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Advances in processor technology are making it possible to use general-

purpose personal computers as real-time signal processors. This enables highly-
integrated “all-software” systems for real-time music processing. Much has been 
speculated about the behavior of software synthesizers, but there has been 
relatively little actual experimentation and measurement to verify or refute the 
“folklore” that has appeared. In the hopes of better understanding this important 
future technology, we have performed extensive measurements on several types 
of processors. We report our findings here and discuss the implications for 
software synthesis systems. 

Introduction 
Superscalar architectures are expected to compute 500 to 1000 million 

instructions per second (MIPS) by the end of the decade. Software synthesis on 
superscalars will offer greater speed, flexibility, simplicity, and integration than 
today's systems based on DSP chips. In this paper, we describe the advantages of 
the superscalar architecture and indicate its future potential. We outline the 
requirements that this architecture places on software implementations and how 
these requirements are met. 
Superscalar Architecture 

Superscalar processors represent the state of the art in computer architecture. 
Current examples include the Intel Pentium and IBM/Motorola PowerPC 
processors. These machines feature single-cycle execution of common 
instructions, the issue of multiple instructions per cycle, and multiple pipelined 
arithmetic units. Instruction scheduling in the compiler assures that many 
floating point operations are computed in parallel. By the year 2000, we expect 
personal computers will deliver performance we now associate with super-
computers. This means that real-time signal processing applications may no 
longer require special-purpose hardware or digital signal processors. These 
applications can be supported in a single, integrated, high-performance 
programming environment. 

                                                
1 Published as: Roger B. Dannenberg and Nick Thompson, “Real-Time 

Software Synthesis on Superscalar Architectures,” Computer Music Journal, 21(3) 
(Fall 1997), pp. 83-94. 
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There is, however, some debate over the viability of superscalars for signal 
processing. First, these systems rely on a memory hierarchy with caching at 
various levels to provide instructions and data to the CPU. This is good in that it 
provides the programmer with a very large flat address space, but caching makes 
performance hard to predict relative to DSPs. Second, an integrated system 
requires real-time support from the operating system, yet most operating 
systems provide weak support (if any) for real-time applications. Third, cost will 
be an important factor until personal computers are faster than low-cost plug-in 
DSP systems. 

Nevertheless, we believe that it is only a matter of time before DSPs for 
computer music are obsolete. The i860-based IRCAM IMW (Lindemann, et al. 
1991) is a major milestone in this progression, but even the IMW has the flavor of 
an add-on DSP system. It has multiple processors, a specialized operating 
system, and is hosted by a non-real-time NeXT computer. (However, much of 
this environment recently has been ported to a uniprocessor.) Vercoe's Csound 
(Vercoe and Ellis 1990) running on a DEC workstation is a better illustration of 
the “all software” approach we believe will soon be the norm. Csound illustrates 
the flexibility and portability of the software approach along with impressive 
performance. Adrian Freed (1994) is also exploring the possibilities of software 
synthesis in his HTM environment. Freed (1993) addresses many issues of 
optimizing signal processing software. Our work in this area began in 1983 with 
the design of Arctic (Dannenberg, McAvinney, and Rubine 1986), a very high-
level language for real-time control. Arctic showed how a single language could 
integrate note-level event processing, control-signal generation, and audio 
synthesis. 

The language Nyquist (Dannenberg, to appear) is based on Arctic. Nyquist 
offers a high-level and general treatment of scores, synthesis algorithms, and 
temporal behavior. Superscalar processors seem ideal to handle the mixture of 
symbolic and signal processing required by Nyquist. Although Nyquist has 
developed into a non-real-time system, it has provided a good platform for 
experimentation, and high performance signal processing is just as important in 
non-real-time settings. In the design of Nyquist, we set out to answer the 
following questions: What characteristics of superscalars are important for music 
synthesis? What new techniques are necessary to maximize performance? What 
is the overhead or benefit of the advanced features of Nyquist? 

Agarwal et al. (1994) discuss various optimizations for numerical processing, 
and our work is strongly influenced by these ideas. Our work focusses 
specifically on software for audio signal processing. 
Where does CPU time go? 

To optimize any software system, the first step is to find out where 
computation time is being spent and why. With pipelined hardware, multiple 
levels of memory hierarchy, and optimizing compilers, this can be a difficult job. 
To start, let us consider where time might be spent in software synthesis: 
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Numerical Processing. 
At the core of nearly every signal processing algorithm are multiply and add 

operations. These take time in two senses. First, there are a limited number of 
arithmetic units available on every processor cycle, so arithmetic operations must 
wait for an available unit. Second, most arithmetic units take several machine 
cycles to produce results, so even after the operands are delivered to a unit, the 
machine may stall with nothing to do until the result appears. Numerical 
processing time gives a sense of the lower bound on execution time. 
Loads and Stores. 

While operations are typically performed on data in registers, operands are 
often stored in primary memory because audio signals have many more samples 
than would fit into registers. Consequently, many instructions are required to 
move data incrementally into registers and back out to memory. To increase 
efficiency, one or more levels of fast cache memory hold copies of recently 
accessed memory locations. To the extent that cache memory holds the data 
required, load and store operations run much faster. Techniques that optimize 
the cache will lead to faster computation. This is often the source of software 
architecture decisions. 
Instruction Parallelism. 

Superscalar processors fetch multiple instructions on every cycle. There are 
multiple arithmetic, logic, and branch units available to process these 
instructions. If the instruction mix is right, many instructions can be executed 
simultaneously. If the instruction mix is wrong, or if each instruction depends 
upon results from the previous one, the instructions will be executed 
sequentially and many cycles will be “wasted” waiting for results. Instructional 
parallelism can have dramatic implications for software architecture. For 
example, if loop overhead is zero (loop instructions run in parallel with 
numerical computation), then small loop bodies can be as efficient as large ones. 
Algorithmic Optimization. 

Every instruction set has its tricks. In general, we would like to avoid too 
much reliance on processor-specific optimizations because we are interested in 
high-level portable languages. If we really wanted to code at the instruction level 
and ignore portability, it would make more sense to take a DSP-based approach. 
Nevertheless, a look at  compiler-generated assembly code can give us some idea 
of how far portable code is from optimal code. Also, there are some algorithmic 
optimizations that appear to be quite portable and worth using. 
Optimizing Software Architecture 

The places where processors spend time are well-understood, but this does 
not mean it is easy to optimize programs. In many cases there are tradeoffs, and 
it is not obvious which factor is most important. In this section, we will consider 
some design decisions that lead to a variety of software organizations. We will 
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develop a set of specific questions. In the following sections we will describe 
experiments motivated by these questions and present experimental results. 

One design decision concerns modularity. Typically, sound synthesis systems 
offer many processing elements or unit generators that perform simple 
operations such as function generation, filtering, addition, and multiplication. 
These operations are combined to create “instruments” or complex signal 
processors. To combine these operation, they are typically linked by memory 
buffers we will call sample blocks. 

How big should sample blocks be? On one hand, blocks should be small so 
that they all fit in the cache, insuring fast access. On the other hand, there is 
overhead associated with invoking a signal operation, including procedure calls, 
loading sample addresses into registers, and loading constants required for the 
operation. These costs, which occur once per operation invocation, can be 
amortized across many samples if large blocks are used. 

Another decision is: how much work should be performed in each inner 
loop? If two operations can be merged into one, there is less loop overhead, a 
sample block is eliminated, and the stores and loads required to save data to the 
block and then retrieve it are eliminated. On the other hand, the larger the inner 
loop, the more registers are required. Registers typically store pointers to data, 
filter coefficients, phase increments, and other values. If the inner loop is too 
large, some of these values will not fit in the available registers, and additional 
loads and stores will be required. 

Assuming that sample blocks are good, what should be done with low-
sample-rate control signals? How much could be saved by computing control-
rate signals in blocks? Would linear interpolation allow lower control rates and 
less computation, or would the overhead of interpolation generate a net increase 
in computation time? 

It turns out that inner loop computations dominate the total computation 
time. What can be done to compute samples more efficiently? A few techniques 
are explored to gain some insights. 

Table lookup is a problem for any memory system because random accesses 
to large tables will often cause a cache miss. How big is this problem? 

To answer these questions, we implemented and measured a number of 
synthesis strategies. Our initial work produced answers, but many of them were 
counter-intuitive. Analyzing compiler output gave us some clues, but said 
nothing about cache behavior and instruction parallelism. Ultimately, we 
resorted to instruction-level timing measurements to determine exactly where 
time was spent. Our results are surprisingly consistent across widely varying 
architectures, including the PowerPC and Pentium processors. However, we can 
only speculate (and hope) that the trends we observe will continue for the next 5 
to 10 years and beyond. 

Block Size 
We used Csound to perform an additive synthesis task and varied the block 

size. Block computations give dramatic speedup: Csound improves by a factor of 
about 7 with large blocks (see Figure 1.). We did not rewrite our code for the 
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special case of blocksize = 1, so in reality the speedup would not be so great. 
Nevertheless, the trend is clear that blocks do amortize the cost of operation 
invocation and loop setup over many samples. 
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Figure 1. Performance of Csound as a function of block size. 
Very large blocks do not degrade performance, even though the 
large blocks do not fit in the cache. 

Is caching critical to performance? If so, we would expect small block sizes 
(relative to the cache) to give higher performance. In that case, the curve in 
Figure 1 would be U-shaped, rising on the left due to loop overhead, and rising 
on the right due to cache effects. Although the curve does rise slightly with very 
large block sizes, the change is small. This indicates that any data cache effect is 
minuscule (Dannenberg and Mercer 1992). 

How can this be? After all, a cache miss costs many cycles. Surely a 
purposeful attempt at achieving poor cache performance should show some 
effect. To understand the good performance we observed, it is necessary to 
consider what happens when a load instruction requests a memory word that is 
not in the cache. First, the word is loaded from primary memory (or the 
secondary cache). This takes on the order of 10 cycles, although this number 
varies widely among different systems. As soon as the word is loaded, the load 
instruction completes and any instruction(s) waiting for the load to complete can 
resume execution. Meanwhile, the memory read operation is not complete. The 
cache always holds contiguous blocks of memory called cache lines. A cache line 
can range anywhere from 16 to 256 bytes depending upon the particular 
processor and cache implementation. On the following cycles, one memory word 
(usually 32 or 64 bits) is loaded at the rate of one word per machine cycle until 
the entire cache line is filled. This high-speed transfer of multiple words is 
possible because RAM, in spite of its name, can be accessed sequentially much 
faster then randomly. 

Consider the impact this has on sample block access. If a sample block is not 
in the cache, the first access to it will fetch an entire cache line of samples. The 
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first access of every cache line will incur a memory delay, but the remaining 
accesses will take only one cycle because the data will have been prefetched into 
the cache line. Thus the average sequential access time will be:  

T = 1 + D/N, 
Where 1 is the primary cache access time, D is the cache miss penalty incurred by 
the first access, and N is the number of samples in the cache line. If N and D are 
approximately equal, then the average access time will be approximately 2 cycles 
in the worst case. This represents a penalty of only one cycle. It is common to 
spend many cycles of effort per sample, so an additional cycle per sample is a 
relatively small overhead. For this reason, we can see small cache effects if we 
try, but large effects could only arise from a different memory reference pattern. 
In this light, the shape of the curve in Figure 1 is understandable. We have 
observed the same behavior in other synthesis systems. 

Figure 2 is a dramatic illustration of cache prefetching. The horizontal axis is 
the phase increment, in samples, of a table-lookup oscillator. The size of the table 
is purposefully set greater than the size of the cache to generate as many cache 
misses as possible. The time to generate one sample (in machine cycles) is plotted 
on the vertical axis. When the phase increment is zero, the same table element is 
read repeatedly, so there are no cache misses. When the phase increment is 0.5, 
every sample is fetched twice, so new cache lines are loaded relatively rarely. We 
expect the rate at which new cache lines are fetched (and therefore average 
execution time) to increase linearly with the phase increment. This should hold 
until the phase increment exceeds the line size, at which point every fetch misses 
the cache and the execution time should level off. This is exactly what we see in 
Figure 2; actual measurements clearly show that the line size is 32 words (128 
bytes) and the cache miss penalty is about 10 cycles. 

Memory writes also take advantage of the cache, but these are not so critical 
because processors usually incorporate write buffers. A write instruction 
transfers data to the write buffer, and then the data is asynchronously written to 
memory. Unless total memory bandwidth is a limiting factor (not typical of 
compute-intensive DSP algorithms), cache misses on memory writes have very 
little impact on performance. 

One caveat is that cache memory sometimes exhibits pathological behavior. If 
an algorithm is accessing many different memory locations that all map to the 
same cache line, thrashing may occur as the cache is continually reloaded from 
different memory locations. This is more typical of direct-mapped caches where 
each memory address is associated with a unique cache line. VLSI cache 
implementations have made it economical to implement set-associative primary 
caches, in which a given memory location can be cached in any of several 
(typically 4) different cache lines. Although we have not examined the impact of 
cache design on signal processing performance, we speculate that associative 
caches virtually eliminate the “hot spot” phenomenon. In practice, we have not 
observed pathological memory behavior of any consequence. 
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Figure 2. Performance of a table-lookup oscillator as a function 
of phase increment. Execution time is directly related to the 
number of fetches per cache line, which in turn is controlled by 
the phase increment. 

Waveform tables are not necessarily read sequentially, so the prefetching 
behavior of the cache is of limited value. With interpolating oscillators, one or 
more samples are fetched in sequence, so there is some advantage to prefetching. 
We will show the effect of table size below in Section “Table Lookup Oscillators.” 

Inner Loop Size 
Is there an optimal inner loop size? We ran experiments in which inner loops 

were merged and the performance was measured. Merging loops should have at 
least two effects. First, the loop overhead, if any, is reduced. Second, assuming 
the first loop was computing and writing samples to be read by the second, the 
samples can be passed in registers rather than through memory. This eliminates 
load-store pairs from the computation, removing several instructions and 
avoiding memory latency. 

To study this effect, we compared the traditional system with one in which all 
the unit generators were combined into one loop. In the former case, 
intermediate values are stored in memory  buffers; in the latter they are stored in 
local variables. In Figure 3, we plot the improvements of merging loops into one, 
and passing intermediate results through registers. The benchmark is a series of 
N first-order filters fed by a table-lookup oscillator. The graph shows 
performance improvement of a single unit generator over implementing each 
filter run as a separate unit generator. 

One generalization we can make is that larger loops give better performance. 
We would expect performance to increase as long as all of the data used in the 
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loop fit in the registers. This is what we observe in the case of the PowerPC 
processor: performance increases until we reach 6 filters, at which point register 
spilling begins. Even at this point, the compiler begins by spilling read-only filter 
constants, so the cost of the spill is still less than the cost of storing an 
intermediate value in memory. With 9 filters the combined loop is still 26% faster 
than the separate loops. 
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Figure 3. Performance gain is plotted as a function of how many 
simple filters are merged with a table-lookup oscillator.  

On the Pentium, which has very few registers, register spilling is simply a fact 
of life and is independent of loop size. Overall we see more improvement the 
more computation is placed inside the loop. 

The 486 also shows improvement when unit generators are merged, but since 
floating point operations dominate the computation time on this processor, the 
performance gains are less. 

Overall, large loop bodies are better, at least to a point. However, making 
loop bodies larger is a game of diminishing returns. If doubling the size of all 
loops brings a 50% speedup, doubling again will likely bring only 20%, and so 
on. Furthermore, if time is already dominated by a few large inner loops, 
optimizing the small ones will have a small effect. 

Control Rate Signals 
Control is important, and in any synthetic instrument, it is common to have 

many envelope generators, low-frequency oscillators, and other control 
operations. When control signals are computed at audio rates, the control can 
easily equal the complexity of the audio computation. Alternatively, there is 
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much room for savings if the control information is computed at a lower rate 
than the audio signal information. 

Using low-sample-rate controls is a common practice in both hardware and 
software systems. Csound is the prime software example. It offers non-
interpolated control signals, which are computed at a rate of one control sample 
per audio block. This means that the control information is conveniently constant 
for the duration of each inner loop that computes audio. 

A problem with the Csound scheme is that control signals, when controlling 
audio-rate signals, introduce discontinuities at the block boundaries, and this 
gives rise to audible artifacts. In practice, the block size must be kept small to 
avoid problems, but this lowers the efficiency of the audio-rate computation. 
Depending upon the mix of audio-rate and control-rate computation, the control-
rate optimization can actually lead to a decrease in overall performance. 

Alternative schemes are possible.   We studied the following schemes (the 
numbers correspond to entries in Table 1, which is described later): 

1. Incorporate linear interpolation (or a low-pass filter) into unit generators to 
make control-rate signals smoother. 

2. Use non-interpolated control signals as described above. 
3. Compute everything at the audio rate. 
4. Allow multiple control samples per audio block. For example use block 

sizes of 64 audio samples and 8 control samples. Control samples are not 
interpolated, but a new control sample is read for each 8 audio samples. 
Unit generators that perform mixed computation on control and audio 
signals consist of two nested loops. The outer loop runs at the control rate 
and the inner loop runs at the audio rate. 

5. Add linear interpolation unit generators to up-sample the control-rate 
signals to the audio rate. This is similar to method 1 except that here, 
separate unit generators are used. 

 We implemented a spectral interpolation synthesis (Serra, Rubine, and 
Dannenberg 1990) instrument as a benchmark for these 5 approaches. The 
benchmark, shown in Figure 4, implements two table lookup oscillators with 
shared frequency controls including a frequency envelope and a vibrato 
oscillator, which in turn has frequency and modulation depth envelopes. The 
oscillators are routed to stereo outputs using pan, volume, and cross-fade 
envelopes. For simplicity, we did not try to share phase computation between 
the oscillators, and we omitted any wavetable generation code. The result has 
eleven control unit generators (top of figure 4), six audio unit generators (bottom 
of figure 4), and in some cases, five interpolators (not illustrated). 

Pan unit generators are used to generate attenuation controls that pan 
between oscillators and between left and right stereo output buses.  The inputs to 
the topmost pan unit generator are a volume x  and a stereo pan value y , both of 
which range from 0 to 1, and the outputs are two control signals, xy and x(1-y). 
The lower pan unit generators are used to interpolate between the two 
oscillators. Since signal levels are all determined by control signals, the FM 
oscillators do not have their own amplitude inputs. 
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Figure 4. The benchmark synthesis algorithm. PWL (piece-wise 
linear) generators create control envelope functions. Two FM 
oscillators share a pitch control. Pan unit generators produce 
attenuation controls that pan between oscillators and between 
left and right stereo output buses. 

In the first set of tests, we hypothesized that loop setup time would be 
expensive compared to sample computation time, so we used block computation 
for both control rate and audio rate unit generators. This hypothesis is examined 
below. 

Run-time was measured by synthesizing the equivalent of 100 seconds of 
audio as fast as possible. The run-time includes the initialization of the right and 
left output buffers, so an initialization-only version of the program was also 
measured and its run-time (1.6s) was subtracted to obtain actual synthesis times. 
These resulting times, measured on a 25MHz RS/6000 are shown in Table 1. 
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Table 1. Benchmark execution time under different schemes for 
handling control signals. 

Test Description Control Block Size 
(samples) 

Audio Block Size 
(samples) 

Time 
(sec) 

1. Linear interpolation 32 32 14.7 
2a. Noninterpolated 1 8 17.7 
2b. Noninterpolated 1 4 23.2 
3. All-audio-rate computation N/A 32 28.0 
4. Noninterpolated, large blocks 32 4 x 8 16.2 
5. Interpolating unit generators 32 32 17.5 

 

As shown in the table, the best computation time uses interpolated control 
signals with audio and control block sizes of 32 samples each, and an audio rate 
32 times the control rate. This is better than the Csound approach with an audio 
block size of 8 (although we have no basis to claim that control signals 
interpolated over 32 audio samples are equivalent to non-interpolated control 
signals computed every 8 samples), and substantially better than the Csound 
approach with a block size of 4. The all-audio rate approach is slower still. It 
avoids interpolation, but computes nearly twice as many samples, and it is about 
half as fast as the best method. About 10% slower than the interpolated approach 
is the non-interpolated approach where audio is computed in 4 sub-blocks of 8 
and the audio rate is 8 times the control rate. This does exactly the same 
computation as the “Non-interpolated” method. Fetching control rate samples 4 
times within each unit generator is more efficient that calling the unit generator 4 
times as often. 

Given that interpolation of control signals is a good strategy, there remains 
the question of where to perform interpolation. Interpolation can be folded into 
the inner loops of unit generators, but this requires multiple versions of most 
unit generators. For example, one version of a multiplying unit generator must 
multiply a control-rate signal by an audio-rate signal, and another version must 
multiply two audio-rate signals. Alternatively, interpolation can be done in 
separate unit generators, eliminating the need for multiple versions of other unit 
generators. In this benchmark, combining interpolation with other inner loops 
saves about 20% over the use of separate interpolation unit generators. 

In most of these tests, we assumed that control rate signals could be 
computed in blocks just like the audio rate signals. Does this really save 
anything? If so, would even larger blocks be better? We found that larger blocks 
in the all-audio-rate case could give about a 3% to 4% speedup. This means that 
the implementation, on average, spends about as much time setting up a loop as 
it does executing the loop one time. If there is more overhead invoking unit 
generators (as in Nyquist), larger blocks have a greater payoff. 
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What is the savings due to computing control-rate signals in blocks? As a 
simplification, let us assume that invoking a unit generator costs the same as 
computing a sample and that all unit generators have the same per-sample cost. 
Consider the optimal method in our benchmark, which has 11 control-rate unit 
generators and 6 audio-rate unit generators. The total cost of computing control-
rate samples (in arbitrary units) without blocking is: 

11 ! (setup + compute) = 11 ! (1+1) = 22  
With blocks of length 32, the average cost per sample is:  

11 ! (setup + compute) / 32 = 11 ! (1+ 32) / 32 = 11.3  
In either case, the audio computation per block is: 

6 ! (1+ 32) = 198  
Thus, the performance ratio of unblocked to blocked control signals is: 

(22 +198) / (11.3 +198) = 1.05  
With large ratios of audio rate to control rate like this, we see that computing 
control-rate signals in blocks only improves performance by about 5%. This is 
comforting, because in real-time implementations, blocks of low-sample-rate 
data would impose a long latency. 

Algorithmic Improvements 
By now it should be obvious that most of the computation time in a software 

synthesis system will be in the inner loops of the audio-rate unit generators. 
Anything that will reduce this computation time will have a large impact on the 
overall performance. In general, we have taken a “purist” approach, insisting on 
floating point computation and legible, portable, machine-independent code. 
However, we have encountered a few “tricks” to improve the performance of 
our inner loops. Whether or not one expends energy in this direction, it is useful 
to know what sorts of payoffs might be obtained. 

It is a natural coding style to compute things sequentially. For example, in an 
interpolating oscillator inner loop, one might first increment the phase, then 
perform phase wrapping, then do a table lookup, then interpolate, and finally 
multiply by an envelope. Since each one of these steps depends upon the 
previous one, execution will tend to be sequential, even though the processor has 
the potential for instruction-level parallelism. One optimization technique is to 
reorder instructions to maximize instruction-level parallelism.  

An improvement is to start the table lookup before the phase increment. At 
lease some of the phase increment can compute while the lookup is in progress. 
The interpolation computation can be started before the second table lookup, etc. 
We found that with the RS/6000 running AIX, instructions could be reordered by 
rearranging statements in the C source code. By first breaking up expressions 
into sequences of individual operations and then carefully interleaving the 
operations from different expressions, dramatic improvements can be made. 
Applying this technique to an FM oscillator, we reduced the cost from 51 cycles 
to 40, giving a 27.5% speedup. It is important, however, to measure performance. 
Not all of our attempts at optimization were successful. 

When loop bodies are short, loops can be “unrolled,” meaning that the loop 
body is repeated two or more times. Once the loop is unrolled, there are more 
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candidates for instruction interleaving. Experimenting with an interpolating FM 
Oscillator (already a large loop body), we were unable to get any advantage from 
loop unrolling. Furthermore, the process is so error-prone and the resulting code 
is so unreadable, that we cannot recommend this process unless the payoff of 
saving a few cycles is extremely high. This is a job for optimizing compilers. 

One trick is especially useful for table lookup. The problem here is to convert 
a floating-point value into an integer table offset. At some point, there must be a 
floating-point to integer conversion, and this may expand to many instructions 
or even compile to a subroutine call. Sometimes it is faster to do the conversion 
directly. For example, the RS/6000 architecture has no float-to-integer 
instruction. The Pentium, which has a conversion instruction, must use extra 
instructions to achieve C truncation semantics. 

The trick is to use floating-point normalization to place the desired bits in the 
desired location. If we add 252 (in IEEE standard double-precision format) to a 
small positive 64-bit floating-point number X, it will be shifted right to align its 
bits with those of 252. This normalization process will shift the fractional bits of X 
“off the end” of the 64-bit representation, leaving the integer part in the low 32 
bits of the double word. Thus, a fast rounding algorithm is: add 252, store as a 64-
bit float to memory, read the second word as a 32-bit integer. The add, store, and 
load instructions can be interleaved with other computations to hide the latency 
of these instructions.  

In an elaboration of this same idea, we can optimize phase computation, 
where a phase accumulator must “wrap around” when it exceeds the size of a 
lookup table. Here, we want to retain some fractional bits of the phase. By 
adding 220 instead of 252, we can retain 32 fractional phase bits. Assuming the 
table size is a power of two, we can accomplish phase wrapping by carefully 
masking the high order 32 bits, taking care to preserve the exponent (use “logical 
and” to clear bits, and “logical or” to set them). Note that 220 is somewhat 
arbitrary, and there are many variants of this technique. 

 Combining these truncation ideas saves 24 of 75 cycles in the inner loop of 
an FM oscillator on an RS/6000. We applied the instruction reordering 
optimization described above to save another 11 cycles. The resulting total 
speedup of nearly 90% illustrates the gap between loops coded in a 
straightforward fashion and loops optimized for performance. 

Table Lookup Oscillators 
After looking at various ways to optimize performance, we used the best 

strategy (linearly interpolated control signals), combined with all of the 
optimizations described for oscillator implementation, and examined the effect of 
table size on performance. Figure 5 shows RS/6000 execution time as a function 
of the table size (in floating point words). For now, consider only the curve 
labeled “Normal.” A total of three tables were used: 2 at the audio rate and one 
at the control rate. Since the control rate is a factor of 32 less than the audio rate, 
it is probably best to disregard the control rate oscillator and think of the total 
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table data in bytes as approximately eight times the given table size (four bytes 
per sample times two tables). 
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Figure 5. Benchmark execution time as a function of table size. 
Access to tables is either “Normal” as necessary to compute a 
roughly 440Hz tone, or “Sequential,” for which the oscillator 
artificially reads memory words consecutively. 

As shown in the table, performance is roughly constant out to about 8K 
(64KB). After that, the performance drops to about half at 128K (1MB), at which 
point it seems to level off. Using the numbers available, we can estimate the cost 
of the table-lookup operations with 1M-word tables as 1.72µs, or about 43 
machine cycles. Even though each oscillator makes two sequential memory 
reads, we assume that the second word will be prefetched into the cache, so all of 
the cost is due to the first read. Note also that the actual read latency will be less 
than these computed numbers because some of the additional measured cost is 
due to the need to reload displaced cache lines. Overall, we can say that a 
random memory read costs about 43 machine cycles. 

Note that the performance curve has two “knees.” With 64K-word tables 
(512KB), the effective random access memory read time is about 0.5µs, or about 
13 cycles. We suspect that this reflects the cost of cache misses, while the 43 cycle 
figure reflects the additional cost of reloading virtual address translation 
registers. 

Virtual address translation is yet another source of memory latency. The 
RS/6000 uses a cache of 128 entries (known as the translation look-aside buffer, 
or TLB) to translate virtual addresses to real addresses. (Bakoglu, Grohoski, and 
Montoye 1990) Each entry corresponds to one 4KB page, so the translations for 
512KB fit in the cache. When a memory address is referenced but is not in the 
cache, hardware searches a hash table for the translation and saves it in the TLB. 
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In our benchmark, we would expect to see performance degradation when the 
program data exceeds 512KB, corresponding to two tables of 64K-words. The 
“Normal” curve begins to degrade shortly after this point. 

In practice, tables will be much smaller, but for this synthesis algorithm, there 
are 2 active tables per voice. For interpolating oscillators, 512 samples (2KB) is a 
small but reasonable choice. Up to 32 tables (16 voices) could be accommodated 
before the first knee, and this should be realizable at 44.1K samples per second 
with 75M computation cycles per second. The current crop of PowerPC 
processors, running at 100 MHz and up, should have enough cycles left over for 
control, audio output, and wavetable generation. 

At the base of the second knee, 256 tables (128 voices) could be 
accommodated. This would require about 750M cycles per second, which is in 
the range of expected processor performance at the end of the decade. By then, 
we can expect larger caches but a greater relative cache miss penalty, so it is 
difficult to predict performance. These numbers are encouraging in any case. 

In our measurements with large tables, each sample was computed from a 
table location that was far from the previous one. This may not correspond to 
practice. For example, sample-playback synthesizers usually store samples at or 
near the playback sample rate, which implies that samples will be read almost 
sequentially. This should make for excellent cache performance. To test this 
hypothesis, we modified our oscillators to perform all the usual computation, but 
then ignore the computed phase and access the next sample in the table. 

As shown in Figure 5 (the “Sequential” curve), large sequentially read tables 
do not cause any performance degradation until the 64K-word tables 
(representing 512KB of data). At this point, corresponding to the size of the TLB, 
there is a dramatic increase in cost. Given sequential memory access, we would 
expect TLB misses to be amortized across many accesses and not impact the 
computation significantly, so the performance degradation is surprising. No 
paging occurred in any of these tests. 

Conclusions 
After considerable benchmarking and testing, we feel that we have a good 

understanding of software synthesis and how to implement it efficiently on a 
modern processor. The following recommendations can be made: 

1. Audio sample-rate computations should be performed in blocks. Blocks 
should be large relative to the time it takes to invoke an operation and initialize 
the inner loop. Because of the prefetching behavior of caches, it is not important 
that blocks fit in the cache. 

2. Control computations should be performed at low sample rates if possible. 
Since low-sample-rate signals sometimes lead to artifacts such as “zipper noise,” 
linear interpolation should be used. (Note, however, that this adds to latency 
since interpolation requires one-sample look-ahead.) 

3. Unit generator inner loops should be larger rather than smaller. 
Incorporating control signal interpolation into the unit generator loop is a good 
optimization. 
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4. In extreme cases, a special compiler or code generator could be used to 
construct special unit generators with extended inner loops. 

5. Control-rate computations should not be computed in blocks. Non-blocked 
control signals will minimize the latency in real-time systems, the cost is small, 
and the implementation is simplified. 

We note that cache performance seems to be quite predictable. Three 
potential trouble spots seem to be: waveform tables, large amounts of sample 
memory, and multitasking. Up to a point, accessing waveform memory imposes 
an extra cost because memory is not in the cache. The cost however, is easy to 
measure. When large amounts of sample memory are accessed, even 
sequentially, there is the risk of extra cost associated with the loading of virtual 
memory translation registers. Whether or not this will happen is a function of 
how much memory is referenced. Again, it is easy to measure the cost and the 
point at which degradation will occur. Given that real-time synthesis systems do 
not take advantage of virtual memory, it is too bad that virtual address 
translation is potentially so expensive. 

Finally, it is often assumed that with interrupts and context switching, it is 
impossible to say what real cache performance will be obtained, and therefore 
one cannot predict signal processing performance. We like to think of the cost of 
an interrupt as its execution time plus the time it will take to reload the cache 
when signal processing resumes. Both of these numbers are fairly deterministic 
and measurable. Having worked with real-time computer music systems with 
less than 1 MIP overall, we find the idea of “only” 10 MIPS left over for interrupt 
processing quite attractive. 

Most of our measurements were performed on an RS/6000. In limited tests 
with a PowerPC 601 chip and a Pentium, the results seem to carry over, and in 
the PowerPC case, performance scales linearly with clock speed. All this is 
encouraging, but the reader is warned not to assume too much and to measure 
the performance parameters of any particular machine. We hope the 
observations and techniques described in this paper will contribute to a better 
understanding, design, and performance characterization of software synthesis 
systems. 
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