create, 
connect, and control audio signal processing modules. Aura 
was designed with audio processing in mind, and it there-
fore offers multiple threads and support for low-latency 
real-time audio computation. 

The goal of this paper is to discuss software architecture 
issues associated with interactive audio, especially in the 
light of years of experience creating interactive composi-
tions with Aura. In particular, the latest version of Aura, 
which I will call Aura 2, combines a visual editor with a 
text-based scripting language in an effort to obtain the best 
of both worlds of visual and text-based programming lan-
guages. 

Aura 2 uses a visual editor to combine unit generators 
into (potentially) larger units called instruments. At run-
time, under program control, instruments can be dynami-
cally allocated and patched to form an audio computation 
graph. The periodic evaluation of this graph is scheduled 
along with other events that can update instrument parame-
ters, create new instruments, and modify the graph. A 
remote-procedure-call facility allows I/O, graphics, and 
control computation to run outside of the time-critical 
audio-computation thread. 

Section 2 describes some related work, and Section 3 
discusses design alternatives and the choices made for Aura 
2. Section 4 describes the Aura Instrument Editor, a new 
Aura component that allows users to edit signal-processing 
algorithms graphically. This is followed by a description of 
how instrument designs are incorporated into Aura pro-
grams and debugged there. Section 6 discusses the range of 
programming styles supported, from static to very dynamic, 
and the current status and future work are described in 
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Section 7. Finally, Section 8 presents a summary and 
conclusions. 

2 Related Work 
There are many real-time audio processing frameworks 

and systems, but space limitations prevent a detailed review. 
Once the basic problems of audio I/O are surmounted (using 
systems like PortAudio (Bencina and Burk 2001) or 
RtAudio (Scavone 2002)), the next big issue is how to 
modularize DSP algorithms for reuse. The standard ap-
proach is the unit generator concept, introduced in Music n, 
in which signal processing objects have inputs, outputs, 
some internal state, and a method that processes one unit of 
input to produce outputs. 

Systems vary according to how unit generators are 
assembled and managed at run time. The simplest approach 
is through mainly static graphs as in MAX-like languages. 
(Chaudhary, Freed, and Wright 2000; Dechelle et al. 1998; 
Puckette 1991; Puckette 1997; Puckette 2002a; Zicarelli 
1998) Kyma (Scaletti and Johnson 1988) might also belong 
in this category because it uses precompiled graphs. 

A more elaborate approach is based on Music n in which 
a group of unit generators (called a patch or an instrument) 
is instantiated dynamically. A feature of this approach is 
that instruments add their outputs to a global buffer. The 
instrument can be deallocated without leaving behind any 
“dangling” pointers to deleted objects. The NeXT Music Kit 
(Jaffe and Boynton 1989) and csound (Vercoe and Ellis 
1990) adopted this approach, and to a large extent, this is 
also the basis for managing instruments in SuperCollider 
(McCartney 1996). Similar principles are also at work in 
ChucK (Wang and Cook 2003) insofar as audio “shreds” 
can be started or stopped independently.  

Another way to structure computation is to use the tree-
like structure of nested expressions, e.g. mult(osc(), env()), 
to denote a corresponding graph structure of unit generators. 
This sort of implicit connection is found in SuperCollider, 
STK (Cook and Scavone 1999), Sizzle (Pope and 
Ramakrishnan 2003) and Nyquist (Dannenberg 1997). 

Other systems, including CLM (Schottstaedt 1994), 
JSyn (Burk 1998), and Aura 1 (Dannenberg and Brandt 
1996) impose even less organization upon programmers, 
allowing arbitrary patching and repatching at run-time. 

3 Design Issues 
The premise of this work is that current systems suffer 

because they focus too narrowly on a single paradigm. 
Graphical editing systems are simple to learn and facilitate 
rapid experimentation, but patches are hard to reconfigure 
under program control. Text-based languages offer more 
flexibility, but lose some of the intuitive feel and debugging 
support of a visual representation. 

Beyond the question of “graphical vs. textual,” there is a 
deeper issue that I call “static vs. dynamic”: to what extent 

are interconnections known at design time vs. run time? 
When connections are known in advance, they can offer 
more efficient compilation, more context for debugging, and 
faster instantiation at run time. On the other hand, when 
connections are made at run time, configurations and recon-
figurations can be generated interactively under computer 
control. This is certainly more flexible. 

 Aura 2 includes a new audio subsystem that supports a 
range of processing models, from fully static audio proc-
essing graphs to fully dynamic ones. Static graphs of unit 
generators are configured using a graphical editor (see 
Figure 1) to form instruments, members of the Aura Instr 
class. These instruments can be flexibly interconnected at 
run time under program control. 

Experience with fully dynamic and reconfigurable 
graphs in the first version of Aura indicates, not surpris-
ingly, that most audio processing designs are mainly static. 
While there may be good reason to allow and even promote 
dynamic changes to audio signal processing graphs, in 
practice, most connections are set up when an instrument is 
created and stay that way for as long as the instrument 
exists. Often, boxes-and-arrows diagrams are used at the 
design stage, even when this must be translated to a textual 
implementation, so Aura 2 supports this style of working by 
providing a graphical patch editor. 

By organizing collections of unit generators into instru-
ments, we benefit in several ways. First, we do not pay for 
the overhead of dynamic patching when statically allocated 
unit generators executed in a fixed order will suffice. 
Second, when problems occur, symbolic debuggers tend to 
provide more useful information when unit generators have 
names and exist in the context of a larger object than when 
they are dynamically allocated individually on the heap. 
Third, in-lining unit generators and other compilation tricks 
can improve the performance of the instrument model. 
Finally, and most importantly, users can reason about their 
own code more easily when more of the design is static. 

The latest version of SuperCollider reflects some of 
these thoughts and design principles; in particular, Super-
Collider 3 instruments are compiled into a single object as 
opposed to composing unit generators at run time. The 
justification is in part to avoid heavy computation in order 
to instantiate a new instrument. (McCartney 2002) 

Aura 2 also pays attention to the problems that arise 
when graphs are more dynamic. As graphs are reconfigured, 
Aura automatically calculates the instrument execution 
order so that an instrument’s outputs are always up-to-date 
before another instrument reads them. Instruments have 
infinite fan-out – the output of one instrument can be shared 
by any number of other instruments. Because instruments 
can be referenced by many others, reference counting is 
used to delete an instrument only after there are no more 
references to it. This makes it unnecessary to explicitly 
delete modulation sources and other signal sources that may 
have been attached to a sound generator that has terminated. 
Reference counting also eliminates the problem of deleting 
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an instrument too early. Finally, Aura 2 uses global names 
for instruments (and all Aura objects) and a remote-
procedure call system. Instruments can be fully controlled 
from processes running asynchronously with respect to the 
time-critical audio processing loop. 

4 The Aura Instrument Editor 
The Aura Instrument Editor (AIE) is a graphical editor 

for combining unit generators into instruments. (See Figure 
1.) This is conceptually very similar to a number of 
programs used for various systems (Bate 1990; Helmuth 
1990; Minnick 1990), so I will try to focus only on some of 
the interesting features. 

One feature is an attempt to integrate the visual editor 
with text-based programming. When the user creates a new 
instrument, the editor can automatically update the user’s 
Makefile and write scripting language functions to create an 
instance of the instrument. In this way, new instruments are 
automatically integrated into the user’s program. In 
addition, the editor can automatically process unit generator 
source code to add new unit generators to the AIE menus. 

Although not shown in Figure 1, when the mouse is 
positioned over a unit generator, a description appears on 
the screen. Similarly, the full parameter name appears when 
the mouse is moved over an input. 

 
Figure 1. The Aura Instrument Editor. Instrument inputs 

and outputs are color coded to indicate signal types. 

4.1 Type Resolution 
For efficiency, Aura supports various types of signals, 

and the editor helps the user by automatically selecting 
suitable types and compatible unit generators. The types are: 
• Audio-rate (“a”) signals are streams of floating-point 

numbers processed one block at a time (typically 32 
samples per block).  

• Block rate (“b”) signals are computed synchronously 
with audio, but consist of only one sample per block 
(similar to csound’s k-rate signals).  

• Constant rate (“c”) unit generator inputs remain at a 
constant value until changed by a message.  

• Interpolated (“i”) inputs accept a block rate signal and 
interpolate it to audio rates internally. 

In the AIE, audio rate, block rate, and constant rate 
signal inputs and outputs are color coded using red, yellow, 
and green, and lines representing signals are coded using 
different widths. The user selects unit generators by their 
generic name, e.g. “osci” is an interpolating oscillator with 
frequency, initial phase, and wave table parameters. It is the 
editor’s job to select the correct implementation, which may 
be one of Uosci_acc_a, Uosci_bcc_a, Uosci_ccc_a, 
Uosci_bcc_b, Uosci_ccc_b. Note how the names encode the 
input types and the output type. 

To determine the unit generator types, the editor must 
label the signal paths with their types. Among the con-
straints are: 
• Signal (connector) types must match the type of the 

input to which they are connected; 
• Signal types must match the type of the output to which 

they are connected; 
• Only one block rate or audio rate signal can be 

connected to a given input; 
• Unit generator inputs that do not have any incoming 

signal must be of type constant-rate. 
These constraints do not always lead to a unique solution, so 
a heuristic is used to guess what the user wants: When in 
doubt, prefer block-rate over audio-rate. In addition, the user 
can “pin” the type of any signal to the preferred rate to 
override the editor’s choice. 

This type resolution problem is NP-complete (using two 
types to represent Boolean values, it is straightforward to 
reduce type resolution to circuit satisfiability), so a general 
solution would require backtracking and could take time 
exponential in the size of the graph. In practice, labeling 
“real” graphs is not so difficult. I created an iterative 
algorithm that runs in O(n2) time, where n is the total 
number of graph nodes and edges. The algorithm can fail to 
find a valid assignment of types, but in this unlikely event, 
the user can always label a signal explicitly. The gist of the 
algorithm is in Figure 2. Steps are executed in order unless 
otherwise specified. The algorithm terminates when all steps 
are executed with no changes to the labeling. 
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This algorithm will iterate as long as progress is being 
made. Since there is no backtracking or “unlabeling,” the 
algorithm will eventually halt. If all inputs, outputs, and 
signals are labeled, the algorithm succeeds. When a valid 
labeling is not possible, the offending unit generators and/or 
signals are labeled in bright red. Usually this means that one 
or more inputs or outputs are unconnected. 

Typically, this algorithm terminates in just a few itera-
tions, which is fast enough that the entire graph can be 
relabeled after every editing operation. Thus, the user 
receives instant visual feedback about the types of all 
signals. 

Initialization. For each unit generator in the graph, there 
is a set of possible implementations; each implementation 
specifies the type of each input and output. Begin by 
labeling the type of each unit generator input and output as 
—unknown“ and label the type of each signal as —unknown“ 
Signals that are explicitly labeled by the user are marked 
accordingly, and inputs with no attached signals are labeled 
as —constant rate.“ 

Propagate types. Examine the inputs and outputs at the 
end-points of each signal. If the type at one end is known, 
set the signal type and the input or output at the other end-
point to the same type. Note that progress has been made. 

Check for ambiguity. For each unit generator, 
enumerate the set of implementations that match the known 
input and output types. For each unknown input or output 
type, do all of the implementations specify the same type? 
If so, then set the input or output type accordingly. For 
example, if there are three possible implementations, but all 
three have an audio-rate output, the type of the output is 
—audio rate.“ If a type is resolved, note that progress has 
been made. 

Iterate. As long as progress is being made, repeat 
—Propagate types“ and —Check for ambiguity.“ 

Fan-in. If an input has more than one connected signal, 
set its type to —constant rate“ and Iterate. 

Prefer block rate heuristic. If the possible 
implementations for a unit generator include both —audio 
rate“ and —block rate“ for the output, label the output type 
as —block rate“ and Iterate.  

Figure 2. The type resolution algorithm. 

4.2 Buffer Allocation and Performance 
After the user creates a valid instrument, the editor can 

generate an implementation in C++. The implementation 
declares each unit generator and defines a method to 
perform one computation step that invokes each unit 
generator. A topological sort is performed on the graph to 
order the unit generators so that signals flow from input to 
output in a single pass. Buffers are allocated to hold 
intermediate results (the signals connecting unit generators), 
and buffers are reused where possible to minimize storage. 
Since buffers are temporary, they are allocated on the stack.  

A common assumption is that buffer organization is 
important for good cache performance in signal processing 
applications. By modifying the AIE, we can evaluate the 
impact of different buffer allocation policies. I compared the 

performance of a simple patch using optimal buffering and 
with no buffer optimization (each signal has its own buffer 
of 32 floats). The patch is a simple FM instrument with 
vibrato and a resonant filter. It has 6 audio-rate unit 
generators and 10 block-rate unit generators, four of which 
are envelope generators.  

I modified Aura’s audio output object to time how long 
it takes to compute a given number of sample blocks 
(without writing them to the DAC). Interestingly, there is no 
measurable difference between the optimized and unopti-
mized buffer allocation policy. In tests with from 1 to 128 
copies of the instrument using either optimized or unopti-
mized buffer allocation, the run time per computed block 
only varies by 0.5 percent.  

I also measured the performance using Aura’s old unit 
generator model where each unit generator is dynamically 
allocated and patched to form a graph at run time. In this 
case, the performance is about 16% slower than the new 
model. This is because of the overhead to access a unit 
generator includes testing to see if each input is valid, and if 
not, calling a unit generator to provide the input, then 
making a C++ virtual method call to run the unit generator. 

The old unit generator model allocates a buffer on the 
heap for each unit generator output. Figure 2 shows a graph 
of performance as more copies of the graph are executed. 
The graph is essentially flat until around 64 copies, after 
which the execution time increases. 128 copies corresponds 
to about 100KB of buffer data (not to mention other object 
data), so it seems plausible that at this point, buffer writes 
are forcing object data out of the 256KB secondary cache 
and causing cache misses. Even then, the penalty is less than 
a factor of two, in part due to the prefetching behavior of the 
cache. (Dannenberg and Thompson 1997) Furthermore, this 
particular processor is only able to run about 64 voices in 
real time, so any performance degradation with more voices 
would not show up in practice. 
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Figure 3. The instrument model with optimized buffer 

allocation and sequentially executed, in-lined unit 
generators performs slightly better than a graph of unit 

generators linked and accessed via pointers. 
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5 Debugging Support 
When a new instrument is created, it is often necessary 

to build some scaffolding to test and debug the instrument. 
Because the Aura Instrument Editor knows all the inputs 
and outputs of an instrument design, it can automatically 
create a graphical user interface to streamline the testing 
phase. Figure 3 shows the control panel created for the 
instrument named “Simple” in Figure 1. The AIE also adds 
the instrument to a “Test” menu, so when the user runs 
Aura, control panels are immediately available for all 
instruments. 

To test Simple, the user selects “Simple” from the “Test” 
menu and the window shown in Figure 4 appears. At the 
upper left corner is a “play” button. This creates an instance 
of the Simple instrument and connects it to the audio output. 
Below the play button, you can see labels that correspond to 
the instrument inputs: “in,” “level,” and “hz”. 

 
Figure 4. Automatically generated control panel to test the 

"Simple" instrument shown in Figure 1. 

Audio inputs such as “in” have fairly elaborate controls. 
The audio source can be silence, a sinusoid (as shown), 
white noise, an audio file, or real-time audio input. A slider 
is provided to set the sinusoid’s frequency, and a level 
control sets the input level. 

Constant and block-rate inputs are controlled by sliders 
as shown next to “level” and “hz.” The range of the slider 
defaults to 0 to 1, but the user can change the range using 
the AIE. 

At the bottom of the control panel, there is an oscillo-
scope display that can be used to probe the signals within 
the instrument. Notice the set of buttons labeled with unit 
generator names (“lfo,” “amp_mod,” etc.) These select a 
signal for display and correspond to the unit generator 
names in Figure 1. Figure 4 shows the instrument output on 

the oscilloscope. In steady-state, this simple instrument 
produces very boring displays, so I wiggled the frequency of 
the sinusoidal input just before the screen capture. 

At the left edge of the oscilloscope signal display, there 
is a short horizontal line segment above an upward-pointing 
arrow. This indicates that the oscilloscope begins a sweep 
when the signal crosses the indicated threshold in the 
upward direction. The threshold and direction are set by a 
mouse gesture: mouse down on the desired threshold, and 
drag in the direction of the threshold crossing. This is a 
simple refinement, but it is quite handy in practice. 

The oscilloscope display is enabled by an option in the 
AIE (notice the label “DEBUG MODE” at the upper right 
of Figure 1). When the debug mode is selected, all signal 
buffers become instrument outputs. An instrument of class 
Probe is used to collect samples in the high-priority Aura 
audio thread and send them via Aura’s remote procedure 
call (Dannenberg 2004) to the Oscilloscope object in the 
user-interface thread. The Probe object collects samples 
only on request to avoid overloading the interface and 
overflowing buffers. 

6 Dynamic Configuration 
So far, I have emphasized a more static instrument 

model, and nothing has been said about dynamic alterations 
to the signal computation graph. Aura 2 instruments can be 
connected and disconnected from one another at run time. 
For each signal input, a “set” method is generated. The user 
can make a remote procedure call from anywhere to connect 
the output of one instrument to the input of another. (Keep 
in mind that an “instrument” is Aura’s generic term for any 
source of audio or control signals. Instruments can serve as 
controllers, digital audio effects, synthesizer voices, sound 
file players, mixers, filters, etc.) Programming can be done 
in C++ or Serpent, Aura’s real-time scripting language. 
(Dannenberg 2002) 

For example, to create and play an instance of Simple 
with input from My_source, one can write: 

simple = simple_create(my_source_create()) 
aura_play(simple) 

To dispose of the input and replace it with audio input, 
one writes: 

simple_set_in_to(simple, audio_io_aura) 

To delete this instance of Simple, one disconnects it 
from the audio output object: 

aura_mute(simple) 

To create several instances of Simple at random times, 
first define a function to create, play, and end a Simple: 

def simple_player(): 
 var simple = simple_create(audio_in_aura) 
 aura_play(simple) 
 // optional parameters say to end after 3 seconds: 
 aura_mute(simple, 0, after(3)) 
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Then, we can use cause to invoke possibly overlapping 
copies of simple_player after random delays: 

for i = 0 to 5: 
 cause(random() * 10, 'simple_player') 

One could also save references to these instances, allowing 
interactive, ongoing update messages to control them. This 
sort of dynamic configuration and control is very difficult to 
achieve in purely visual music programming languages. 

To avoid dangling pointers to instruments, reference 
counting is used. By default, instruments are deleted when 
no longer attached to the graph. Thus, if you attach a special 
modulator to a sound and the sound is deleted, the attached 
modulator will also be deleted. Alternatively, the reference 
count can be incremented by the creator of the instrument. 
The instrument will then be retained for reuse as long as the 
creator holds the reference. 

6.1 Unit Generator Order of Evaluation 
Aura uses the instrument graph structure to determine 

the order of execution of the instruments. If the graph 
changes, the user does not have to worry about execution 
order because it is implicitly recomputed on every graph 
traversal. In contrast, SuperCollider places order largely 
under manual control, MAX compiles a fixed order for the 
entire (static) graph, and CSL/Sizzle requires special fan-out 
objects to allow a signal to be shared by multiple readers. 

Aura’s algorithm is described here using pseudo-code. 
Each instrument object computes samples by processing 
samples from other instruments, and computed samples are 
retained in the instrument’s output buffer(s). References to 
other instruments are stored in the inputs array. Instruments 
are visited using a form of topological sort: a sample block 
counter keeps track of when it is necessary to calculate 
samples, which are calculated just before the first reader 
needs them. The graph traversal is started by calling run in 
the audio output object, and run operates recursively to 
traverse the graph. The pseudo-code for run is shown in 
Figure 5. 

method run(newcount): 
 foreach input in inputs: 
  if input.count < newcount: input.run(newcount) 
 real_run() –compute the samples for this ugen, 
    reading samples from inputs 
 count = newcount –this instrument is up-to-date 

Figure 5. The run method is used to traverse the instrument 
graph in the data-dependent order. 

This algorithm adds a simple compare and a store to the 
overhead of traversing the graph, which is negligible given 
that this cost is amortized over all the unit generators within 
an instrument. Figure 6 illustrates the traversal path of a 
small graph. Within an instrument, the configuration is 
fixed, so the AIE-generated  real_run method consists of a 
sequential execution of the instrument’s unit generators. 

 
Figure 6. Traversal order of the instrument graph, shown in 

gray curve, is computed on the fly. 

6.2 Support for Multiple Styles 
My goal is to support various approaches to audio proc-

essing. The very static style of MAX-like languages is 
easily accomplished by assembling a graph of instruments 
and leaving it in place. The more dynamic Music n and 
SuperCollider style, where notes or sounds are dynamically 
instantiated, play to completion, and are deleted, are simple 
to implement using timed messages to create and delete 
sounds and the reference counting scheme to clean up. More 
general schemes are supported by giving the user the full 
ability to repatch the graph at run time.  

7 Current Status, Future Work 
Aura 2 is running under Linux, using PortAudio 

(Bencina and Burk 2001) and PortMidi (http://www.cs.cmu. 
edu/~music/portmusic) for I/O, Serpent (Dannenberg 2002) 
as a real-time scripting language, and wxWidgets (formerly 
wxWindows, http://www.wxwindows.org) for the graphical 
user interface. The Aura Instrument Editor is implemented 
in Serpent. Source is freely available, but Aura is not yet 
packaged as easy-to-use, well-documented software. 

Many enhancements are possible. The Aura Instrument 
Editor would benefit from more direct manipulation as 
opposed to menus and pop-up forms. It also needs an undo 
facility and scrolling, and it would be nice to represent at 
least multiplication and addition with special small icons. 

The editor does not currently support any kind of hierar-
chical description. It would be nice to allow structured 
elements such as Aura instruments to be inserted in place of 
a unit generator. This would be especially useful in multi-
channel instruments where two or more copies of the same 
graph are needed. 
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It might be desirable to extend Aura signal types to 
include spectral frames and other types. While most systems 
avoid this by coercing spectra into signals, the type resolu-
tion system might make it more practical and even desirable 
to let types proliferate. 

Since Aura instruments are compiled, it should not be 
difficult to allow users to insert expressions and function 
calls into their instrument designs. (Chaudhary, Freed, and 
Wright 2000) This could be especially useful for processing 
“constant rate” inputs. A constant rate input is updated with 
a message, and sometimes it is desirable to perform actions 
upon the receipt of a message. 

Another optimization for signal processing is to merge 
the inner loops of unit generators to form larger loops. 
(Dannenberg and Thompson 1997) Signal values then can 
be passed through registers rather than memory buffers, and 
there is less loop overhead. The AIE could be extended to 
perform this sort of optimization. 

The integration of scores with real-time interactive sys-
tems (Puckette 2002b) is not well-understood, and this is 
certainly an area for future exploration in Aura 2. Aura’s 
new support for dynamically instantiated instruments should 
allow a conceptually simple mapping from score to run-time 
processing. 

8 Summary and Conclusions 
Aura 2 is a new version of the Aura platform for con-

structing real-time, interactive music systems. Changes have 
been made based on experience and lessons learned from 
the creation of many interactive pieces using Aura.  

One lesson learned is that even when audio computation 
can be completely reconfigured on-the-fly, it is easier to 
think of the system in terms of fairly significant modules or 
subgraphs that are never reconfigured internally. In fact, 
these modules are often designed and documented using a 
boxes-and-arrows diagram even when the implementation 
uses a text-based language. The second lesson is that 
supporting reconfigurability requires extra layers of 
abstraction that ultimately make systems more complicated 
and difficult to debug. 

With these lessons in mind, I created a graphical instru-
ment editor to better support the programming style that 
seemed most natural. Two nice side effects of this approach 
are (1) signal processing is slightly faster due to a reduction 
in processing overhead, and (2) the instrument editor is able 
to automatically generate control panels that greatly 
facilitate experimentation and debugging. The editor also 
updates the user’s Makefile, simplifying the integration of 
new instruments into programming projects. 

A key feature of the editor is its type resolution system, 
which automatically deduces appropriate signal types and 
selects optimized unit generator implementations. By 
performing this resolution at design time, the user can see 
visually how the system is implemented, and instruments 

with many unit generators can be instantiated very quickly 
at run time, reducing system latency. 

The availability of an instrument code generator facili-
tated a study of the effect of buffer allocation on perform-
ance. Current “wisdom” or folk lore dictates that buffer 
allocation is important to performance. In our experiments, 
buffer optimization had no measurable effect on run time 
when buffers are allocated temporarily on the run-time 
stack. When buffers are allocated statically (one per unit 
generator), there is performance degradation, but not in real-
time operating ranges below 100% CPU utilization. Systems 
with larger blocks sizes (Aura uses 32-sample blocks) or 
faster processors without correspondingly larger caches 
might want to consider schemes for reusing buffers. If 
instruments combine unit generators and buffers are local 
(on the stack), it is unlikely that any further optimization 
will help. 

While the graphical instrument editor facilitates the 
programming of fixed audio processing patches, careful 
attention also has been given to text-based programming 
support. Aura instruments automatically compute the correct 
execution order, reference counting facilitates the sharing 
and automatic deletion of instruments, and Aura’s remote 
procedure call mechanism makes it easy to configure audio 
processing from a process outside of the time-critical audio 
processing loop. By compiling unit generator graphs, 
dynamic instantiation and deletion of audio processing 
objects is faster. 

In conclusion, real-time audio processing has become an 
essential part of interactive computer music. It is important 
that we understand the degree to which our languages and 
systems determine what we create. Coming from the other 
direction, it is important to design our languages and 
systems to support rather than limit the creative process. 
Towards this goal, Aura 2 offers an easy to use editor for 
signal processing, combined with a flexible run-time system 
that supports dynamic, on-the-fly reconfiguration. 
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