
1A Flexible Real-Time Software Synthesis System

Roger B. Dannenberg and Eli Brandt
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{dannenberg, eli}@cs.cmu.edu

ABSTRACT: Aura is a new sound synthesis system designed for portability and flexibility. Aura is
designed to be used with W, a real-time object system. W provides asynchronous, priority-based
scheduling, supporting a mix of control, signal, and user interface processing. Important features of
Aura are its design for efficient synthesis, dynamic instantiation, and synthesis reconfiguration.

operating system) and systems that provide high1. Introduction
performance computer graphics rendering forSoftware sound synthesis offers many benefits,
animation in multimedia performances. [Dannenbergincluding the flexibility to use a variety of
93] This requires hardware support and thealgorithms, integration with control software and
availability of device drivers.computer interfaces, and compact, portable hardware

in the form of laptop computers. At present, software Flexibility is one of the main attractions of software
synthesis is limited by processor speed (and in many synthesis, so our goal is not so much to build a
systems poor real-time operating system behavior specific synthesis engine (as in some commercial
and noisy audio interfaces). Faster machines, ventures) but to build a flexible platform or
improvements in operating systems, and digital audio architecture that can be readily modified or extended
interfaces can solve all these problems. to meet the needs of research and composition.
Announcements of various commercial software
synthesis systems in the press indicate that we have 2. Design Decisions
moved from the realm of potential to reality. High Level Languages lead to more readable, but

sometimes less efficient code than assembler. GivenWe are interested in using software synthesis for real-
the special nature of digital signal processing, wetime experimental music performance. To this end,
imagine that special-purpose code generators couldwe have designed, prototyped, and are implementing
also do a better job than general purpose compilers.Aura, a complete software synthesis and control
However, in keeping with our requirements, wesystem. Our goal has several implications for our
restrict ourselves to the use of a compiler (C++) todesign, so we will describe some of our requirements
insure portability across different machine types.before describing the design.
Without this portability, one could argue that a better1.1. Requirements
approach would be to use DSP chips.Software portability is crucial to our work. We want
We use floating point computation throughout. Onto amortize our effort over at least a few generations
some current architectures, integer operations wouldof hardware and operating system changes. Systems
be faster, but the trend is toward machines that aresuch as the CMU Midi Toolkit and Csound illustrate
optimized for fast floating point computation. Also,the long life typical of comparable software systems.
considering the goal of flexibility, we believe thatFurthermore, it is very uncertain what hardware/OS
floating point is the only reasonable choice.combination will deliver the performance we are

looking for. Therefore, we must have the flexibility Dynamic Instantiation: software synthesis languages
to run on different operating systems. In addition to going back to Music V have created instances of
raw computing speed required for sound synthesis, instruments, but this can be a problem for real-time
we are interested in systems that respond with low systems. Dynamic instantiation of new instruments
latency (requiring real-time support from the means that the computation load can grow to exceed

1Published as: Dannenberg and Brandt, ‘‘A Flexible Real-Time Software Synthesis
System,’’ in Proceedings of the 1996 International Computer Music Conference,
International Computer Music Association, (August 1996), pp 270-273.

the real-time capacity of the CPU. In our experience, signals per se, although presumably these can be
dynamic instantiation is a very powerful mechanism added as synchronous block-rate control
worth having. Often, relatively simple mechanisms computations.
(similar to those used in commercial synthesizers) A problem with all of these systems is that their
can be used to limit the number of instances. synthesis architectures make design choices that cost
Asynchronous control: One of the great promises of anywhere from 20 to 100% in computation time
software synthesis is tight integration between [Thompson 95]. In addition, we feel that a software
synthesis and control, so we designed our system to synthesis system can offer better support for control,
support control as well as signal processing. Our timing, and dynamic reconfiguration. Other relevant
experience with MIDI control systems [Dannenberg systems include Cmix [Lansky 87] (a non-real-time
93] indicates that control can take substantial system) and Kyma [Scaletti 89] (which uses DSP
amounts of computation, and this has important chips for synthesis). While each of the systems
implications for the architecture. Software synthesis mentioned offers some approach to our problems,
systems have traditionally used synchronous control none offers a very complete solution.
in which control information is computed between

4. The Architectureeach block of audio samples. The problem with this
Our system is based on W [Dannenberg 95], a real-scheme is that long-running control computations can
time programming environment that supportsdelay audio computation, causing buffer overflow
multiple zones of objects that communicate viaand a corresponding pop on the output.
messages. Message passing is synchronous within a

Although asynchronous software is more complex, it
zone and asynchronous between zones. In W,

has the advantage that sound synthesis can proceed
messages generally set object attributes. Normally,

without waiting for control computation. If a control
we expect all audio computation to take place within

computation runs too long, it is preempted to
a single zone (see Figure 1). Within that zone,

compute sound. Prior to our experience with MIDI,
multiple sound objects (including familiar unit

we might have imagined that all computation should
generators) are connected to perform the desired

meet real-time constraints so synchronous control
signal processing operations. We considered a purer

would be satisfactory. However, in our experience it
functional programming model as in Nyquist

is very convenient to consider control to be a more
[Dannenberg 92], but the functional programming

‘‘soft’’ real-time task subject to occasional delays of
model does not seem well suited to interactive

many milliseconds. With MIDI, a delayed message
control and flexible reconfiguration. Instead, we

does not normally cause a catastrophe because MIDI
explicitly connect objects into a graph which then

devices are asynchronously coupled to their control
obeys functional, data-flow semantics.

systems. Obtaining similar behavior in an all-
Efficient signal communication is important. Givensoftware system requires architectural support.
the use of W for other communication, W would be a

3. Related Work logical choice except W is not designed for data-
A number of commercial software synthesis systems driven computation or shared memory
have been implemented and/or announced in the communication. Therefore, we designed W with a
trade press, but since the internal designs of these simple mechanism for interconnecting sound objects,
systems are proprietary, we cannot comment on this and we use W only to establish connections.
work here. Only a few systems have been described 4.1. Interconnection
in the literature. Real-Time Csound [Vercoe Signal processing computation in Aura is demand
90] derives from the Music N languages. It uses driven, and computation takes place a block at a time,
synchronous control at the sample block rate and has where a block is some fixed number of contiguous
uninterpolated control signals. The IMW software samples. Our intended block size is approximately 32
[Lindemann 91, Puckette 91] is more oriented samples, but this number can be changed easily. Any
toward complex interactive control. It also uses object that processes audio is called a sound object. A
synchronous control at the sample block rate, but sound object has zero or more sound inputs, each
supports no dynamic instantiation. HTM [Freed denoted by a name (e.g. Freq or Amp) and zero or
94] is a sound synthesis package for C programmers. more sound outputs denoted by an integer index.
It has been used in systems with asynchronous Sound objects are derived from W objects so they
control running on multiple processors. Neither the may also receive W messages that set various internal
IMW nor HTM have block-rate (i.e. control rate) parameters.

2

the current block, and then computation continues.
Notice that a call to compute the current block may
recurse to other objects. In this way, an entire
directed acyclic graph of interconnected objects is
traversed for each output block.

This technique of checking each output for currency
is equivalent to a topological sort on the graph of
interconnected objects. We considered performing
the sort explicitly and saving the resulting order of
execution, but this would save only a small fraction
of the execution time. Furthermore, the execution
order needs to be recomputed at least every time a
new connection is created.

4.2. Instantiation
Sound objects can be created dynamically to
synthesize a new sound. A typical procedure would
be to create a new sound object, initialize its fields,
and connect it to some other object. All this can be
done via W messages, e.g. in response to MIDI input.

A connection is made from the output of sound object
A to the input labeled ‘I’ of sound object B by

Audio
Input

Audio
Output

Audio Zone

MIDI Zone

Sound
Objects

MIDI
Input

W
Objects

GUI Zone

W Messages with timed
control updates

sending a W message of the form ‘‘Set ‘I’ to A’’ (theFigure 1: An Aura configuration with MIDI
message is sent to object B). In the case where A hasand Graphical User Interface zones providing
multiple outputs, the index of the desired output mustasynchronous control.
be set in a previous message to B.

As a special case, the ‘‘sum’’ sound object class
supports an arbitrary number of connected objects.
For example, each instance of a note is attached to a
sum object which outputs the sum of its inputs to
audio output, reverb, or whatever. [Dannenberg 91]

4.3. Primitives
A key to efficiency is to build upon efficient signal
processing primitives, where most of the processing
takes place. We have performed extensive
benchmarks in order to understand what factors are
important in achieving efficient software sound

Sound
Object A

Output 1

Output 2

Sound
Object B

Output 1

Input I

Input J

Direction of Signal Flow synthesis. [Dannenberg 92] From our study, we
learned that mixed sample rate computation isFigure 2: Sound objects and their
important, so we provide two sample rates: an audiointerconnection
rate and a control rate (corresponding to the sample
block rate.) Additional sample rates can be supported

Figure 2 shows the connection of output 1 of object so long as they are sub-multiples of the audio sample
A to input I of object B. The connection is rate, allowing synchronous block boundaries.
represented by two pointers in object B: one pointer

Interpolation of control signals is another importantis to object A and the other contains the address of
consideration. Without interpolation, control ratethe sample block through which samples are
envelopes can cause ‘‘zipper’’ noise unless the blockcommunicated. When B needs input samples, it first
size is very small, but small blocks have an adversechecks to see that A has computed samples for the
effect on performance. Overall, larger blocks (e.g. 32current block (blocks are computed synchronously
samples) with linearly interpolated control signalsthroughout the zone, so a zone-wide current block
seem to give the best performance. The cost of linearnumber is compared to a per-object counter). If A is
interpolation is more than offset by the savings ofup-to-date, the samples can be read directly from A’s
larger block sizes.buffer. Otherwise, A is first called upon to compute

3

In our design, the primitive signal processing counts. 64-bit integers would also be a good choice,
elements (i.e. unit generators) exist as C++ objects. but these are not supported by all compilers. Space
Primitives have associated instance variables to hold prohibits a detailed discussion, but Aura implements
parameters and to save state between sample block block-synchronous updates by default. Mechanisms
computations. A method is invoked to cause the are in place to support down to sub-sample updates
primitive object to compute the next block of audio where needed.
samples. 4.6. Asynchronous Control
4.4. Structure W allows a flexible combination of synchronous and
Sound objects are generally interesting only in asynchronous control. Within a zone, all objects
combination, so any synthesis system must have a execute non-preemptively. Synchronous control can
means for combining objects into larger structures be achieved by placing all control objects in the same
such as instruments and orchestras. The structuring zone as the audio synthesis objects. The computation
problem is especially interesting when dynamic of a block of samples will take place without
instantiation is permitted, because the system then preemption, but between block computations, all
requires some internal representation for the structure control operations will run to completion.
of whatever will be instantiated. To achieve asynchronous control, control objects are
One way to create a structured computation (i.e. placed in a separate lower-priority zone. Figure 1
instrument) is by writing C++ code to combine shows MIDI and GUI zones providing control. Long-
primitive objects analogous to instrument definition running control computations (e.g. redrawing a
in Music V. The advantages of this structuring graphical slider) will then be preempted to allow
mechanism are (1) all input and output connections computation of audio. Since communication between
for an ‘‘instrument’’ are made to a single sound zones is by messages, and message delivery is always
object, (2) at run-time, allocation is simple, fast, and synchronous, updates are actually synchronous (this
atomic because initialization of sub-objects is is usually a desirable feature).
handled by compiled code, (3) control-rate In some cases, an atomic update of multiple
computation can be performed directly and parameters is necessary. Filter coefficients are an
efficiently by C++ code, and (4) communication often mentioned case because filters can become
among primitives within the sound object is handled unstable when updates are not synchronous. There
by compiled code. are at least three mechanisms to achieve atomic
Alternatively, a single primitive can be ‘‘wrapped’’ updates. First, if a controller object is in the same
with the appropriate sound object interface, allowing zone as the controlled object, communication is
it to be connected to other sound objects. An synchronous, so multiple parameter changes can be
‘‘instrument’’ can then be constructed by sent without preemption. Second, W provides
interconnecting various primitive sound objects. This ‘‘multi-messages’’ which encapsulate a set of
scheme has more overhead, especially when the messages into one message that is delivered
instrument is instantiated, but it does have the atomically across zones. Finally, using timed
advantage that new instruments can be built without messages, updates can be sent for synchronous
recompilation. Aura supports both schemes. delivery at a specified time.

4.5. Time
5. Summary and ConclusionsTime representation is the subject of much debate.
Aura is a new system for real-time software soundOriginally, the W system used millisecond
synthesis. It supports dynamic instantiation,timestamps in its messages, but for high sample rates
asynchronous control, multiple sample rates andand small block sizes, milliseconds may not have the
achieves this with greater efficiency than any otherprecision to determine a unique block. Furthermore,
published architecture (based on benchmarks thatsome applications require that timestamps be precise
compare different architectural approaches). Toto the sample or even sub-sample interval. [Eckel
achieve flexibility, Aura is implemented as an95] Higher precision is a problem for 32-bit integers,
extension of W, a distributed real-time object systemthough. A microsecond time unit will overflow 32
that allows applications to be constructed bybits in a little over an hour. We decided to change W
configuring components. W also enhancesto use double-precision floating point numbers as
portability: With no changes to the DSP code, Auratimestamps. This gives very high precision and
can run as a process, a software interrupt handler, aoverflow protection, and the floating point format is
device driver, or even a dedicated processor, using Weasy to convert to other units such as sample or block

4

to provide scheduling and communication in an
implementation-independent manner.

References
[Dannenberg 91] Dannenberg, R. B., D. Rubine,

T. Neuendorffer. The Resource-Instance Model of
Music Representation. In B. Alphonse and
B. Pennycook (editor), ICMC Montreal 1991
Proceedings, pages 428-432. International Computer
Music Association, San Francisco, 1991.

[Dannenberg 92] Dannenberg, R. B. Real-Time Software
Synthesis on Superscalar Architectures. In Proceedings
of the 1992 ICMC, pages 174-177. International
Computer Music Association, San Francisco, 1992.

[Dannenberg 93] Dannenberg, R. B. Software Support for
Interactive Multimedia Performance. Interface Journal
of New Music Research 22(3):213-228, August, 1993.

[Dannenberg 95] Dannenberg, R. B. and D. Rubine.
Toward Modular, Portable, Real-Time Software. In
Proceedings of the 1995 International Computer Music
Conference, pages 65-72. International Computer Music
Association, 1995.

[Eckel 95] Eckel, G., M. R. Iturbide. The Development of
GiST, a Granular Synthesis Toolkit Based on an
Extension of the FOF Generator. In Proceedings of the
1995 International Computer Music Conference, pages
296-302. International Computer Music Association,
1995.

[Freed 94] Freed, A. Codevelopment of User Interface,
Control, and Digital Signal Processing with the HTM
Environment. In Proceedings of the International
Conference on Signal Processing Applications and
Technology. 1994.

[Lansky 87] Lansky, P. CMIX. Princeton Univ., 1987.

[Lindemann 91] Lindemann, E., F. Dechelle, B. Smith, and
M. Starkier. The Architecture of the IRCAM Musical
Workstation. Computer Music Journal 15(3):41-49, Fall,
1991.

[Puckette 91] Puckette, M. Combining Event and Signal
Processing in the MAX Graphical Programming
Environment. Computer Music Journal 15(3):68-77,
Fall, 1991.

[Scaletti 89] Scaletti, C. The Kyma/Platypus Computer
Music Workstation. Computer Music Journal
13(2):23-38, Summer, 1989.

[Thompson 95] Thompson, N. and R. B. Dannenberg.
Optimizing Software Synthesis Performance. In
Proceedings of the 1995 International Computer Music
Conference, pages 235-6. International Computer Music
Association, 1995.

[Vercoe 90] Vercoe, B. and D. Ellis. Real-Time
CSOUND: Software Synthesis with Sensing and
Control. In S. Arnold and G. Hair (editor), ICMC
Glasgow 1990 Proceedings, pages 209-211.
International Computer Music Association, 1990.

5

