
RESEARCH CONTRIBUTIONS 

A Butler Process for Resource Sharing 
on Spice Machines 

ROGER B. DANNENBERG and PETER G. HIBBARD 
Carnegie-Mellon University 

A network of personal computers may contain a large amount of distributed computing resources. 
For a number of reasons it is desirable to share these resources, but sharing is complicated by issues 
of security and autonomy. A process known as the Bur/er addresses these problems and provides 
support for resource sharing. The Butler relies upon a capability-based accounting system called the 
Banker to monitor the use of local resources. 

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Pro- 
tocols-protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Sys- 
terns--distr&uted applications; network operating systems; D.4.6 [Operating Systems]: Security and 
Protection--access controls; D.4.7 [Operating Systems]: Organization and Design--d&&ted 
systems; H.4.3 [Information Systems Applications]: Communications Applications 

General Terms: Design, Security 

Additional Key Words and Phrases: Autonomy, resource sharing, office automation, personal com- 
puters, process migration, negotiation 

1. INTRODUCTION 

Large-scale integration makes it economically attractive to replace time-shared 
computer systems with networks of personal computers. A personal computer, 
because it is dedicated to a single user, can support high-bandwidth, low-latency 
input and output far better than can a time-shared system, and potentially it can 
provide its users with better control over the computing environment. 

However, there are several disadvantages to distributing resources on a per- 
sonal computer network. For example, a user may need to access data that is 
only available on a remote machine, but security may dictate that the data cannot 
be transferred to any other machine, thus forcing the remote processor to be used 
to access the data. Another disadvantage is that the physical distribution of 

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA 
Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-1539. 
Authors’ address: Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 
15213. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1985 ACM 0734-2047/85/0700-0234 $00.75 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985, Pages 234-252. 



Butler Process for Resource Sharing 235 

resources may not match the distribution of the demands for service, which may 
result in some machines being idle while others are overloaded. Finally, even 
though a personal computer may have significant computational capabilities, its 
power will be less than that of a large mainframe computer. As a consequence, 
even though a network may collectively have tremendous computing power, there 
may be programs that are inappropriate for personal computers because of the 
amount of computation involved. All of these problems can be alleviated by 
resource sharing. 

In this paper we describe a technique for sharing resources on the Spice 
personal computing environment [2] under development at the Carnegie-Mellon 
University Computer Science Department. A process known as the Butler pro- 
vides the mechanisms to support resource sharing, with the assistance of a 
capability-based accounting system caller the Banker. We first describe the issues 
and give several examples, then describe the Butler and the Banker, and finally 
show how resource sharing can be negotiated. 

2. RESOURCE-SHARING ISSUES 

Before the problems of sharing resources in a personal computing network can 
be fully appreciated, we must first examine some of the characteristics of these 
networks. We are particularly interested in the issues of security and protection, 
both of hardware and software, the autonomy of the personal computer, and the 
policies and mechanisms for resource sharing. 

2.1. Protection and Security 

Most main-frame computers are physically secure (or at least they are assumed 
to be). Only authorized, trusted personnel are allowed access to the physical 
machine, and users’ access to the information stored on the machine is through 
an operating system interface that is able to protect the information. The current 
state of the art in time-sharing system design [20, 281 allows users to be highly 
selective in granting authority to other users. However, these techniques rely on 
the machine being physically secure-if it is not then the software security can 
be compromised. This could be done by halting the machine and examining the 
contents of memory, for example. 

This situation is to be contrasted with that for a network of personal computers. 
A personal computer is generally located at the point of use, in an office or home. 
Provided that the owner is the only user of the machine, it can be considered 
physically secure against everyone except the owner; in addition, no special 
software protection is required, since there is no sharing. If, however, personal 
computers are shared among several users, protection and security become issues. 
For example, if a corporation’s accounting department wants to grant limited 
access to accounting information to the marketing department, some form of 
security is necessary. The problem is perhaps even more critical if information 
or resource sharing crosses corporation boundaries, say between a manufacturer 
and a distributor. We will see that the levels of protection that can be provided 
will depend upon the assumptions made about the physical security of the 
machines. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



236 l R. 8. Dannenberg and P. G. Hibbard 

2.2 Autonomy 

Another important characteristic of personal computers is that users are generally 
given almost complete control over their machine. This characteristic, called 
autonomy, has two main advantages for the user. Autonomy implies that users 
can control the load on their machines and thus form some stable expectations 
of the computing power their machines will provide. Users of time-sharing 
systems, on the other hand, cannot form a stable expectation of the response 
time and available computing power, since the service level depends on the load, 
which is outside the user’s ability to control. The second advantage of autonomy 
is that users are free to run whatever programs, operating systems, or microcode 
they wish. This is especially important in a research-oriented environment such 
as that supported by Spice. In an office information system, autonomy implies 
that machines and resources can be administered at the individual or department 
level. 

The property of autonomy and the desire for stable expectations may at first 
seem to be incompatible with resource sharing. There are several reasons for 
believing that this is not necessarily the case. First, in a network of personal 
computers, one can expect many machines to be idle. When a machine is idle, 
there is no reason (aside from protection issues) for assuming that a user would 
not want to share idle resources. Second, users may wish to cooperate by sharing 
resources. 

It can be seen that a problem that must be addressed is how to control and 
regulate sharing. In time-sharing systems, common goals are to maximize 
throughput, provide quick response, or provide a “fair” allocation of limited 
resources. In a network of personal computers, the goal of autonomy dictates 
that each user must be able to decide to what extent his or her machine is shared. 
For human engineering reasons, the user should be able to create policies that 
constrain sharing. These policies are then administered by some component of 
the operating system. 

2.3. Mechanisms and Policies 

Any facility to support resource sharing should provide mechanisms for sharing 
without dictating how these mechanisms should be used. For example, the owner 
of a machine should be able to decide not to share the machine at certain times. 
This control is provided through policies that dictate how sharing may take place. 
By decoupling policies from mechanisms, means are provided to modify the 
behavior of the system by providing new policies-a simpler task than altering 
the mechanisms. 

3. EXAMPLES 

In order to illustrate some of these points, we give some examples of resource 
sharing. These problems will serve to motivate the solutions that are presented 
later in the paper. We start by giving some terminology. 

Any sharing of resources will necessarily involve at least two machines. The 
machine that belongs to the borrower of resources is called the local machine. 
Any other machines are called remote machines. (The term machine will be used 
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



Butler Process for Resource Sharing 

network 

l 237 

local machine 

Fig. 1. Terminology for resource sharing. 

rather loosely to mean not only hardware but also microcode and software 
responsible for executing an application program. For the time being, an operating 
system is considered part of the machine.) A program that executes on the local 
machine is referred to as the user. In these examples, the user will borrow 
resources from a remote machine to execute a process. That process is called a 
guest of the remote machine. The owner of the remote machine may also execute 
processes on his machine. These processes are called residents. Figure 1 sum- 
marizes the relationships between these terms. There is no logical difference 
between the user and a resident; they represent two views of the same sort of 
object. 

3.1. A Personal Database 

In the first example, the owner of a remote machine has decided to implement a 
small personal database that contains daily appointments. The database is stored 
only on the remote machine because some of the data are private and the owner 
does not trust other machines. However, the owner would like to allow limited, 
controlled access to the database so that colleagues can make appointments and 
schedule meetings. A similar situation might occur if a department wanted to 
release some but not all of its records to another department in a corporation. 
To avoid giving users direct access to the database, the owner writes a program 
for making appointments that will run on his or her machine and handle user 
requests. In effect, the owner has used the physical security of the machine as a 
basis for building a protected subsystem [24]. 

There are several problems raised by this example. First, there must be some 
means by which a user can invoke the remote appointment program. Second, the 
owner may want to restrict access to certain users. Some means of authenticating 
a user’s identity is therefore necessary. Finally, the owner may want to control 
when users are allowed to use his or her machine or restrict the priority of some 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



238 l FL B. Dannenberg and P. G. Hibbard 

users. The last problem again illustrates the concept of autonomy. An important 
problem is the difficulty of making any guarantees to a guest if he or she 
ultimately has no control over the machine. 

3.2. Remote Program Execution 

Consider the case of a user who has just edited a large document and wants to 
format it for printing. It is desired to use another machine for this task so as not 
to degrade performance on the local machine. The first problem is to find a 
machine having some idle resources that can be borrowed. To do this, the network 
is used to locate and interrogate remote machines. Some form of negotiation can 
then take place to determine if the remote machine is willing to perform the 
computation. There are several issues to be addressed in this negotiation: 

(1) The Sharing Policy. The remote machine must know what resources are 
available for sharing. The owner of the remote machine may wish to make 
different resources available to different users. Also, the amount of available 
resources may be a function of the current state of the machine. Normally, the 
owner would want residents to have priority over guests. 

(2) Configuration Specification. Similarly, the user needs to know what re- 
sources are required to execute the guest. In this case the user only wants 
resources to run the format program. The host is more likely to grant such a 
request than, for example, a request to load a new operating system. In general, 
the user needs to specify a configuration that in turn specifies the necessary 
resources and details of the execution environment of the guest. 

(3) Negotiation and Authentication. A protocol for negotiation must exist. The 
identities of each machine (or machine owner) must be authenticated. The needs 
of the guest must be presented and compared with the resources that are available. 

Assuming the remote machine agrees, a formatter has to be invoked, sources 
need to be retrieved over the network, and the resulting formatted document 
finally returned to the user or sent to a printer. Given enough idle resources, 
many such jobs could be performed in parallel on a number of machines. 

3.3. Distributed Program 
In this example the user wants to construct a large program that executes in 
parallel on many machines. The ability to share these resources will make 
additional applications feasible, since the computing power available through 
sharing will always be greater than that available on a single machine. Examples 
of applications that can benefit from this type of sharing are computer graphics, 
transaction processing systems, database systems, image and signal processing, 
design-rule checkers for computer-aided-design systems, and simulation of phys- 
ical systems. One of the problems faced by the designer of such a program is how 
to handle machine failures and resource revocations. This problem did not exist 
in the previous example because the user could simply restart the remote job if 
it failed for some reason. In the current example users will need to handle many 
exceptional conditions to avoid restarting their programs. Since many machines 
are being used, the user is more likely to encounter problems. 
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1935. 



Butler Process for Resource Sharing 239 

This example raises two problems. First, the programmer needs a model of 
machine failure and resource revocation. Second, the programmer needs assist- 
ance in recovering from the revocation of resources. We discuss resource revo- 
cation in Section 7.1. 

3.4. Other Problems 

There are some problems not already mentioned in these examples. For instance, 
in the formatter example, what happens if the user’s source file exhausts the 
resources of the host’s machine? In this case there are some ad hoc solutions that 
could be built into the formatting program. On the other hand, it may not be 
wise to trust a program to control its use of resources carefully. Futhermore, this 
solution is not general enough; it cannot handle situations where the guest’s 
program is untrusted. 

Suppose that the user is malicious and has the goal of controlling or at least 
crashing the system on the remote machine, and assume furthermore that the 
guest is an arbitrary program specified by the user. If the user’s application 
program is executed in a protected address space, there is not much chance that 
it can penetrate directly the remote system’s security. However, the guest may 
be able to communicate with programs that have greater privileges. For example, 
the operating system kernel will be able create new processes, the file system will 
be able to access the disk directly, etc. If there are any bugs or design errors in 
these privileged programs, the guest may be able to use them as intermediaries 
and take over the system. This is referred to as the problem of laundered requests, 
because the identity of a request is made to appear “clean” by passing a re- 
quest through a system program. Our solution to this problem is presented in 
Section 6. 

In the context of personal computers a protection problem arises that is not 
present in time-shared systems: The guest is not secure against the remote 
machine. In a time-shared environment the user is not protected from the 
operating system, but there are usually reasonable grounds for trusting it. In the 
case of a remote personal computer, the operating system is installed and 
controlled by an individual who may not be trustworthy. In general, completely 
protecting the guest from a remote machine is not possible. The options will be 
discussed in greater detail in Section 5.4. 

4. THE ARCHITECTURE OF THE BUTLER 

Our approach to resource sharing is based on the concept of the Butler? a process 
that controls access to a machine by enforcing a resource-sharing policy, and 
provides protection. The design of the Butler is strongly influenced by the 
autonomy premise and the goal of stable expectations; hence, it falls somewhere 
between the extremes of a distributed operating system adhering to global 
strategies, and a computer network of autonomous nodes with no resource 
sharing. 

1 The Butler is so named becaused it manages a personal machine on behalf of the owner in a way 
which is loosely analogous to the way a (human) butler manages his employer’s household. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



240 l R. B. Dannenberg and P. G. Hibbard 

Although in principle the Butler’s functions could be entirely implemented 
within application software, a number of reasons justify the existence of the 
Butler as a separate software entity: 

(1) The Butler provides a single point from which users can control their system. 
This permits the enforcement of policies that relate to the global state of the 
machine. 

(2) One of the functions of the Butler is to enforce security. It protects the 
machine by supervising potentially malicious software of other users. The 
Butler should be a trusted piece of software that exists as an entity separate 
from the applications it supervises. 

(3) Furthermore, if the Butler is distinct from the applications it supports, then 
the Butler will be used in a variety of circumstances, and users will be able 
to gain confidence in its security. If each application required the reimple- 
mentation of software that is critical for protection, then errors could arise. 
Under these circumstances users would be less likely to share their machines. 

(4) The Butler is more than a set of conventions or subroutines: it serves as a 
general model for the top-level structures of distributed programs. The Butler 
paradigm is thus a conceptual tool for the programmer. 

Because of the principle of autonomy, a separate instance of the Butler is 
executed by each computer. Butlers are best regarded as independent but coop- 
erating programs, rather than as a single distributed program. Since users are 
free to execute any program, they can implement their own Butlers. With this in 
mind, the Butler should be regarded not so much as a program, but rather as an 
abstract specification of protocols and expected behaviors. However, given the 
difficulties of implementing a program like the Butler, we do not expect there 
will be more than one version in the Spice environment. 

4.1. General Design 

The purpose of the Butler is to allow clients to invoke operations on remote 
machines. In addition to providing the capability of simply running a program 
remotely, the Butler allows a client to invoke arbitrary services, such as the 
program for making appointments referred to in Section 3.1. In this way, the 
Butler supports the sharing of information as well as resources. 

The Butler provides the user with a high level of support that addresses all of 
the problems raised in the examples given earlier. The Butler, therefore, is a 
rather “heavyweight” mechanism. It is intended that the Butler be used to initiate 
operations and then intervene only when necessary. Once the operation is in 
progress, the Butler adds little or no overhead. There remains a certain amount 
of overhead for protection, but this overhead will be present in any design. 

At least two machines, the local machine and the remote machine are involved 
in sharing (see Figure 2). On the local machine, the program that needs to borrow 
resources relies on the local Butler to borrow those resources. In this role, the 
Butler is called an agent. The agent communications with the Butler on the 
remote machine which acts as a host. The host creates guests on behalf of the 
client. As before, any program that is sharing the remote machine (including 
another guest) is called a resident. 
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



Butler Process for Resource Sharing 

Butler 

T--i 

. 241 

Fig. 2. Relationship between client, agent, host, guest, and resident. 

4.2. The Butler as Agent 

The job of the agent is to locate a host with the required resources, negotiate 
with the host, and invoke a service requested by the client. To borrow resources 
from a remote machine, the client presents his agent with a request for some 
service. The service request specifies the configuration required by the client. For 
example, the request for a compilation would contain the name of the compiler, 
a list of machine resources, information for exceptional condition handling, and 
perhaps a request to use the remote machine’s file system. 

If the resources are not available on one host, the agent looks for another host. 
Once a suitable host has been found, the identity of the host is authenticated. 
(Authentication could be performed before the negotiation takes place, but this 
would make the search for a host slower, because only the chosen host’s identity 
needs to be verified.) The host then invokes the requested operation. At this 
point the agent’s job is done unless exceptional conditions arise. The primary 
exception that the agent handles is resource revocation. In some cases the agent 
may be able to locate a new host and deport the guest in a way that is transparent 
to the client and guest (see Section 9). 

4.3. The Butler as Host 

The job of the host is to lend resources while protecting the interests of the 
machine owner. When a request arrives from an agent, the host consults a policy 
database to determine whether the resource request can be granted. If it can, the 
host creates an appropriate execution environment for the guest. In general, this 
means creating a new process and supplying the guest with capabilities to access 
other components of the system, as specified in the client’s original request. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1965. 



242 l R. B. Dannenberg and P. G. Hibbard 

Normally, among these capabilities are network connections to the client, so that 
the guest and client can communicate directly. 

The host stands by in case the guest attempts to exceed the limits placed on 
its resource utilization. This will ordinarily be detected by some component of 
the operating system. For example, the kernel will detect attempts to address 
memory outside permissible limits or to fork too many processes, and the file 
system will detect when disk page limits are exceeded. In any case, the host 
Butler handles the exception. The host’s action can take one of several forms, 
depending on what action was requested at the initial negotiation. 

The host also responds to changes in the policy database. A new policy may 
reduce a guest’s resource rights, so some resources may have to be recovered from 
the guest. Revocation of rights is handled just as if the guest tried to exceed its 
rights. 

5. PROTECTION 

In the previous section we described how the Butler facilitates resource sharing. 
In this section we examine how the Butler can provide protection for the client, 
agent, host, guest, and residents. Since the Butler relies on the security of lower 
levels of software, we must first state a few assumptions about security at the 
level below the Butler. 

We assume that a user can load a secure Spice operating system, which allows 
multiple processes to run in separate virtual address spaces. We also assume that 
the user has the capability of verifying at load time that his or her operating 
system is in fact an authentic one, and finally we assume that machines can 
communicate securely over encrypted channels. These assumptions are justified 
here because we are interested in the security problems raised by Butlers and 
resource sharing, and because they are likely to be met by any network of personal 
computers where security is important. 

5.1. Protecting the Client 

If we assume that the client has a benevolent agent, (i.e., the machine has been 
loaded with a secure operating system), then the client’s security can only be 
threatened through the guests which may interact with the client. If the guests 
are safe, then the client is also safe (protection of the guest is discussed below). 
The client can protect itself against an unsafe guest. by limiting the rights granted 
to a guest, which can be accomplished by restricting the environment in which 
the guest, executes. The use of message-passing and separate address spaces 
rather than shared objects for interprocess communication helps the client to 
maintain firewalls against corrupted guests. In addition, the Spice file system [l] 
has a mechanism whereby the client can grant limited access rights to the guest. 
An extremely suspicious client could supply the guest with no rights except a 
communication path to the client. The client. could then perform (or refuse to 
perform) sensitive operations after checking to see if the requested operations 
are permissible. 

5.2. Guest-Resident Protection 

Guests and residents must be protected from each other, just as users of a time- 
shared system must be mutually protected. The host prevents interaction between 
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



Butler Process for Resource Sharing l 243 

the guest and resident through the standard use of separate protected address 
spaces. Furthermore, the host Butler prevents either the guest or resident from 
monopolizing physical resources by enforcing the machine owner’s policies. The 
use of laundered requests has already been described as a potential problem. This 
problem will be dealt with in Section 6. 

5.3. Protecting the Butler 

The host protects itself from guests using the same mechanisms as those that 
protect residents. The only other threats to the security of a Butler come from 
other machines via messages, since the local system is secure by assumption. 
Hence, the Butler must be suspicious of all messages it receives. Since Butlers 
are autonomous, there are no global states to be protected. The Butler treats all 
incoming messages as suggestions and acts upon them only when the suggestions 
are consistent with local (trustworthy) data. 

5.4. Protecting the Guest from the Host 

Spice machines can be arbitrarily programmed by users, so it is impossible to 
provide absolute protection for the guest. A malicious user can construct and 
execute a program that mimics the Butler interface but provides no protection 
for guests. Below we describe the authentication scheme used in Spice to dis- 
courage such behavior. A few stronger schemes, which require stronger assump- 
tions, are then presented. 

5.4.1 Authentication. Authentication can play an important role in discour- 
aging malicious behavior. If illegal conduct can always be traced to the person 
who is responsible, few people are likely to behave maliciously. In the Spice 
system, a machine owner who allows a guest to borrow resources is responsible 
for executing a certified copy of the Spice operating system on his machine. If a 
violation of this rule is detected, authentication allows the responsible user to be 
identified. 

There are two authentication protocols used to support the Butler. The first is 
used to authenticate a machine owner to a trusted, physically secure Central 
Authorization Server, or CAS. In this protocol, the owner’s password is sent over 
an encrypted network connection to the CAS. The CAS then associates the 
owner’s identity with that of the connection to the CAS, so that further messages 
to the CAS do not need explicit authentication information. 

The second protocol is used to set up a secure and authenticated communica- 
tion channel between two Butlers. (Each Butler assumes the identity of the 
machine owner who creates it.) The CAS, acting as a trusted third party, uses 
the authenticated channels that were established by the first protocol. Space 
does not allow a full description of the second protocol, but it is similar in concept 
to the secret key exchange protocol described by Popek and Kline [21]. Details 
may be found in Dannenberg [7,8]. 

5.4.2. Stronger Schemes. If stronger assumptions are made, it may be possible 
to provide greater protection for guests. For example, if we assume that machines 
cannot be microcoded by users, it might be possible to provide remote certification 
that a particular operating system is loaded. It is necessary to assume that users 
do not tamper with hardware or that parts of the machine are physically secure. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1995. 



244 l R. B. Dannenberg and P. G. Hibbard 

An extreme case is the use of tamper-resistant hardware modules [ 151. All of 
these schemes rely on physical protection in one form or another. We do not 
plan to use extensive physical protection for Spice machines. 

5.5. Summary of Protection 

An important job of the Butler is to provide protection for resource sharers. The 
Butler relies on a secure operating system implementing processes with separate 
protected address spaces. However, the operating system must be extended with 
the Butler to deal with protection problems that involve multiple machines. The 
most important problem is the protection of the guest. In Spice, authentication 
is used to discourage malicious behavior that compromises a guest’s security, but 
stronger techniques are possible if physical protection can be guaranteed. The 
Butler must also protect residents from the guest. The most important problem 
here is keeping track of resources given to the guest. The next section introduces 
the Banker process which solves this problem. 

6. THE BANKER 

The Banker is used for protecting and tracking resources. It represents a solution 
to the problem of laundered requests in which a guest coerces a server with 
greater privileges to behave maliciously. The problem of laundered requests also 
appears when we wish to revoke rights from a guest. Simply migrating or aborting 
the guest process may not recover many resources if the guest has employed local 
servers. Consider the following. The host wants to recover all of a guest’s 
resources, so it halts and destroys the processes in use by the guest. The guest, 
however, has previously transferred local file system connections to the client. 
The client can therefore continue using resources on the remote machine. The 
problem is that the host has lost track of the fact that access to the file system 
and its resources are associated with the guest and should therefore be revoked. 

To solve this problem, a new server called the Banker is created to manage 
accounts for all users. The Banker maintains an account for each guest, and an 
unforgeable account name is given to the guest process to use in all transactions 
with servers. The purpose of the account is to specify a set of available resources, 
represented by various types of currency. Whenever a server allocates or deallo- 
cates an accounted resource on behalf of some process, the corresponding cur- 
rency in the process’ account is debited or credited by the server. The banker 
informs the server when a debit would overdraw the account. 

The Banker is useful for a number of reasons: 

(1) The Banker provides accounting services for other servers. This simplifies 
the servers, and allows them to share common operations. In addition, it 
provides an identification service in that it maps account names to accounts. 
A user does not necessarily need to be authenticated to each server, since the 
user’s account name serves as a capability. 

(2) Identities maintained by the Banker are abstract. The Banker does not 
associate resources with any specific object such as a process, (human) user, 
or console as is frequently done in current systems. Thus, the association of 
resources to objects can be flexibly determined. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



Butler Process for Resource Sharing 245 

(3) The Banker has many of the advantages of a capability-based protection 
system. Account names are analogous to capabilities, but the operations on 
accounts are an extension to the normal operations provided on capabilities. 
Typically, capabilities carry a small set of Boolean values indicating rights. 
Account names, however, carry accounts, which can be large sets of values 
and are not necessarily Boolean. The capabilitylike aspect of account names 
allows users to pass subsets of their rights on to subsystems by creating 
subaccounts. Users can provide their own exception handlers to be invoked 
if a subsystem tries to overdraw an account. Therefore, policy is determined 
entirely outside the Banker, which simply provides mechanisms for account- 
ing. 

(4) The Banker contains all of the data structures necessary to map identities 
to resources and servers. Thus, it is possible, given an account name, to find 
all of the servers that have made withdrawals from that account. This is 
useful for recovering resources from a guest, because ordinarily these servers 
are the ones that have allocated resources to the guest. 

So far we have seen how the Butler can share resources and protect them using 
assistance from the Banker. In the next section we take a closer look at how 
Butlers specify resources and how an agent negotiates with a host to obtain them. 

7. NEGOTIATION OF RESOURCES 

The resources controlled by the Butler are abstractions of different aspects of 
the physical machine. For example, priority is a resource, and access to the local 
file system is a resource. Guests must obtain rights that authorize them to use 
resources. In order to give rights to guests without losing control over resources, 
most rights are revocable. 

The guest’s rights and the method of revocation are established by negotiation. 
Negotiation is important because the client wants to run processes remotely with 
the guarantee that the processes will be able to obtain the resources they require. 
In the event that something goes wrong, the client would like to know in advance 
how each exceptional condition will be handled. 

7.1. Revocation of Resources 

Several methods are used to handle resource revocation. Together, these methods 
form a hierarchy of recovery procedures. 

7.1.1. Warning. The first recovery method augments the guest’s current re- 
sources by a set of warning resources and notifies the guest of the change. For 
example, the guest may receive five additional seconds of CPU time, and ten 
additional disk pages along with a warning message. The ten disk pages would 
be added to the current allocation, regardless of the initial negotiations. The 
purpose of this revocation style is to give the guest the greatest amount of 
flexibility in recovering from a loss of resources. The warning resources are finite 
because the host cannot trust the guest to observe the warning. 

7.1.2. Deportation. The second method is called deportation and is discussed 
further in Section 9. The goal of deportation is to provide a mechanism whereby 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



246 l R. 6. Dannenbarg and P. G. Hibbard 

the host can reclaim resources without harming the guest and without giving the 
guest any control. Deportation removes all processes created by the guest, as well 
as the environment created for the guest. Since deportation is transparent to 
most guests, it is not necessary to add special recovery software to most appli- 
cations. 

7.1.3. Abortion. The third method of handling revocation is to abort the guest 
process and send an explanation to the agent. This method is invoked if all else 
fails or if higher level revocation-handling mechanisms are not requested. There 
is also a fourth possibility: If the host machine crashes, no notice can be sent by 
the host, but the agent is informed of the crash by the network server after a 
timeout period. 

7.2. Resource Specification 

In order to talk about negotiation, we must first present a more concrete 
description of how resources are specified. 

7.2.1. Types of Resources. There are many resources in which the client may 
be interested. Most of them are abstractions of the physical machine, such as 
disk pages, processes, or a share of the CPU. Other resources relate to services, 
such as access to the local file system. Resources can also refer to revocation; for 
example, a warning before revoking any rights is considered a resource. 

7.2.2. Resource Data Types. All resources not related to revocation are grouped 
into a BasicRights data type. BasicRights is a collection of values representing 
either numerical limits (how many of resource X) or Boolean decisions2 (the 
right to perform operation X). 

GuestRights is a data type that fully specifies a guest’s rights, including 
revocation. One field of GuestRights is a value of type BasicRights. Two additional 
fields specify if warning or deportation is to be performed. If both rights exist, 
warning will be attempted first. Deportation is only used if the warning is not 
heeded by the guest, that is, the guest attempts to exceed even the warning rights. 
In the case that a warning is specified, an additional set of BasicRights is also 
included to specify the increment of resources required to handle the warning. 
Possible Ada [lo] type specifications for the data structures discussed thus far 
are given in Figure 3. 

7.3. Negotiation 

The client expresses his request to the agent in the form of two values of type 
GuestRights and a specification of the operation to be performed. The first 
GuestRights value expresses what resources the client wants. The agent searches 
for a suitable host; if the agent finds a host offering these resources, the agent 
need not look any further. If the agent has difficulty meeting the first resource 
specification, a client may be willing to accept fewer resources, so the second 
value of type GuestRights expresses the minimum acceptable amount of resources. 

‘We do not mean to imply that all Boolean decisions must be implemented with hits. For example, 
the representation of the right to use a server might be represented by a string, etc. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1935. 



Butler Process for Resource Sharing 247 

type BASIC-RIGHTS is 
record 

DISK-PAGES : INTEGER; 
NUMPROCESSES : INTEGER; 
PRIORITY : INTEGER: 
MICROCODE-ACCESS : BOOLEAN: 

end record ; 
type GUEST-RIGHTS(WARNING: ‘BOOLEAN) iS 

record 
INITIAL-RIGHTS : BASIC-RIGHTS; 
DEPORT : BOOLEAN; 
case WARNING is 

when TRUE => 
WARNING-RIGHTS : BASIC-RIGHTS; 

when FALSE => null; 
end case ; 

end record ; 

Fig. 3. Ada type specifications. 

Fig. 4. Negotiation between an agent and host. 

The negotiation process is outlined in Figure 4. The agent sends the client’s 
preferred rights to a potential host. The host replies with a list of available rights 
and reserves those resources until receiving a response (subject to timeout). The 
agent compares the host’s response to the client’s request and either accepts or 
rejects the offer. Authentication is not used on initial negotiations during which 
many potential hosts may be polled. 

7.4. Host Search Strategies 

The client has the option of passing a host search list to the agent to specify 
which hosts to ask for resources. In the absence of a search list, the Butler fmds 
potential hosts through a network name server. The client may also request 
deportation at any time, so that if a more suitable host is found, a guest may be 
moved. 

Otherwise, the Butler does not attempt to automate load balancing. These are 
functions appropriate to a distributed operating system and are beyond the scope 
of the Butler. The possibility of implementing distributed operating systems at 
the level above Butlers is not to be ruled out, however. It may be desirable for 
groups to optimize resource usage of the machines under their jurisdiction, and 
the Butler design allows for this. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



248 l R. B. Dannenberg and P. G. Hibbard 

8. POLICY 

If the host Butler is to negotiate with agents, it must know what resource rights 
to offer. In this section we see how policies are used to control negotiation. 

8.1. Terminology 

The Butler attaches two properties to potential users of a machine. The first 
property, called locality, is local if the user is physically present at the machine 
site and remote if not. This distinction is useful because local users expect to use 
I/O devices such as the keyboard, screen, and pointing device. The second 
property is occupancy, which is true if the user has rights to the entire machine 
and false for users who are borrowing resources. Typically, occupancy is true 
only for the owner of the machine. 

The Butler’s interface to the policy database is a function that takes a user’s 
name and properties of locality and occupancy, and returns a set of rights: 

Policy : UserId X Locality X Occupancy + Rights 

The rights may also be a function of the current machine state, the time of day, 
etc. An occupant may also dictate one of two modes. Sharing mode allows the 
local Butler to host one or more guests. Exclusive mode prevents guests from 
using the machine. Thus sharing can be temporarily denied without changing 
the policy database. 

In addition to the policy function, the interface between the Butler and the 
policy database includes a way to notify the Butler when policy is changed. Upon 
receiving a change notice, the Butler reevaluates the function for each guest on 
the machine. This avoids the necessity of continuously reevaluating (i.e., polling) 
the policy function. 

9. AN EXAMPLE 

In this example we see how a guest’s rights are limited by mechanisms in the 
Banker, ultimately leading to deportation of the guest. For our example, we 
consider a signal-processing task used for locating and tracking objects acousti- 
cally. The sound from the tracked object is sensed by an array of microphones, 
and the resulting signals are digitized. The microphone signals are then cross- 
correlated. Ideally, each cross-correlation yields a sharp peak at a point indicating 
the time delay due to microphone positions. Triangulation can then be used to 
locate the object. Since many independent cross-correlations are performed, the 
cross-correlation step of this algorithm can easily be distributed. 

In a typical configuration, a control program will assume the role of the client 
and request its agent to find some idle machines to run cross-correlation pro- 
cesses. Let us say the client specifies 500 disk pages and 100 CPU seconds in its 
request to the agent. The operation requested is to execute a cross-correlation 
process to be supplied by the client. The agent then searches for a host that will 
grant the requested resources. When contacted by the agent, a host consults its 
policy database to determine what rights are available for this user. After 
negotiating a set of GuestRights, the guest is created by the host Butler. At this 
time, the host creates an account for the new guest, and places limits on how 
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



Butler Process for Resource Sharing 249 

much of each currency can be withdrawn from that account. The currency 
corresponds directly to the resources specified in the GuestRights record. In this 
case, the Banker is authorized to draw up to 500 disk pages and 100 CPU seconds 
for the guest. The name of the account is given to the guest, which would include 
this name in any request to a local server. In this example, the only service comes 
from the kernel, which provides virtual memory and processing time. 

Now suppose the guest tries to allocate more resources than allowed by the 
currency in its account. Some server will attempt a withdrawal, and the Banker 
will discover that the guest has insufficient funds. A message to that effect is 
then sent to the server (in this case it goes to the kernel). Another message is 
sent to the establisher of the account (in this case the Butler) with a notification 
that includes the name of the server and guest. 

Previous negotiation will have determined the method of handling the guest. 
In this example, let us assume that the guest is to be deported. The Butler sends 
a deport message to the Banker, specifying the account of the guest. The Banker 
then looks at the guest’s account and notifies the appropriate servers that the 
guest is to be deported.3 Notice that in this step all accounted resources allocated 
by the guest are located. The servers respond by packaging state information 
corresponding to the guest and sending it to the Butler. The address space of the 
guest, including registers and other processor states, combined with state infor- 
mation from various servers, makes up the complete state of the guest (see Figure 
5). 

The guest’s state is sent to some other Butler, the identity of which was 
established during negotiation. This Butler interprets the state to determine 
what server connections are necessary, and state information prepared by the 
original servers is forwarded to new servers. Processes that were in use by the 
guest are “reincarnated” by the new Butler, and execution is resumed. The Spice 
operating system kernel, Accent [23], allows message ports to be moved, so 
communication paths between the client and guest are not broken by deportation. 

10. RELATED WORK 

A large amount of work has been done regarding security. Techniques for security 
in computer systems are surveyed by Saltzer and Schroeder [24], and encryption 
techniques is presented by Needham and Schroeder [19], Popek and Kline [21], 
and Davies [9]. Much less research has been done on topics that relate directly 
to the problems of resource sharing discussed in this paper. Svobodova et al. [27] 
consider a distributed system composed of autonomous nodes, but focus on 
language primitives for distributed applications rather than on the sharing of 
resources in the manner we have considered. Further work is reported by Liskov 
and Scheifler [17]. Other researchers have investigated applications of resource 
sharing [25], scheduling problems [3, 12, 261, and configuration control [5] in a 
personal computer network, but protection issues are generally not addressed. 
Distributed systems that run on collections of autonomous but trustworthy time- 

‘The Banker maintains a mapping from currency types to servers. Given an account, the Banker 
can locate servers that have made withdrawals from that account. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



250 l R. B. Dannenberg and P. G. Hibbard 

new Host 
Butler J 

"deport 
guest" 

connections connections 

new server 
connections 

Fig. 5. Deportation of a guest process. 

shared systems have also been constructed [6,4,11,13,16,18]. Process migration 
in DEMOS/MP, similar to the deportation operation, is described by Powell and 
Miller [ 221. 

11. CONCLUSIONS 

The Butler is the result of an investigation of resource sharing on a network of 
personal computers. Its design is strongly influenced by concerns about autonomy 
and protection, both of which have led us to an approach where control is 
distributed and the policy of any machine is dictated by its owner. The system 
support for this approach is similarly distributed, each machine executes an 
independent Butler. When Butlers interact, they use authentication and negoti- 
ation to avoid blindly trusting another machine. At all times a Butler enforces 
its owner’s policies. To do this, the Butler relies on lower level mechanisms which 
are a part of Spice, including a secure operating system kernel, a secure message 
passing system, network encryption, and the Banker. 

At present a prototype Butler has been implemented to demonstrate deporta- 
tion and to obtain some performance estimates [7]. The Banker has not been 
implemented, and the Central Authentication Server, a component of the Sesame 
file system [14] will soon be released for general use. 
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



Butler Process for Resource Sharing 251 

REFERENCES 

1. ACCEWA, M., ROBERTSON, G., SATYANARAYANAN, M., AND THOMPSON, M. The design of a 
network based central file system. Tech. Rep. CMU-CS-80-134, Carnegie-Mellon Univ., Pitts- 
burgh, Pa., Aug. 1980. 

2. BALL, J.E., BARBACCI, M.R., FAHLMAN, S.E., HARBISON, S.P., HIBBARD, P.G., FLASHID, R.F., 
ROBERTSON, G.G., AND STEELE, G.L. JR. The Spice Project. In 1980-1981 Computer Science 
Research Reoiew. Carnegie-Mellon Univ., Pittsburgh, Pa., 1982, pp. 49-77. 

3. CASEY, L.M. Decentralized scheduling. Australian Comput. J. 13,2 (May 1981), 58-63. 
4. COSELL, B.P., JOHNSON, P.R., MALMAN, J.H., SCHANTZ, R.E., SUSSMAN, J., THOMAS, R.H., 

AND WALDEN, D.C. An operational system for computer resource sharing. In Proceedings of the 
5th Symposium on Operating System Principles (Nov. 1975). ACM, New York, pp. 75-81 
(published as SZGOPS Operating Syst. Reu. 9,5). 

5. CRAFT, D.H. Resource management in a decentralized system. In Proceedings of the 9th ACM 
Symposium on Operating Systems Principles (Oct. 1983). ACM, New York, pp. 11-19. 

6. DANIELS, D. Query compilation in a distributed database system. Res. Rep. RJ3423, IBM, San 
Jose, Calif., 1982. 

7. DANNENBERG, R.B. Resource sharing in a network of personal computers. Ph.D. dissertation, 
Carnegie-Mellon Univ., Pittsburgh, Pa., 1982. 

8. DANNENBERG, R.B. Protection for communication and sharing in a personal computer network. 
In Pmceedings of 5th Internationul Conference on Distributed Computing Systems (May 1985). 
IEEE, New York, pp. 88-98. 

9. DAVIES, D.W. Lecture Notes in Computer Science. V Protection. In Distributed Systems- 
Architecture and Implementation. Lecture Notes in Computer Science, vol. 105. Springer-Verlag, 
New York, 1981, pp. 211-245. 

10. DOD. Reference Manual for the Ada Programming Language. United States Department of 
Defense, 1980. 

11. FORSDICK, H.C., SCHANTZ, R.E., AND THOMAS, R.H. Operating systems for computer networks. 
Comput. 11, 1 (Jan. 1978), 48-57. 

12. HORNIG, D. Automatic partitioning and scheduling on a network of personal computers. Ph.D. 
Dissertation, Carnegie-Mellon Univ., Pittsburgh, Pa., 1984. 

13. IBM. Customer Information Control SystemfVirtunl Storage (CZCS/VS) Version 1, Release 4, 
Introduction to Program Logic. IBM, 1979. 

14. JONES, M., RASHID, R.F., AND THOMPSON, M. Sesame: The Spice tile system. Spice Document 
S140, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa., 1982. 

15. KENT, S.T. Protecting externally supplied software in small computers. Ph.D. dissertation, 
M.I.T., Cambridge, Mass., Sept. 1980. 

16. LINDSAY, B. Object naming and catalog management for a distributed database manager. Res. 
Rep. RJ2914, IBM, San Jose, Calif., 1986. 

17. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust, distrib- 
uted programs. In 9th Annwl ACM Symposium on Principles of Programming Languages (Jan. 
1982). ACM, New York, pp. 7-19. 

18. MILLSTEIN., R.E., The National Software Works: A distributed processing system. In Pmceed- 
ings of the ACM Conference (Oct. 1977). ACM, New York, pp. 44-52. 

19. NEEDHAM, R.M., AND SCHROEDER, M.D. Using encryption for authentication in large networks 
of computers. Commun. ACM 21,12 (Dec. 1978), 993-938. 

20. ORGANICK, E.I. The Multics System: An Examination of Its Structure. M.I.T. Press, Cambridge, 
Mass, 1972. 

21. POPEK, G.J., AND KLINE, C.S. Encryption and secure computer networks. ACM Comput. Surv. 
II,4 (Dec. 1979), 331-356. 

22. POWELL, M.L., AND MILLER, B.P. Process migration in DEMOS/MP. In Proceedings of the 
9th ACM Symposium on Operating Systems Principles (Oct. 1983). ACM, New York, pp. llO- 
119. 

23. RASHID, R., AND ROBERTSON, G. Accent: A communication oriented network operating system 
kernel. In Proceedings of the 8th Symposium on Operating Systems Principles (Dec. 1981), ACM, 
New York, pp. 64-75. 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 



252 l R. B. Dannenberg and P. G. Hibbard 

24. SALTZER, J.H., AND SCHROEDER, M.D. The protection of information in computer systems. 
hoc. IEEE 63,9 (Sept. 1975), 12781308. 

25. SHOCH, J.F., AND HUPP, J.A. Notes on the “Worm” programs-Early experience with a 
distributed computation. Commun. ACM 25, 3 (Mar. 1982), 172-180. 

26. SMITH, R.G. The Contract Net Protocol: High-level communication and control in a distributed 
problem solver. IEEE Trans. Corn@. C29,12 (Dec. 1980), 1104-1113. 

27. SVOBODOVA, L., LISKOV, B., AND CLARK, D. Distributed computer systems: Structure and 
semantics. Tech. Rep. MIT/LCS/TR-215, M.I.T., Cambridge, Mass., Mar. 1979. 

28. WULF, W.A., COHEN, E., CORWIN, W., JONES, A., LEVIN, R., PIERSON, C., AND POLLACK, 
F. Hydra: The kernel of a multiprocessor operating system. Commun. ACM 17,6 (June 1974), 
337-345. 

Received August 1984; revised April 1985 

ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985. 


