
Dannenberg

Roger B. Dannenberg
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 USA
rbd@cs.cmu.edu

Interactive Visual Music: A
Personal Perspective

25

Interactive performance is one of the most innova-
tive ways computers can be used in music, and it
leads to new ways of thinking about music compo-
sition and performance. Interactive performance
also poses many technical challenges, resulting in
new languages and special hardware including sen-
sors, synthesis methods, and software techniques.
As if there are not already enough problems to
tackle, many composers and artists have explored
the combination of computer animation and music
within interactive performances. In this article, I
describe my own work in this area, dating from
around 1987, including discussions of artistic and
technical challenges as they have evolved. I also de-
scribe the Aura system, which I now use to create
interactive music, animation, and video.

My main interest in composing and developing
systems is to approach music and video as expres-
sions of the same underlying musical “deep struc-
ture.” Thus, images are not an interpretation or
accompaniment to audio but rather an integral part
of the music and the listener/viewer experience.
From a systems perspective, I have always felt that
timing and responsiveness are critical if images and
music are to work together. I have focused on soft-
ware organizations that afford precise timing and
flexible interaction, sometimes at the expense of
rich imagery or more convenient tools for image-
making.

“Interaction” is commonly accepted (usually
without much thought) as a desirable property of
computer systems, so the term has become over-
used and vague. A bit of explanation is in order. In-
teraction is a two-way flow of information between
live performer(s) and computer. In my work, I see
improvisation as a way to use the talents of the per-
former to the fullest. Once a performer is given the
freedom to improvise, however, it is difficult for a
composer to retain much control. I resolve this
problem by composing interaction. In other words,
rather than writing notes for the performer, I design

musical situations by generating sounds and images
that encourage improvising performers to make cer-
tain musical choices. In this way, I feel that I can
achieve compositional control over both large-scale
structure and fine-grain musical texture. At the
same time, performers are empowered to augment
the composed interactive framework with their
own ideas, musical personality, and sounds.

Origins

In the earliest years of interactive music perfor-
mance, a variety of hardware platforms based on
minicomputers and microprocessors were available.
Most systems were expensive, and almost nothing
was available off-the-shelf. However, around 1984,
things changed dramatically: one could purchase an
IBM PC, a MIDI synthesizer, and a MIDI interface,
allowing interactive computer music using afford-
able and portable equipment. I developed much of
the CMU MIDI Toolkit software (Dannenberg 1986)
in late 1984, which formed the basis for interactive
music pieces by many composers. By 1985, I was
working with Cherry Lane Technologies on a com-
puter accompaniment product for the soon-to-be-
announced Amiga computer from Commodore.
Cherry Lane carried a line of pitch-to-MIDI convert-
ers from IVL Technologies, so I was soon in the pos-
session of very portable machines that could take in
data from my trumpet as MIDI, process the MIDI
data, and control synthesizers.

Unlike the PC, the Amiga had a built-in color
graphics system with hardware acceleration. At
first, I used the Amiga graphics to visualize the in-
ternal state of an interactive music piece that was
originally written for the PC. It was a small step to
use the graphics routines to create abstract shapes
in response to my trumpet playing. My first experi-
ment was a sort of music notation where performed
notes were displayed in real-time as growing squares
positioned according to pitch and starting time. Be-
cause time wrapped around on the horizontal axis,
squares in different colors would pile up on top of

Computer Music Journal, 29:4, pp. 25–35, Winter 2005
© 2005 Massachusetts Institute of Technology.



other squares, or very long notes would fill large
portions of the screen, effectively erasing what was
there before. This was all very simple, but I became
hooked on the idea of generating music and images
together. This would be too much for a performer
alone, but with a computer helping out, new things
became possible.

Lines, Polygons, Screens, and Processes

One of the challenges of working with interactive
systems, as opposed to video or pre-rendered com-
puter animation, is that few computers in the early
days could fill a screen in 60 msec, which is about
the longest tolerable frame period for animation.
Even expensive 3-D graphics systems fell short of
delivering good frame rates. The solution was to in-
vent interesting image manipulations that could be
accomplished without touching every pixel on
every frame.

Animation on Slow Machines

Like many modern computer graphics systems,
early computer displays used special, fast, video
RAM separate from primary memory. Unfortu-
nately, this RAM was so expensive that it was com-
mon to have only 4 to 8 bits per pixel, even for color
displays. These limited pixels served as an index
into a color lookup table. In this way, the computer
could optimize the color palette according to the
image (Burger 1993). A common animation trick
was to change the color table under program con-
trol. For example, if there were 20 objects on the
screen, each object could be rendered with a differ-
ent pixel value, for example the integers 0 through
19. The actual colors of the objects were then deter-
mined by the first 20 elements of the color lookup
table. To make object 15 fade to black, one could
simply write a sequence of fading colors to element
15 of the color lookup table. This was much faster
than rewriting every pixel of the object, so it be-
came possible to animate many objects at once.

Another standard trick with color tables was
“color cycling,” where a set of color values were ro-

tated within the color lookup table. Effects analo-
gous to chaser lights on movie marquees could be
created, again with very little computation. Scenes
could also be rendered incrementally. Drawing ob-
jects one by one from lines and polygons can be an
interesting form of animation that spreads the
drawing time over many video frames. Polygons can
grow simply by overwriting larger and larger poly-
gons, again with low cost as long as the polygons are
not too large.

One of my first animations had worm-like figures
moving around on the screen. Although the “worms”
appeared to be in continuous motion, each frame re-
quired only a line segment to be added to the head
and a line segment to be erased at the tail. Sinuous
paths based on Lissajous figures were used in an at-
tempt to bring some organic and fluid motion to the
rather flat two-dimensional look of the animation.
At other times, randomly generated polygons were
created coincident with loud percussion sounds,
and color map manipulations were used to fade
these shapes to black slowly.

Scheduling Concerns

Because processors in the 1980s were executing at
best a couple of million instructions per second, it
became important to think about the impact of
heavy graphics computations on music timing. In
short, one would like for music processing to take
place with high priority so that music events such
as MIDI messages are delivered within a few mil-
liseconds of the desired time. Otherwise, rhythmic
distortions will occur, and sometimes these will be
audible. On the other hand, graphics frame rates
might be 15 to 60 frames per second (fps), and delay-
ing the output by 15 msec or so is generally not a
problem. We do not seem to perceive visual rhythm
with the same kind of precision we have in our
sense of hearing. The solution is to compute graph-
ics and music in separate processes. This, however,
raises another problem: how can we integrate and
coordinate images and music if they are running in
separate processes?

One solution is to control everything from the
high-priority music process. In my work with the

26 Computer Music Journal



Dannenberg

Amiga, which had a real-time operating system, I
ran the CMU MIDI Toolkit at a high priority so
that incoming MIDI data and timer events would
run immediately. Within the CMU MIDI Toolkit
thread, there could be many active computations
waiting to be awakened by the scheduler. A typi-
cal computation would combine music and graph-
ics. For example, a computation might call a
function upon every note to generate some MIDI
data. The same function might also change a color
entry in the color table or draw a line or polygon,
creating some visual event or motion. By writing
the music and animation generation together—lit-
erally in adjacent lines of program code—one is
able to use the same timing, control parameters,
sensor data, and program state to drive both the
music and the image. In addition, the efficient real-
time control and scheduling mechanisms available
in the CMU MIDI Toolkit became available for all
kinds of real-time, interactive graphics control
(Dannenberg 1993).

To prevent graphics operations from interfering
with low-latency music processing, graphics opera-
tions merely placed operations and parameters into
a queue. Another lower-priority thread interpreted
the data as quickly as possible. Because graphics
rendering operated at a low priority, music pro-
cessing could interrupt (i.e., preempt) the graphical
rendering to handle more music computation.

It is worth pointing out some key differences be-
tween traditional computer animation and my ap-
proach to visual animation for music. The traditional
approach, used in virtual reality and game systems,
renders a sequence of image frames according to a
“world model” that includes the position and
geometry of every object to be rendered. Usually,
the rendering is asynchronous. As soon as a frame
is finished, a new one is started. When frame rates
are very low (as they were when this technique
evolved), it makes sense to create frames as fast as
possible. Therefore, in this approach, the applica-
tion may be updating the world model more often
than the model is actually rendered. Alternatively,
the updates to the world model may be synchro-
nized to the frame rate. Each update period, the pro-
gram computes a new world state given the elapsed
time since the previous update. Software for virtual

reality, often running on Silicon Graphics worksta-
tions, has been used in a number of projects for in-
teractive music performances (Gromala, Novak,
and Sharir 1993; Bargar et al. 1994).

In contrast, if enough computing power is avail-
able, it makes sense to schedule frames at precise
times rather than simply to run as fast as possible.
With this approach, there will be more processor
time available for music processing, and the compu-
tation of frames can be integrated with the schedul-
ing of other events. All events are now driven by
time. I believe this approach can be much more log-
ical for the composer/programmer. It is especially
appropriate when graphics operations are performed
in synchrony with musical events rather than in
synchrony with the frame rate.

Now that it is possible to render full frames at an-
imation rates, my programs are organized more like
traditional animation programs. The world state is
maintained by a set of objects that are called upon
to draw themselves on every frame. However, I
schedule frame computation at a fixed rate to make
timing more deterministic and to leave CPU time
for other processes.

Perception and Esthetics

The presence of animation in a music performance
does not simply add a new dimension. The psychol-
ogy of music-listening is the subject of much re-
search (Deutsch 1999; Juslin and Sloboda 2001), but
it is not well understood, and things are only more
complex when visual processing is involved. Rather
than presenting a full theory of interactive visual
music or even a review of related work (some of
which can be found in the present issue of Com-
puter Music Journal), let me make a few observa-
tions based on experience as a composer, performer,
and listener/viewer.

Complexity and Sensory Overload

First, less can be more. Modern music can be very
complex, requiring full attention and repeated lis-
tening to even begin to understand it. The idea that

27



an equally rich, complex, visual field can be ab-
sorbed at the same time vastly overestimates the
powers of human perception. Some composers may
pursue this path as a logical extension of the com-
plexity that has arisen in modern music, in spite of
the perceptual difficulties. Others may want to con-
sider film music as a model. A successful composer
described to me how he sometimes writes very
simple lines—lines that might be too simple to
stand alone—knowing that the picture and dialog
will complete the film and satisfy the audience.
This is not to say music and sound in film (see Bord-
well and Thompson 1986; Altman 1992; Chion
1994) is simple—only that image and sound percep-
tion are intertwined.

In a similar way, if we place rich music and per-
formers in the foreground, it makes sense that im-
ages can consist of “very simple lines” and still be
very satisfying. Audience members have often com-
mented that there is simply too much to see and
hear in some of my pieces, and to some extent this
is purposeful. This is a much better reaction than “I
left early because nothing was happening,” but I am
still struggling with this problem. Images, sounds,
and their impressions cannot be considered sepa-
rately, because the perception of each one is affected
by the other.

Visual and Auditory Time

Secondly, visual events do not work the way sound
events do. As an example, consider again the “ani-
mated worms” mentioned above. These were set in
the context of a steady eighth-note rhythm at about
150 beats per minute (200 msec per eighth note).
The worms “moved” by adding to the head and
erasing from the tail every eighth note in synchrony
with the music. Now, 200 msec means a 5-Hz up-
date rate, which is well below the rate at which
frames fuse into continuous motion. This is also
well beyond the asynchrony (around 50 msec) be-
low which visual and auditory events seem to be
simultaneous. Therefore, it should be quite appar-
ent that the worms are constructed from distinct
visual elements, and it should be clear whether

these elements appear in synchrony with the music
or not.

However, many people who see this performance
never notice the coincidence. There may be evolu-
tionary reasons for this. If one hears footsteps at a
rate of 300 per minute in the jungle, one might want
to pay attention, but it seems unlikely one would
ever see flashing lights or visual stimuli at a similar
frequency. On the other hand, we are very sensitive
to visual patterns, spatial frequency, and motion.
Although there are many parallels between music
and animation, and the synaesthetic possibilities
are very appealing, composers should be careful not
to fall into the trap of mapping musical experience
directly into the visual world.

Making the Connection Interesting

Third, there is a common temptation to draw con-
nections between music and image at a very super-
ficial level. The best (and worst) examples of this
are “music visualizers” as supported by, for example,
Windows Media Player, WinAmp, and iTunes. I dis-
like the animations created by these programs be-
cause they offer only what is readily apparent in the
music itself. As soon as the obvious connections
from sound to image are made, the image ceases to
be interesting or challenging. A better approach that
is particularly available to composers is to make
connections between deep compositional structure
and images. Usually in interactive music systems,
there are some music generation components with
control parameters and state information that affect
the music structure but which are not directly per-
ceivable. By tying visuals to this deep, hidden infor-
mation, the audience may perceive that there is
some emotional, expressive, or abstract connection,
but the animation and music can otherwise be quite
independent and perhaps more interesting.

For example, in my Nitely News (1993/1995), four
contrapuntal musical voices are connected to four
graphical “random walks” that accumulate to form
a dense image over time (see Figure 1). Later, a stick-
figure dancer appears and reacts to changes in tempo
and improvisational style (see Figure 2). Thus, the

28 Computer Music Journal



Dannenberg

image is related to the musical organization and
mood rather than superficial parameters such as
instantaneous amplitude or pitch.

Revealing the Connection

There is also the danger of making connections so
incomprehensible that no one senses any connec-
tion at all. One is reminded of John Cage’s comment
that the relationship between his music and Merce
Cunningham’s choreography was that the music
was playing while Merce was dancing. But many
would agree that their collaborations resulted in
spontaneous connections at some level that could
be felt and enjoyed.

Many composers take care to “teach” their listen-
ers what their music is about by stating themes
clearly, by repeating important material, and by de-
veloping ideas slowly, at least early on. This approach
can be taken with visual material as well. For ex-
ample, if a particular sound or gesture affects some
visual parameter, the audience is much more likely
to “get it” if the sound and the visual effect are pre-
sented in relative isolation. In contrast, if this takes
place amid a chaotic blend of other sounds and im-
ages, it is unlikely that anyone will detect the con-
nection. As in music composition and perhaps any art
form, finding an interesting middle ground between
the obvious and the obtuse is always a challenge.

Pixel Graphics, 3-D Graphics, and Video

As processors and graphics accelerators became
faster, new interactive animation techniques be-
came possible. For example, around 1995, Intel
processors ran at about 100 MHz, and it was pos-
sible to create some fairly interesting animation in
software. In particular, one could copy pixels from
images to screen buffers at reasonable frame rates,
allowing for interesting “sprite” animation. (A
sprite is a small moveable image that is displayed
over a fixed background image.) In The Words Are
Simple (1995), I digitized colorful fall leaves using a
flatbed scanner and developed software that could
erase a set of leaves, replace the background image,
and redraw the leaves in a new position, all within a
single frame (see Figure 3). The machines I had were
still too slow to redraw the entire background, but
by restricting the total leaf area, I could run at 15 to
20 fps. Double buffering was used so that the re-
drawing would not be visible. Having more memory
than speed, I precomputed images of the leaves ro-
tated to many different angles so that I could control
position and rotation. The final composition used a
combination of drawing onto a background image,
controlling sprites, and manipulating the color map.

29

Figure 1. Image from
Nitely News (1993/1995).
As computer-generated
musical lines evolve,
graphical random walks
generate a dense image.

Figure 2. Another image
from Nitely News. An ani-
mated stick-figure dancer
responds to trumpet im-
provisations. In this still

image, the dancer image
has been enhanced manu-
ally to make it stand out
from the background.



In 1996, Scott Draves, a graduate student at the
time, was writing some very interesting programs
that iterated image-processing algorithms over an
array of pixels. Many of the algorithms included
some non-linearities, resulting in chaotic behavior
and self-organizing patterns. The organic, abstract
look of the images was very appealing at any given
moment, but lacked any long-term evolution or de-
velopment that could sustain one’s interest. One
way around this was to control the program manu-
ally using keyboard commands, an approach seen
earlier in the “ImproVision” program of Bernard
Mont-Reynaud in 1987 (Mont-Reynaud 2005). In
our collaboration, Scott and I created an interactive
piece (see Figure 4) where musical parameters at dif-
ferent levels of structure would cause systematic
changes in the images (Rowe 2001).

Around this time, consumer-oriented 3-D graph-
ics cards became available for PCs, although it took
some time to achieve high performance, solid driv-
ers, and operating system support. Now, one can
develop very sophisticated, interactive 3-D anima-
tions using OpenGL, a very flexible software inter-
face that runs on all popular operating systems and
is supported by many graphics cards (Woo et al.
1999). Modern graphics processors are much faster
than CPUs, allowing dramatic improvements in
frame rates, image resolution, and image sophistica-
tion. For example, Figure 5 shows some live anima-
tion written in OpenGL and projected behind
soloists in my work Uncertainty Principle (2000).

One of the problems, though, is that OpenGL and
graphics processors are optimized for the kind of

graphics we see in video games: a virtual world
where most objects are frozen in place, constructed
with flat polygons, and lacking in surface detail. As
with any technology (MIDI synthesizers come to
mind), one must be careful and creative to use tech-
nology artistically, especially when the technology
was designed with other goals in mind.

A promising new direction is video. While just a
few years ago, it was impossible to update a com-
puter display at video rates, we can now capture live
video, manipulate it, and copy it to a screen in real
time. Many artists have used videodisc (and now
DVD) players essentially as “video samplers” ca-
pable of playing video clips under computer control.
This allows arbitrarily complex video to be dis-
played but sacrifices the ability to manipulate im-
ages in real time. Just as sampling-based synthesis
brought rich sounds of the real acoustic world into
the realm of digital manipulation, video brings real-
world images into the domain of interactive com-
puter graphics. The unit-generator, stream-processing
approach of computer music languages can be ap-
plied to video processing, and this is already possible
in programs such as EyesWeb (Camurri et al. 2000),
Jitter by Cycling ’74, GEM (Danks 1997), DIPS

30 Computer Music Journal

Figure 3. In The Words are
Simple (1995), a back-
ground fall image is over-
laid with handwriting
from a graphics tablet and
falling, spinning leaves.

Figure 4. In Transit (1997)
uses iterated function sys-
tems and simulated heat
diffusion to generate
chaotic, flowing images
with high-level controls
derived from music im-
provisation.



Dannenberg

(Matsuda and Rai 2000), and Isadora by TroicaTronix.
Other approaches can be seen in Videodelic by U & I
Software, Processing (see www.proce55ing.org), and
Electronika by Aestesis. As more processing power
becomes available (which is inevitable), many new
video processing and image making techniques will
be explored.

Video processing opens up the possibility of im-
ages controlling sounds. For many years, researchers
have created interactive systems that use video cam-
eras for sensing (Krueger 1983; Rokeby 1997; see
also STEIM’s BigEye software, available online at
www.steim.org/steim/bigeye.html). In some ways,
this is simpler than image generation, because low
frame rates and very-low resolution can often be
used for sensing, and software does not necessarily
need to process every pixel. On the other hand,
there is a tendency to use video merely as a trigger-
ing device, and there are relatively few examples
where video-based controllers achieve continuous
and subtle sound control. In The Watercourse Way
(2003), I used video to capture light reflected from
water, transforming this into time-varying spectra
for synthesizing sound (Dannenberg et al. 2003;
Dannenberg and Neuendorffer 2003). The patterns
of light were clearly audible in the sounds. This was
augmented by the theatrical aspect of a pool of wa-
ter on stage as well as the human aspect of a dancer
making ripples in the water (see Figure 6). In addi-

tion, the video images were texture-mapped onto
pulsating graphical objects that were projected be-
hind the dancer and ensemble.

In the future, we will see more technology and
greatly enhanced processing power. While “faster”
does not mean “better,” new technology will cer-
tainly enable new artistic directions. Advances in
consumer technology such as video games and ani-
mated films will influence how audiences perceive
and interpret computer music with video and ani-
mation. Low resolution and uneven frame rates
may have been considered “high tech” years ago,
but the same technology might appear to today’s au-
diences as intentionally “retro.”

Software Architecture

Creating works for integrated media poses some dif-
ficult problems for software design and implemen-
tation. As mentioned earlier, there is a mismatch
between the timing requirements for audio and
video, corresponding to fundamental differences in
our aural and visual perception. Video and graphics
processing can slow down audio performance if the
two are tightly integrated at the software level. At
the other extreme, highly decoupled systems can
suffer from a lack of coordination and communica-
tion between image and sound.

31

Figure 5. Live animation
using OpenGL in Uncer-
tainty Principle (2000).
Roger Dannenberg (trum-
pet) and Eric Kloss (alto
saxophone) are performing.

Figure 6. In The Water-
course Way (2003), reflec-
tions (left) from a pool of
water (lower right) are cap-
tured by video camera and
control evolving audio
spectra.

http://www.proce55ing.org
http://www.steim.org/steim/bigeye.html


Timing Requirements

Let us begin by examining some requirements. Au-
dio computation should never be delayed by more
than a few milliseconds to avoid perceptible latency
and jitter, whereas video and graphics can be de-
layed by about one frame time (15 to 40 msec) or
more without noticeable problems.

The audio timing requirement stems from two
sources. First, there is the desire to achieve low-
latency for audio effects applied to live sound. To
keep latency down, audio buffers must be short. If
audio samples are not computed soon enough to re-
fill the buffer, audible pops and clicks will result.
Therefore, the deadline to complete each audio
computation is bounded by the low overall audio la-
tency. The second reason for low latency is that we
can perceive jitter of only a few milliseconds in a se-
quence of equally spaced sounds, such as a run of
fast 32nd notes.

Video is more forgiving, in part because when
video deadlines are missed and a new frame is not
ready, the previous frame is displayed again, at least
in most modern double-buffered graphics systems.
Our eyes are not very sensitive to this; in fact, when
converting from film (24 fps) to NTSC video (29.97
fps), roughly every fourth frame is doubled, causing
frequent timing errors of ±20 msec, yet we do not
notice.

In actual practice, timing requirements depend
upon the nature of the composition and perfor-
mance, and many wonderful works have been cre-
ated without meeting such stringent timing
requirements. On the other hand, taking an engi-
neering perspective, we do not want to preempt
artistic decisions by building in limitations at the
system level.

The Aura System

Aura is a software framework for creating interac-
tive, multimedia performances (Dannenberg and
Rubine 1995; Dannenberg and Brandt 1996; Dan-
nenberg 2004a, 2004b). Aura has a number of inter-
esting design elements that support the integration

of real-time graphics, video, and music processing.
The timing issues mentioned above drive much of
the Aura architecture. The mixture of high- and
low-latency computation calls for multiple pro-
cesses and a priority-based scheduling scheme so
that audio computations can preempt graphics,
video, and other high-latency tasks. This naturally
leads to a separation or decoupling of graphics and
music processing, so one of the goals of Aura is to
restore close coupling and communication with-
out sacrificing real-time performance. Aura also
looks forward to future parallel-processing systems
based on multicore, multiprocessor, and distributed
systems.

The key to communication in Aura is an efficient
object and message-passing system, which aims to
give the illusion of ordinary object-oriented pro-
gramming even when objects are spread across mul-
tiple threads and even multiple address spaces
(Dannenberg and Lageweg 2001). To accomplish
this, objects are referenced by 64-bit, globally
unique identifiers rather than memory addresses.
Whereas message passing in object-oriented lan-
guages like C++ and Java amounts to a synchronous
procedure call, Aura messages are true messages: a
sequence of bytes containing a size, destination,
timestamp, method name, and parameters. Also,
Aura messages are normally asynchronous, so there
is no return value, and the sender does not wait for
the completion of the operation. This is important
because it allows low-latency operations to con-
tinue without waiting.

One could imagine a system in which every object
is executed by its own thread, allowing the sched-
uler to decide which objects receive priority. Every
object would then have a private stack and message
queue, requiring lots of memory and adding a lot of
context-switching overhead. To avoid this, Aura
uses relatively few threads and partitions objects by
assigning each to a single thread. A thread with its
collection of objects is called a zone in Aura, and
zones run at different priority levels. Typically,
there are three zones: one for hard-deadline audio
processing, one for soft-deadline music control, and
one for high-latency graphics, animation, video, and
user-interface processing. Each zone can exist in a

32 Computer Music Journal



Dannenberg

separate address space, but communication is faster
using shared memory, so Aura implements zones as
multiple threads sharing the address space of a
single process. Aura also allows multiple processes
to communicate via networks.

It is important that only one thread can ever ac-
cess a given object. If it were possible for two threads
to access the same object concurrently, then they
might read data in an inconsistent state, a classic
problem of concurrent systems. The standard solu-
tions to concurrency are error-prone and therefore
require great programming care. Aura avoids most
concurrency problems by making each object di-
rectly accessible to only one zone and by allowing
only one thread to execute within each zone.

Because of the distributed nature of Aura, there
are three implementations of the message-send op-
eration. When the message is destined for an object
in another zone, the message is copied to a queue,
where it is soon read and delivered to the destination
object by the other zone. Message delivery between
zones typically takes about 1 µsec of CPU time.
When a message is destined for an object in the same
zone, the message is sent immediately and synchro-
nously to avoid copying the message. This will
block the sender, but because the receiver is in the
same zone, it has the same priority and real-time re-
quirements, so it is reasonable to run it immedi-
ately. Intra-zone messages take about 0.5 µsec of
CPU time. The third case occurs when the destina-
tion is in another address space. In that case, Aura
delivers the message to another Aura process, typi-
cally using a local-area network. Here, the time is
dominated by the overhead of the network protocol.

The programmer writes the same code regardless
of the delivery mechanism, so programming con-
current distributed systems in Aura is very similar
to writing ordinary single-process programs. It is
easy, therefore, to send information between audio
processes and graphics processes. Also, there is no
hard boundary between audio and graphics pro-
cessing. For example, sound-file input typically
runs in the same zone as graphics owing to the po-
tentially long latency opening or accessing a sound
file. Sound-file data is transferred to the audio pro-
cessing zone by means of a simple method call.

Animation in Aura

Aura offers some special objects for 3-D rendering.
An OpenGL window object opens a graphics win-
dow or screen and serves as the root of a display
tree. Interior nodes in the tree perform rotation,
scaling, and translation in three dimensions, while
leaf nodes of the tree draw objects. Because these
are all Aura objects, it is easy to control their pa-
rameters by sending messages. For example, one can
use MIDI faders to rotate and scale the graphical
scene, or audio processing objects can send parame-
ter updates to graphical objects (and vice versa).
Aura objects can send timed messages to them-
selves, so it is easy schedule periodic parameter up-
dates that in turn generate animation.

Video in Aura

Aura also has some facilities for video processing. A
video-input object reads a video input frame into an
array of pixels. This data can be processed to extract
features for interactive control, or the image data
can be mapped onto polygons using calls to OpenGL.
One problem that has not been resolved is the latency
of video when processing or sensing is involved.
With NTSC cameras, a frame is only available every
33 msec. Assuming some processing time, and as-
suming that data is written to a double-buffered
output, there can be almost 100 msec of latency
from input to output. When video is used just for
sensing, the latency is less than for processing and
display, but if output parameters are passed through
a smoothing filter, the result often seems to be de-
layed. Faster frame rates and careful synchroniza-
tion may be necessary to reduce latency.

Conclusions

Interactive performance combining images and mu-
sic is a natural application for computers. Because
computer animation, video processing, and audio
processing have all become possible in the digital
domain, the computer allows for a high degree of in-

33



tegration and control. In the early days, computer
power was lacking, resulting in low frame rates or
various shortcuts to achieve some form of anima-
tion. Computers have gained enough speed to pro-
cess video at the pixel level, and graphics processors
now produce high-resolution, three-dimensional
images with amazing flexibility.

The Aura system is designed to facilitate the inte-
gration of these new and evolving technologies by
offering a flexible, distributed, real-time object sys-
tem. Aura provides the “glue” to combine video,
graphics, audio, and control. Aura emphasizes per-
formance and ease-of-integration with hardware and
software systems, but its open-endedness can be a
problem for less-than-expert programmers. Fortu-
nately, there are alternatives that fall at different
points in the spectrum from very general to very
easy to use.

Certainly, the biggest challenges ahead are artis-
tic rather than technological. While better projec-
tion technology, greater resolution, faster computers,
and lower costs may be desirable, we already have
plenty of capabilities to explore right now. One of
the attractions of this pursuit is that there are rela-
tively few precedents and no established theory. In-
teractive visual music welcomes the creative spirit.

References

Altman, R. 1992. Sound Theory/Sound Practice. New
York: Routledge.

Bargar, R., et al. 1994. “Model-Based Interactive Sound for
an Immersive Virtual Environment.” Proceedings of
the 1994 International Computer Music Conference.
San Francisco: International Computer Music Associa-
tion, pp. 471–474.

Bordwell, D., and K. Thompson. 1986. “Sound in the Cin-
ema.” In Film Art, 2nd ed. New York: Newbery Award
Records, pp. 233–260.

Burger, J. 1993. The Desktop Multimedia Bible. Reading,
Massachusetts: Addison-Wesley.

Camurri, A., et al. 2000. “EyesWeb: Toward Gesture and
Affect Recognition in Interactive Dance and Music Sys-
tems.” Computer Music Journal 24(1):57–69.

Chion, M. 1994. Audio-Vision: Sound on Screen, trans.
C. Gorbman. New York: Columbia University Press.

Danks, M. 1997. “Real-Time Image and Video Processing
in GEM.” Proceedings of the 1997 International Com-
puter Music Conference. San Francisco: International
Computer Music Association, pp. 220–223.

Dannenberg, R. B. 1986. “The CMU MIDI Toolkit.” Pro-
ceedings of the 1986 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 53–56.

Dannenberg, R. B. 1993. “Software Design for Interactive
Multimedia Performance.” Interface 22(3):213–228.

Dannenberg, R. B. 2004a. “Aura II: Making Real-Time
Systems Safe for Music.” Proceedings of the 2004 Con-
ference on New Interfaces for Musical Expression.
Hamamatsu, Japan: Shizuoka University of Art and
Culture, pp. 132–137.

Dannenberg, R. B. 2004b. “Combining Visual and Tex-
tual Representations for Flexible Interactive Audio
Signal Processing.” Proceedings of the 2004 Interna-
tional Computer Music Conference. San Francisco:
International Computer Music Association,
pp. 240–247.

Dannenberg, R. B., et al. 2003. “Sound Synthesis from
Video, Wearable Lights, and ‘The Watercourse Way’.”
Proceedings of the Ninth Biennial Symposium on Arts
and Technology. New London, Connecticut: Connecti-
cut College, pp. 38–44.

Dannenberg, R. B., and E. Brandt. 1996. “A Flexible Real-
Time Software Synthesis System.” Proceedings of the
1996 International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 270–273.

Dannenberg, R. B., and P. v. d. Lageweg. 2001. “A System
Supporting Flexible Distributed Real-Time Music Pro-
cessing.” Proceedings of the 2001 International Com-
puter Music Conference. San Francisco: International
Computer Music Association, pp. 267–270.

Dannenberg, R. B., and T. Neuendorffer. 2003. “Sound
Synthesis from Real-Time Video Images.” Proceedings
of the 2003 International Computer Music Conference.
San Francisco: International Computer Music Associa-
tion, pp. 385–388.

Dannenberg, R. B., and D. Rubine. 1995. “Toward Modu-
lar, Portable, Real-Time Software.” Proceedings of the
1995 International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 65–72.

Deutsch, D., ed. 1999. The Psychology of Music, 2nd ed.
San Diego: Academic Press.

Gromala, D., M. Novak, and Y. Sharir. 1993. “Dancing
with the Virtual Dervish.” Paper presented at the Fourth

34 Computer Music Journal

http://www.ingentaconnect.com/content/external-references?article=0148-9267()24:1L.57[aid=1510498]


Dannenberg

Biennial Arts and Technology Symposium. New Lon-
don, Connecticut: Connecticut College. March 1993.

Juslin, P., and J. Sloboda, eds. 2001. Music and Emotion:
Theory and Research. Oxford: Oxford University Press.

Krueger, M. W. 1983. Artificial Reality. Reading, Massa-
chusetts: Addison-Wesley.

Matsuda, S., and T. Rai. 2000. “DIPS: The Real-Time Dig-
ital Image Processing Objects for Max Environment.”
Proceedings of the 2000 International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 284–287.

Mont-Reynaud, B. 2005. Personal communication, 6 Feb-
ruary.

Rokeby, D. 1997. “Construction of Experience.” In J. C.
Dodsworth, ed. Digital Illusion: Entertaining the Fu-
ture with High Technology. New York: ACM Press,
pp. 27–48.

Rowe, R. 2001. “In Transit.” In R. Rowe. Machine Musi-
cianship. Cambridge, Massachusetts: MIT Press,
pp. 334–343.

Woo, M., et al. 1999. OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 1.2, 3rd
ed. Reading, Massachusetts: Addison-Wesley.

35


