Letters

Danger in Floating-Point-
to-Integer Conversion

I have run across a classic bug in two recently written
and widely used audio programs, It occurred to me that if
the very smart people who wrote these programs made
this mistake, then it might be widespread. I checked
Csound and found the bug there too, which I think is a
good indication that the bug is in fact common. The bug
is a direct result of the default floating-point-to-integer
conversion in the C programming language, so it affects
many programs and languages implemented in C. [want
to describe the problem and some solutions.

Most audio programs convert floating point samples to
integer samples and write them o a file or an audio out-
put device. I will assume that “correct” behavior is to
round to the nearest integer value. Dealing with scale
factors and overtlow are also important issues, but there
is no standard and the best approach may depend on the
application. I will limit my discussion to rounding,
which is where this bug occurs.

The natural way to implement the conversion is to
scale cach floating point sample to some appropriate
range (= 32767 to 32767) and assign it to a signed 16-bit
integer as follows:

float £; /* assume — 32768 <w £ <w 32767 */
int i; /* could also be ''‘short int’’ */

i = (int) £; /* **(int) £'' means ' ‘convert
frtoanint'' */

The default float-to-integer conversion in C does not
round to the nearest integer, but instead truncates to-
ward zero, That means that signal values in the open in-
terval (<1.0, 1.0) are all converted to zero (0). This
interval is twice as large as the interval mapping to any
other integer, and this introduces a nonlinear distortion
into the signal.

This is not just an issue of truncation versus rounding.
It is well known that rounding to the nearest integer can
be achieved by adding 0.5 and rounding down, but the
following C assignment is incorrect:

i= (int) (£ + 0.5);

C does not round negative numbers down, so values in
the interval (- 1.5, 0.5) are converted to zero. In contrast,
a correct conversion should map only the interval (- 0.5,
0.5) to zero.,

There are several ways to perform rounding for audio,
and, surprisingly, proper rounding can be faster than the

publishedas:RogerB. Dannenberd,Dangerin Floating-Point-to-Intege€onversion,(letterto
editor), ComputerMusicJournal,vol. 26, no. 2, Summer2002,p4.

default conversion in C, The direct implementation is to
treat positive and negative numbers as different cases:

float f; /* assume —32768 <= f <= 32767 */
int i; /* could also be *''‘short int’’ */
if(£>0) (i = (int) (£ + 0.5);)

else (i = (int) (f — 0.5))

This code has the problem of taking a branch, which is
very slow relative to arithmetic on modern processors,
However, this is a good approach if you can combine the
rounding with testing for peak values and clipping out-of-
range values, which also treat positive and negative sam-
ples separately.

An elegant approach, suggested by Phil Burk, the de-
veloper of Syn and co-developer of PortAudio, is to offset
the sample values to make them all positive, perform
rounding, and then shift back. Note that | add an extra
0.5 before truncating to simulate rounding behavior:

i= (((int) (£ + 32768.5)) — 32768)

This also produces correct results, These last two algo-
rithms essentially work around the default C conversion
semantics, but unfortunately, the conversion itself is
slow in most C implementations. Erik de Castro Lopo
describes this in detail and offers solutions (sce mega-
nerd.com/FPcast/) that avoid using the default conver-
sion altogether, thereby achicving substantially better
performance. Intel offers an optimized signal processing
library (developer.intel.com/software/products/perflib
/spl/index. htm) that includes fast rounding and conver-
sion functions, Finally, there is an interesting conversion
method described on page 91 of Dannenberg and Thomp-
son, “Real-Time Software Synthesis on Superscalar Ar-
chitectures” (CM/J 21:3), although this is reportedly not
the best method on an 1x86 processor,

And now, if you will excuse a brief plug, it amazes me
that after decades of software development in computer
Music, our tiny community tries to support so many dif-
ferent implementations of basic functions for music pro-
cessing. Surely if we could share a common, portable
code base, problems like rounding errors would be less
common and solutions could be more readily shared. To
this end, I invite all interested readers to join a discus-
sion at www.create.ucsb.edu/mailman/listinfo
/media_api and to join in the PortMusic effort
(www.cs.cmu.edu/~music/portmusic).

Roger B. Dannenberg
Camegic Mellon University
rbd@cs.cmu.edu

Computer Music Journal

rbd
Text Box
published as: Roger B. Dannenberg, “Danger in Floating-Point-to-Integer Conversion,” (letter to editor), Computer Music Journal, vol. 26, no. 2, Summer 2002, p4.

rbd
Sticky Note
Accepted set by rbd

