
1The Canon Score Language

Roger B. Dannenberg
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACT

Canon is both a notation for musical scores and a programming language.
Canon offers a combination of declarative style and a powerful abstraction
capability which allows a very high-level notation for sequences of musical
events and structures. Transformations are operators that can adjust common
parameters such as loudness or duration. Transformations can be nested and
time-varying, and their use avoids the problem of having large numbers of
explicit parameters. Behavioral abstraction, the concept of making behavior an
arbitrary function of the environment, is supported by Canon and extends the
usefulness of transformations. A non-real-time implementation of Canon is based
on Lisp and produces scores that control MIDI synthesizers.

Introduction

Canon is a computer language designed to help composers create note-level control
information for hardware synthesizers or synthesis software. Canon was motivated by my need
for a simple yet powerful language for teaching second-semester students of electronic and
computer music, and also by my interest in putting concepts from the language Arctic
(Dannenberg 1986, Rubine 1987) to practical use in a MIDI studio.

Canon is something of a cross between a music notation and a programming language. The
main idea in Canon is to combine and transform simple scores to form more complex ones.
Since time is an essential ingredient in music, Canon provides several ways of specifying and
manipulating the timing and synchronization aspects of music. Aside from time, various
transformations can be performed to affect loudness, pitch, and timbre.

In contrast to note lists, sequencers, and other approaches in which music is represented as data
to be operated upon by an editor or other program, Canon scores are themselves programs. This
allows scores to be parameterized and to incorporate arbitrary calculations including

1Published as: Dannenberg, ‘‘The Canon Score Language,’’ Computer
Music Journal, 13(1) (Spring 1989), pp. 47-56. Copyright (c) 1989 MIT

2

compositional algorithms. The same could be said of languages like Formes (Cointe 1984,
Rodet 1984) and Pla (Schottstaedt 1983), but Canon goes further to blur the distinction between
data and program. This is possible because Canon is a declarative language. Rather than
specifying sequences of statements to manipulate variables and affect the computation, Canon
programs are written in a more descriptive style that can be similar in form to note list data.

One of the powers of Canon is its ability to express complex parameterized behaviors. I call
this capability behavioral abstraction by analogy to the programming language term procedural

2abstraction . The goal of behavioral abstraction is to describe a class of behaviors or
performances, instances of which may vary according to context. For example, suppose I want
to generate a drum roll sound. This is easily done by repeating a very short note some number of
times, say 50. Now suppose I incorporate the drum roll into a score and stretch the score by a
factor of two. What happens to the drum roll? If the stretching is applied directly to note list
data, the 50 notes of the roll would be stretched, slowing the rate of the roll. With Canon, it is
possible to write a drum roll that fills in with more notes to obtain the desired duration when then
roll is lengthened. The ability to provide specialized behavior in response to transformations
allows the composer to express abstract concepts like ‘‘drum roll’’ which are not tied to a
particular set or number of notes. These concepts actually extend the meaning of
transformations. A transformation like ‘‘stretch’’ is now operating at a musical concept level
rather than at the data manipulation level.

In the next section, the elementary expressions (called score primitives) for creating and
combining notes are presented as is the facility for defining new operators. In the following
three sections, transformation operators are described. Then, control structures for iteration and
conditional evaluation are presented. After some short examples of Canon programs, time-
varying transformations are presented. The implementation of Canon is described, and this is
followed by a short survey of related work and conclusions.

Score Primitives and Operator Definition

Canon allows the composer/programmer to create, manipulate, and combine scores. A score is
usually obtained by combining other scores, but there a few built-in, or primitive scores from
which other scores are composed. Before describing these primitives, a brief explanation of Lisp
(Kornfeld 1980, Touretzky 1984) syntax (used by Canon) is presented as a guide to readers who
are not familiar with Lisp. Lisp programmers should skip ahead to ‘‘Primitive Operators’’.

Lisp Syntax

2Virtually every procedural language provides some form of procedural abstraction through the definition of new
subroutines or procedures. A subroutine is an abstraction in the sense that it represents a class of actions
(procedures); a concrete instance of the abstraction is made each time the subroutine is invoked, and each instance
might be created with a different set of parameters.

3

3Canon (and Lisp) have essentially two types of things to notate: operators and operands . For
example, in the expression (+ 1 2), ‘‘+’’ is an operator, and ‘‘1’’ and ‘‘2’’ are operands.
(Thus, Canon’s ‘‘(+ 1 2)’’ is mathematic’s ‘‘1+2’’.) The syntax used by Canon generalizes
to operators that have more or less than two operands. Canon uses the following syntax for all of
its expressions involving operators:

(operator operand-1 operand-2 ... the-last-operand)

The parentheses are important here: they mark the beginning and ending of the expression. This
provides a uniform notation regardless of how many operands there are.

Nested expressions are allowed; for example, ‘‘(* (+ 1 2) 3)’’ denotes the calculation of
‘‘(1+2) × 3’’; the value is therefore 9. Most Canon operators have symbolic names; for example,
note, seq, and trans are Canon operators.

Primitive Operators
The note operator produces a score with one note. For example, (note c4) produces a

middle-C. The note operator can take more operands. The full list is

(note pitch duration duty velocity channel)

Pitch is specified by a number, but variables like C4 are pre-defined for convenience. (The
operands are evaluated so that expressions and variables can be used as well as numbers.)
Duration is specified in hundredths of seconds until the next event, and variables like q (for
quarter) and ht (for half triplet) are pre-defined as well. The duty operand is the percentage of
duration before the note is turned off. Note that duration corresponds to the conventional
musical definition only if duty is considered to be an articulation indication such as staccato or
legato. For example, if duty is 50 and duration is 150, then the note will be turned on for .75
seconds (50 percent of 150 hundredths) rather than the full duration of 1.5 seconds. (The
remaining .75 seconds will consist of the release of the note followed by silence.) Velocity and
channel refer to the corresponding MIDI parameters (Loy 1985). Any operands not specified
take on default values. The default note is a middle C lasting 1 second with 100% duty, a
velocity of 100, and channel 1.

The rest operator has only one operand that specifies duration. For example, (rest 200)
specifies a rest (silence) of two seconds (again, the unit of time is the centisecond, or 0.01
seconds).

The adagio operator refers not to a tempo but to the language Adagio, a note-list format
developed by the author. The operand is a filename: (adagio "perf") denotes the score
stored in the file named ‘‘perf’’. This operator is useful for incorporating a note-list that was
captured from a live performance.

The seq operator is used to combine notes into sequences or melodies. For example,

3In abstract algebra, ‘‘operator’’ is a specific type of function. In Lisp, the term ‘‘function’’ is normally used in
place of ‘‘operator’’ to imply a less restricted definition. Since programming is not mathematics, neither the term
‘‘function’’ nor ‘‘operator’’, when taken from a mathematical viewpoint, is very accurate. I am using the terms
‘‘operator’’ and ‘‘operand’’ to appeal to the intuition of the non-programmer in this introduction in hopes that
Lispers will forgive me.

4

(seq (note d4) (note c4) (note cs4))

denotes a score with three notes in sequence. When a sequence is created, the separation
between notes is determined by each note’s duration. The note is sounded some percentage of
the duration according to the duty factor. A small duty factor produces staccato effects while a
large duty, e.g. 100 or more produces legato effects. Notes will overlap when duty is greater than
100.

The sim operator (short for ‘‘simultaneous’’) is similar to seq, but instead of splicing
together a set of scores end-to-end, it performs them all at the same time. The following:

(sim (note c4) (note e4) (note g4))

denotes a C-major chord.

Defining New Operators
Operators can be defined using the same facility provided by Lisp. Consider this example:

(defun up ()
(seq
(note c4)
(note d4)
(note f4)
(note g4)))

This defines the operator up to mean the sequence c4, d4, f4, g4. The operator defun (short for
‘‘define function’’) normally takes three operands:

(defun name operands score)

The first operand is the name of the operation being defined. The next operand is a list of names
of operands for the new operator (see the next example). There are no operand names in this
example, so the up will have no operands. The third operand of defun is a score, which is
taken as the meaning of the new operator.

Now that up is defined, it can be used just like any other operator. For example, a sequence
that plays the ascending pitches twice could be written:

(seq (up) (up))

Note that even though up has no operands, it is still enclosed in parentheses to denote that up is
an operator.

Operands also work as in Lisp. The following example is a rewrite of the previous definition
allowing the starting note to be provided as an operand. The effect is to transpose the ascending
scale so that it starts on the pitch provided as the operand:

(defun up (root)
(seq
(note root)
(note (+ root 2))
(note (+ root 5))
(note (+ root 7))))

Here, root is the formal operand (Pratt 1975) for which actual operands are substituted when
up is used. For example, if we were to write (up a5), Canon would substitute the value of a5
for root in the definition of up and then evaluate the resulting score.

5

This example illustrates how operands can work in combination with a definition facility
(defun) to provide a flexible and extensible score notation. In particular, structures like
phrases, chords, or melodies can be defined and used many times in a composition. However,
the example also shows that even providing something as simple as transposition is awkward.
The new definition has 18 symbols versus 11 in the original, and the single transposition operand
had to be propagated into every note expression. If writing scores to be transposable is a
moderate chore, imagine the effort to allow a combination of transposing, stretching, sustaining,
time-shifting, dynamics-changing, and other common operations! In the next section,
transformations are introduced to avoid awkward parameterization of common types of score
manipulation.

Transformations

In Canon, a transformation is something that alters a score. Scores can be altered by shifting
and stretching them in time, by scaling the duty factor of notes, by transposition, by changing the
velocity, and by extracting the notes that fall into a particular time interval.

There are a number of transformation operators. Most of these transformations have two
operands: a number giving an amount of transformation and a score to apply the transformation
to. The score may be another transformation expression, a primitive, the result of a combining
operation (seq or sim), or an operator defined by defun as described earlier. Consider the
following:

(sim (note c4)
(at 300 (note a4)))

The at transformation shifts scores in time. Intuitively, (at x y) means ‘‘at time x, do y’’
and the at operator is reminiscent of the ‘‘@’’ operator in 4CED (Abbot 1981) and Arctic
(Dannenberg 1986). In this example, the time of the second note is shifted by 3 seconds. Notice
that even though the sim operator causes both of its operands to start at the same time, the
second one starts with 3 seconds of silence due to the time shift.

The stretch operator stretches time. In the following example it makes the sequence take
three times as long as normal:

(stretch 3 (seq (note c4)
(note c5)))

The sustain operator alters the duty factors of notes. The following shortens notes to 50
percent of their normal values:

(sustain 50 (seq (note c4)
(note c5 100 50)))

The first operand (50) is a percentage, so the duty factor of each note is halved. The first note
4will last 0.5 seconds and the second will last 0.25 seconds . The start times of the notes remain

the same and only the durations change when sustain is used.

4The second note has a specified duty operand of 50, so without the transformation, the note would last 50% of its
duration of 100, or 50 centiseconds. The sustain transformation halves this.

6

The trans operator transposes scores. The following:

(seq (up) (trans 2 (up))
(trans 12 (up)))

takes the first up operator defined above and plays it at various transpositions. The transposition
is in semitones, and may be positive, negative, or even zero. Notice how much easier it is to use
trans than it is to parameterize up to achieve a similar effect.

The loud transformation, changes the loudness (velocity) operand of notes. The value is
added to the MIDI velocity and the result is limited to the range from 1 to 127 to accommodate
MIDI synthesizers. For example,

(loud -20 (seq (note c4) (note c5)))

lowers the MIDI velocity of these notes from the default of 100 to 80.

The extract operator removes notes before a given start time or after a given stop time.
Notes that span the start or stop time are truncated to fit within the interval. The operator takes
three operands as follows:

(extract start-time stop-time score)

Here is an example:

(seq (up) (extract 50 300 (up)))

This expression plays a copy of the score created by ‘‘(up)’’ followed by an abbreviated
version created with extract. What you hear is the portion of ‘‘(up)’’ between time 50 and time
300. Since the first note of ‘‘(up)’’ normally lasts one second (the default note duration), the
extract’ed version starts in the middle of the first note. Since the stop time is 300, we hear
only to the end of the third note, the f4.

Nesting Transformations
It is very useful to combine several transformations. Consider the following example:

(trans 5 (loud 10 (up))

This score plays ‘‘(up)’’ with a slight increase in loudness (velocity) and transposes all of the
pitches up by 5.

Time shifting interacts in a fairly subtle way with duration scaling. When we scale the
duration of something we expect the duration of its components to be scaled, but it is also natural
to expect the time between events to be scaled. Thus, duration scaling must affect inter-note
time. The rule is very simple: the amount of time shift caused by an at transformation is scaled
by the current duration factor.

Here is an example to illustrate this point:

(stretch 3 (at 10 (note 60)))

The at operation is inside a stretch operation, so the note is shifted not by 10 but by 30 (that
is, 3 × 10) time units.

Transformations are normally relative, so in the following example

(stretch 2 (stretch 3 (up)))

7

the ‘‘(up)’’ score is stretched by 3 and then again by 2, so the effect is the same as stretching
by 6. Stretch and sustain factors multiply, while shift amounts (from at), loudness changes,
and transpositions add.

Absolute Transformations
Sometimes one wants to make sections of a score impervious to transformations. Suppose I

want to have a quiet section at a certain loudness independent of how loud the rest of the piece
is, or perhaps I want a theme to enter at a fixed tempo regardless of how surrounding sections are
stretched. Most of the transformation operators have a related operator that fixes a given
dimension of the transformation environment and shields it against further transformation.
These operators are at-abs, stretch-abs, sustain-abs, trans-abs,
extract-abs, and loud-abs. The ‘‘-abs’’ means absolute as opposed to relative. Here
are some examples:

(at 50 (at-abs 40 (note 60)))

The outer at would normally shift the score by 50, but the inner at-abs fixes the time at 40.
The note will be played at time 40.

Now, consider

(at-abs 50 (at 40 (note 60)))

The outer at-abs makes the inner at score occur at time 50, and the inner at then shifts time
(relatively) by 40. In this case the note will be played at time 90.

Here is an example using loud-abs:

(loud 20 (seq (up)
(up)
(loud-abs 0 (note b4))
(up)))

In this example, the ‘‘(note b4)’’ will be played without any change in loudness, and the
other operands (copies of ‘‘(up)’’) will have their loudness increased by 20.

Control Structure

Canon has special operators to repeat scores and choose between scores. The operator
seqrep repeats a score sequentially. This example plays the note c4 20 times:

(seqrep (i 20) (note c4 40 20))

5The first two operands of the seqrep operator are enclosed in parentheses . The first operand
(‘‘i’’ in the example) is a variable name, and the second (‘‘20’’ in the example) is the number
of repetitions. The third operand (‘‘(note c4 40 20)’’) is the score to be repeated.

Each time the score is repeated the variable (the first operand) is incremented by one, starting
from zero. This fact can be used for some interesting programs. A simple application is a score

5This is not standard syntax for operands in general, but it is a form that is commonly used for special control
structures in Lisp.

8

that ‘‘fades out’’ over ten iterations:

(seqrep (i 10) (loud (* i -5)
(stretch 0.2 (up))))

A conditional allows a choice to be made between two scores. Here is an example in which
‘‘(up)’’ is played each repetition of a seqrep except for the ninth time:

(seqrep (i 20) (if (= i 8) (note b4) (up)))

The if operator always has three operands. The first is a test. In this case, it is the comparison
of i to the number 8. This test will be true on the ninth repetition (recall that i starts at zero).
The second operand gives a score to play if the test is true and the third operand is a score to play
if the test is false.

Examples

We can now see how Canon can be used to express an abstract behavior like ‘‘drum roll’’.
The implementation will compute how many notes are needed to fill the available time and use
seqrep to generate the notes:

(defun drum-roll ()
(sim (rest)

(seqrep (i (truncate (* 10
(eval *dur*)
(eval *duty*))))

(stretch-abs 0.1 (sustain-abs 50 (note c4))))))

In Canon, the current duration (in seconds) and duty factor (a fraction) are obtained by
evaluating the special variables *dur* and *duty*, respectively. Their product is on-time in
seconds. (The need for the eval is described in the Implementation section below.) We also
multiply by the number of notes per second (10 in this example) to get the number of notes. This
is truncated to get an integer:

(truncate (* 10 (eval *dur*) (eval *duty*)))

All of this yields a repetition count for the seqrep. The score to be repeated represents one
drum sound. The note is transformed to have an absolute duration of 0.1 seconds and a 50%
duty independent of other transformations. The seqrep will end after the last drum note, which
is not the full duration unless *duty* is 100 percent. To correct this, a rest is ‘‘played’’
simultaneously with the drum roll. The rest will have the full duration by default. Since sim
takes on the maximum duration of any of its components, drum-roll will have the desired
duration. Now, drum-roll can be used with transformations, for example:

(sim (up) (stretch 4 (drum-roll))).

Canon can also be used to express compositional algorithms. As a very simple example, let us
define an operator that cycles through a list of pitches. The number of notes to generate and a
list of pitches will be operands, and transformations will apply to each note.

(defun cycle (count pitches)
(seqrep (i count)

(note (nth (rem i (length pitches)) pitches))))

9

thThis definition uses a few new lisp operators: nth selects the n item from a list, rem returns
the remainder of dividing the first operand by the second, and length returns the length of a
list. The new operator cycle can be used to generate complex textures:

(sim (stretch 0.3
(cycle 40 (list e5 ef5 b4 g4 d5 df5))

(stretch 0.4
(cycle 30 (list a3 e3 g3 ef3))

(stretch 0.25
(cycle 48 (list b3 e4 d4 fs4))))

The list operator simply forms a list from its operands.

Time-Varying Transformations

Simple transformations like the ones described are quite powerful, but in music, it is often
important to make gradual changes over time. This allows one to express familiar concepts such
as crescendo and accelerando in addition to less familiar alterations including making notes
successively more staccato. These time-varying transformations are expressed in Canon using
special expressions in conjunction with transformation operators. For example,

(loud (env (0 0) (1000 30) (2000 10)) (myscore))

will impose an amplitude envelope over the course of myscore. Each pair of numbers in the
envelope represents a breakpoint. The envelope starts at zero, increases to 30 over the first 10
seconds and then decreases to 10 after an elapsed time of 20 seconds. (These times are of course
shifted and stretched according to any applied transformations.)

When an envelope is specified for a stretch operation, the result is fairly difficult to control
because durations are calculated according to the current value of the envelope. This leads to a
complex interdependency in which the starting times of notes depend upon durations and
duration is a function of starting time. A saner way to deal with time and duration is to provide a
function from ‘‘score time’’ to ‘‘performance time’’ (Rogers 1980, Jaffe 1985). The
corresponding operators are warp and warp-abs, and the envelope function provides a
mapping from score time to real time. Further details are given in the next section. The
following example plays a score at a fast tempo followed by a slow one such that the overall
duration (500) is unchanged:

(warp (warp-env (0 0) (250 100) (500 500))
(seq (note c4)

(note a4)
(note d4)
(note cs5)
(note e4)))

To illustrate the operation of the warp operator, consider the last note of the sequence. Without
the transformation, the note would start at time 400 and end at 500. The time-warping function
maps 400 to 340 (derived by linear interpolation between breakpoints) and 500 to 500, so the
note will actually be performed at time 340 and last 160 centiseconds.

10

Implementation

6Canon is implemented in Lisp. Canon operators are, for the most part, Lisp macros which
expand into directly executable Lisp. There is no special Canon interpreter.

A key idea in Canon is that all scores are evaluated in an environment that affects notes and
that can be altered by transformations. The existence of the environment allows transformations
to be performed without explicit operands. Furthermore, environments are dynamically scoped,
which means a transformation applies to all subcomponents of a score, no matter how deeply
they are nested.

Because the Lisp used for Canon is statically scoped, dynamic scoping of the environment is
simulated using a set of global variables: *time*, *dur*, *duty*, *transpose*,
velocity, *start*, *stop*, and *warp*. Transformations are macros that save a
component of the environment (e.g. stretch saves *dur*) modify the environment, evaluate
the score, and then restore the original environment.

In the original implementation, the environment values were numbers, and the environment
was modified upon entry to a transformation by adding or multiplying to obtain a new number.
For example, if *velocity* was 60 and (loud 15 (s)) was entered, then *velocity*
would be set to 75 while (s) was evaluated.

To handle time-varying functions, the environment is generalized to contain an expression
which, when evaluated, returns the appropriate value. Since the global value *time* always
represents the current time, other components of the environment can easily be made functions
of time. Under this new implementation, expressions are created when a transformation is
entered. Returning to our (loud 15 (s)) example, *velocity* will now be set to the
expression (+ 15 60) rather than to the number 75. To obtain the current value of velocity,
one must evaluate *velocity* as an expression. This is easily done by applying the Lisp
function eval. We will now see how this deferred evaluation can be beneficial.

The function env, used to create envelopes for transformations, returns an expression that will
evaluate the envelope at the time point specified by *time*. The envelope breakpoints are first
transformed by the current values of *dur*, *time*, and *warp*. Then, the new
breakpoints are made the argument of interp, a function for finding the value of the envelope
at *time*. For example, if *time* is 500, *dur* is 100, and *warp* is Nil (i.e. no time
mapping) then (env (0 0) (100 5)) returns (interp ’((500 0) (600 5))). If
this expression is evaluated when *time* is 550, the result will be 2.5.

If *velocity* is 60 and we evaluate (loud (env (0 0) (100 5)) (s)) then the
new value for *velocity* becomes (+ (interp ’((500 0) (600 5))) 60).
Thus, a fairly simple symbolic representation of the environment allows us to represent and
compose time-varying transformations. The cost of eval is high, but it is only invoked at

6The current implementation uses Xlisp, a small interpreted lisp which we have extended to provide access to
functions of the CMU MIDI Toolkit. The Xlisp interpreter, Canon, a program editor, and MIDI utilities all run
comfortably on a Macintosh computer with 512 KBytes of RAM.

11

points where the eval is really needed, so the overall cost of maintaining the environment is
low.

The function warp-env differs from env in that env produces a function from the current
real time (after warping) to a value, whereas warp-env produces a function from score time
(before warping) to real time. This means that warp-env does not apply the current mapping
in *warp* to the envelope breakpoints as does env.

How does the environment affect scores? The note operator is a function that computes a note
description in accordance with all elements of the current environment. Thus, note is a fairly
complex function. Once written, however, it can be widely used. In particular, note is called
to generate each note read from a score file in order to implement the adagio operator.

For various implementation reasons, the note operator writes note descriptions to a file. No
Lisp data structure is ever constructed to represent scores (except for the Canon programs
themselves), and for convenience, the Adagio language is used as the output file representation.

The one remaining aspect of implementation is the handling of the operators seq and sim.
By convention, Canon operators return the ending time of the last note or rest and they restore
any changes made to the environment during their evaluation. The seq operator evaluates each
component score in order. After each score is evaluated, *time* is set to the end of that score
and the next score is evaluated. In keeping with the convention, seq restores *time* to its
original value after all scores have been evaluated and returns the ending time of its last
component.

The sim operator is even simpler than seq because the environment is the same for every
component score. The result returned by sim is the maximum of the ending times returned by
all of its components. In fact, since evaluating operands and returning the largest is the only
requirement for sim, it is functionally equivalent to the Lisp operator max.

Notice that in the implementation, notes are not generated in time order. Instead, notes are
generated in the order they are encountered as the Canon program is evaluated. After the score
is computed, the resulting notes are read in, sorted, and performed.

Related Work

Canon is directly related to Arctic (Dannenberg 1986), and Canon semantics are almost
identical to those of Arctic. The standard data type in Arctic is a time-varying real-valued
function rather than a score, so Arctic has a different set of operators. The idea of a
transformation environment and the ability to create abstract behaviors is a common theme in the
two languages.

Formes (Cointe 1984) has been used to program at both the note and the control function level.
Formes programs are less declarative than Canon programs in that Formes objects contain state
information that must be initialized and modified as time progresses. This tends to force the
programmer to be aware of implementation details. An advantage of the Formes approach is that
output is computed in time order, so it is possible to have simultaneous activities that influence
one another.

12

Formula (Anderson 1986) is a real-time system based on the use of multiple tasks for
expressing scores and allowing various transformations. One very interesting property of
Formula is that time-varying transformations (like Canon’s envelopes) can be programmed
procedurally and each envelope runs as a separate process. Formula does not have any built-in
mechanisms for nesting transformations except for time-deformation analogous to the warp
operator in Canon.

Pla (Schottstaedt 1983), like Formes, is an object-oriented language, but Pla seems more note-
list oriented. A central idea in Pla is the use of objects called voices to interpret note lists. This
idea is also used in Greenberg’s (1987, 1988) Object LOGO Music Environment (Krakowsky
1986). Neither of these languages supports nested transformations in the sense of Formes or
Canon. On the other hand, Formes and Canon do not have built-in facilities for building voices
or performers that interpret note-list data. The ‘‘Examples’’ section above and in the cited
Formes paper show that this is possible, however.

Conclusions

Canon is a simple yet effective language for expressing scores. Canon is particularly useful
when scores can be expressed as combinations of parameterized components and various
transformations. The most important aspects of Canon are its declarative style, its ability to
support nested transformations, and its ability to define abstract behaviors. The declarative style
allows programs to resemble structured note lists rather than conventional programs. The focus
is on what to play when and with what transformations rather than on manipulating data
structures, setting variables, and executing control structures. Nested transformations allow
scores to be altered at the level of notes, phrases, and entire works. In general, no extra
programming is required to make transformations applicable to composer-defined operators.
Abstract behaviors allow the composer to build new operators that respond to transformations
‘‘intelligently,’’ for example by increasing the number of notes in a drum roll when the duration
is stretched. Abstract behaviors enhance the usefulness of transformations because one can
define the effect of transformations on a new operator. Once implemented, the abstract behavior
can be used in a variety of situations.

There is currently no interface for Canon except a Lisp editor and a real-time recording
program to allow the capture and subsequent manipulation of real-time performances. Although
a more graphic view of Canon programs would be nice, this would be difficult to achieve
because Canon has the full expressive power of a programming language. Another approach
would be to provide an interface between a graphics-oriented music editor and Canon so that at
least the top-level structure of a composition could be manipulated graphically (Dannenberg
1986).

The drum-roll example illustrates that writing abstract behaviors in Canon is not a trivial
task. In this case, Canon’s declarative style does not seem to offer much advantage over a
procedural approach. In fact, the drum-roll code even looks procedural, although one could
argue that it is declarative in the formal sense. Perhaps there are ways of making the notation
simpler. At least, a few macros might be written to handle common operations such as
computing the nominal on-time of the sound.

13

The abstraction of transformations is an area where Canon might be improved. For example,
would it be possible to define a new operator legato so that we could get more sustained notes
by writing (legato (myscore))? It is in fact possible to define legato as a Lisp macro,
but the definition requires some knowledge of the implementation of Canon. New
transformations should be easier to define. Similarly, I have only discussed piece-wise linear
envelopes for use in time-varying transformations. Can we define arbitrary functions as
envelopes? Again, the answer is yes, but only with a fair understanding of Lisp and the Canon
implementation. These functions should be constructed using a notation like that used for
scores. This is one of the goals of Arctic, in which most of the ‘‘score primitives’’ are functions
of time.

Canon was written in Lisp for expedience. The Lisp macro facility is particularly useful for
implementing transformations, seq and sim. It would be difficult to implement Canon in a
language like C unless a powerful macro processor or compiler were used to add code for
managing the environment. Even then, some run-time expression evaluation would be needed
for time-varying transformations. A real-time version of Canon could be achieved by creating a
task for each simultaneous component whenever a sim operator is encountered. An alternative

7to tasks, which are often large and slow to create, is to use a calculation tree of objects as in
Formes. I am currently pursuing this approach in a real-time implementation of Arctic.

Acknowledgments

An Xlisp (Betz 1986) programming environment for the Apple Macintosh was the enabling
condition for the implementation of Canon. David Betz wrote Xlisp which has proved to be
virtually bug-free and a model of good coding style. Blair Evans and Robert Joseph modified
Xlisp to create a nicer programming environment. Their work incorporated John Maloney’s port
of the CMU MIDI Toolkit which provides the Xlisp to MIDI interface. Finally, the comments of
the referees were particularly helpful in improving this exposition.

References

Abbot, C., 1981. ‘‘The 4CED Program.’’ Computer Music Journal 5(1):13-33.

Anderson, D., and R. Kuivila, 1986. ‘‘Accurately Timed Generation of Discrete Musical
Events.’’ Computer Music Journal 10(3):48-56.

Betz, D. 1986. ‘‘XLISP: An Experimental Object-oriented Language, Version 1.7.’’ (program
documentation).

Cointe, P., and X. Rodet, 1984. ‘‘Formes: an Object & Time Oriented System for Music
Composition and Synthesis.’’ Proceedings of the 1984 ACM Symposium on LISP and
Functional Programming, pp 85-95.

7Usually, each task requires a contiguous stack. Stacks must be large enough to ensure that they do not overflow.

14

Dannenberg, R., P. McAvinney, D. Rubine, 1986. ‘‘Arctic: A Functional Language for Real-
Time Systems.’’ Computer Music Journal 10(4):67-78.

Greenberg, G., 1987. ‘‘Procedural Composition.’’ Proceedings of the 1987 International
Computer Music Conference. San Francisco: Computer Music Association, pp 25-32.

Greenberg, G., 1988. ‘‘Composing With Performer Objects.’’ Proceedings of the 1988
International Computer Music Conference. San Francisco: Computer Music Association,
pp 142-149.

Jaffe, D., 1985. ‘‘Ensemble Timing in Computer Music.’’ Computer Music Journal 9(4):38-48.

Kornfeld, W., 1980. ‘‘Machine Tongues VII: LISP.’’ Computer Music Journal 4(2):6-12.

Krakowsky, P., ed., 1986. Object LOGO Reference Manual. Cambridge Massachusetts: Coral
Software Corp.

Loy, G., 1985. ‘‘Musicians Make a Standard: The MIDI Phenomenon.’’ Computer Music
Journal 9(4):8-26.

Pratt, T., 1975. Programming Languages: Design and Implementation. Englewood Cliffs:
Prentice-Hall.

Rodet, X. and P. Cointe, 1984. ‘‘FORMES: Composition and Scheduling of Processes.’’
Computer Music Journal 8(3): 32-50.

Rogers, J., J. Rockstroh, and P. Batstone, 1980. ‘‘Music-Time and Clock-Time Similarities
Under Tempo Changes.’’ Proceedings of the 1980 International Computer Music
Conference. San Francisco: Computer Music Association, pp 404-442.

Rubine, D. and Dannenberg, R., 1987. ‘‘Arctic Programmer’s Manual and Tutorial.’’ Carnegie
Mellon Computer Science Department Technical Report CMU-CS-87-110.

Schottstaedt, B., 1983. ‘‘Pla: A Composer’s Idea of a Language.’’ Computer Music Journal
7(1):11-20.

Touretzky, D., 1984. LISP: a gentle introduction to symbolic computation. New York: Harper
& Row.

