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Abstract

This paper presents a technique for the analysis and digital resynthesis of instrumental sounds. The
technique is based on a model which uses interpolation of ampiitude spectra to reproduce short-time
spectrai variations. The main focus of our work Is the analysis algorithm—starting from a digital recording
we are able to automnatically compute the parameters of our model. The parameters hemselves,
harmonic ampiitudes at selected imes, are small In number and intuitively interpretable. The model leads
10 a synthesis technique more efficient than cisssical additive synthesis; morsover it allows dynamic
spectral variations 10 be controlied with only a few high-ievel parameters In reel ime.

We have studied two analysis/synthesis methods based on spectral interpoiation. The first uses only
spectral imerpolation. This method has allowed us o compress recordings of orchestral instruments to
a average of 400 bytes per second without perceptittie loss of reallsm, and o resynthesize these sounds
with about 10 arithmetic operations per sample. The second method is & hybrid in which a sampled
aftack s spiiced onto a sustain syrithesized via spectral iInterpoiation.

The spectral interpolation model has been applled successtully to ditferent instruments belonging to the
brass and woodwind family. We plan 1o extend the study to mam  ore instruments.
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1. Introduction

This paper explores techniques for computer analysis and synthesis of musical sounds based on the
imerpolation of spectra. in section 2, after having examined the technical and musical performance of
some existing synthesis aigorithms, we list the goais of our work. In section 3 we introduce the method of
waveform interpolation synthesis (of which spectral interpolation synthesis is a special case), then we
gdescribe the architecture and control of a waveform interpolation oscillator. Section 4 argues the need for
an automatic and general analysis model based on interpolation. Here we discuss the conditions a sound
must satsfy in order to be amenabie to synthesis via waveform interpolation, and introduce the technique
of analysis/synihesis by speciral imerpolation. Section 5 describes each step of the analysis process
ysing spectral interpolation: digital recording, spectral analysis, and data reduction. We propose two
different data reduction aigorithms based on “linear” spectral interpolation (meaning linear in time), and
another algorithm based on “noniinear” spectral interpolation. Then we analyze and compare the resuits
obtained with these two aigorithms on several types of instruments. This evaluations leads to an
improved technique which combines sampling and spectral interpolation synthesis. This hybrid technique
forces us to confront the problem of achieving an inaudible transition between sampled and synthesized
sound. We discuss two approaches for solving this problem—one successful, the other not. Section 6
situstes our research in reiation 1o other relevant work, Finally we outline directions for future work.

2. Evaluation of the Existing Digital Synthesis Techniques

In this section we list some criteria by which we can assess synthesis algorithms; we then evaluate
many current synthesis techniques according to these criteria. Given this groundwork, we argue that
there are desirabie points in this space of criteria which are currently achievable, but which until now have
not been expiored. This leads to the synthesis technique of waveform interpolation, which we describe
and evaluate in subsequent sections of this paper. The reader should feel free to skip to section 3 if he
wishes 1o learn about the technique before leaming about its undertying motivation.

2.1. The Criteria

Each digital sound synthesis aigorithm may be viewed as a model of sound production; the model
takes as input a number of parameters which collectively determine the sound produced. The production
model is usually represented by a mathematical formula whose variables are the input parameters and
whose result is the sequence of output sampies. Most of the sound generation systems let the user
manipulate some of the input parameters o obtain different output audio signais.

Any synthesis aigorithen may be judged according to how effectively it enables the musician to produce
musically useful sounds. Effeciveness can be measured in terms of specific criteria such as the
generalty ot the synthesis method, the computational efficiency of the corresponding aigorithm, and the
quality of the contro/ over the sound available to the user. in what follows, we propose a definition of
each of these criteria; we aiso explain why It is important that a digital sound system includes features
that tend to maximize these criteria,

generaity Generallty is the ability to generate many kinds of sounds. We can distinguish
between two classes of digital sounds. The first is the class of the so-called “natural”
or “naturai-ike” sounds which attempt to imitate the signais produced by acoustical
systems such as orchestral instruments and the human voice. The other class of
digital sounds, which we call “non-natural” are not attempts to sound ke an acoustic

system. The generality of a synthesis aigorithm is determined by the variety of
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sounds, both natural and not, which it is able to produce.

It is clearly desirable for a digital sound system to be general, so that it enables the
composaer 10 create a wide range of sonorities, resuiting in music whose orchestration
is rich and creative. The combination of electronic and physical worids that a general
systemn couid provide may be musically fruittul [52). The ability to digitally simulate
many traditional instruments is good in its own right, since it allows a composer to
have a full traditional orchestra always at his disposal. Furthermore, a general
system that aliows the modification and combination of digital representations of
existing instruments to create new ones has interesting musical applications [5].

Efficiency refers o the the computational cost of the synthesis aigorithm measured in
computational operations per sampie of synthesized sound, Greater efficiency
implles some combination of reduced overall hardware cost, greater number ot
synthesized “instruments”, and in non-real-ime systems, shorter computation time.
All of these are practical advantages.

By controlling the input parameters of the synthesis aigorithm the user attempts to
achieve a desired perceptual resuit. Depending on the nature of the input
parameters, and on the nature of the algorithm itseif, the synthesis system s more or
less usable. We think that the following aspects of control are importamt: timbra/
control, simplicity of control, intuitiveness of control, and flexibility of control. Control
over timbre is as desirable as pitch, loudness, and duration control. indeed, as the
musical properties of an instrument come from its characteristic variations of timbre, it
is of primary interest to be able to reproduce such variations and to derive new
sounds from them. Furthermore, timbre has become a main concem for computer
musicians. Given the potential of digital instruments, it is now possible to write and
produce dynamic timbral structures as part of a musical composition {53,.54). Itis
desirable that control be simple, meaning that there are only a small number of
parameters to drive. Control should aiso be intuitve, meaning that the user should
be abie to easily imagine the perceptual consequences of parameter modifications.
Also, a flexible synthesis model is of interest for the musician because by moditying
just & few parameters he can obtain & wide range of sonorities. Simplicity,
intuitiveness, and flexibiiity are necessary to make the sound editing task attractive.

2.2. Evaluation of Synthesis Techniques

Mmmwmummmmnmtm
emphasize some of them to the detrkment of the others.

« For example FM [12] is extremely efficient, flexible, simpie to control and fairly general. By
mmmmmmmmmmmwmmudm.
it is possible 10 get a rich ensemble of natural sounds, harmonic and inharmonic, and create
new tmbres as well. FM can also mimic the evolution of natural spectra (31, 43]. However,
some problems remain in the design of a direct, automatic and general anulysis
which can derive FM synthesis parameters from instrumentsl sounds (34]. In addition, FM
parameters are not intuitive.

o With additive synthesis it is possible to reproduce exactly any kind of natural sound
(harmonic and inharmonic). The input parameters of the synthesis model (amplitude and
frequency time functions of each partial) can be obtained by submitting the sound to a short-
time Fourier based analysis: the heterodyne filter 31, 40] gives very good resuits for quasi-
mm.mmmm«mmmmmm«mwm
characterizing and reproducting sounds with compiex hamonic structures [45]. Because the

pmmglwamwﬁodohﬂmotﬂnmmm.addlﬂvo

input
synthesis

offers a powerful expressive control over the sound.! Furthermore, the parameters

1For example, intaresting musical eflects can be cbiained by scaling the Sme-functions describing the evalulion of the partiale.



of the analysis and synthesis modeis lend themselves to a perceptual interpretation.
Because of the properties of the representation {accuracy and intuitiveness) analysis-based
additive synthesis has proved to be a very usetul tool for camrying out physical and perceptual
descriptions of acoustic instruments [21.22] and fundamental studies on timbre
characterization and imbre manipulation (19, 53]. Thus we see that additive synthesis is
general and offers many musical possibiiities. However, additive synthesis requires a large
amount of data per voice /frequencies and amplitudes of every partial). This is the cause of
several disadvantages: éontrol is compiex, signal production is expensive (requiring many
operations per output sample), and sound representation is somewhat redundant,
emphasizing local detall rather than global propertes. To reduce cost, complexity, and
m\dm.spodﬂcdturoducumsm«nuembowplhd (se® section 3.1).

« Some earty digital instruments generated sounds using fixed waveform synthesis [10] (see
section 3.3). In contrast to additive synthesis, this technique uses much less data (one
constant waveform, one frequency enveiope and one amplitude envelope) making it simpie
and efficent. However it is neither flexible nor general. It can only generate quasi-periodic
and harmonic sounds, and it does not provide any control over spectral moduiations. For
these reasons, fixed waveform synthesis is currently of minimal musical interest.

« Nonlinear techniques, such as waveshaping (39, 4), are economical, flexible, and simple to
drive. Thoymgonorﬂoandmdﬂynmm. in waveshaping synthesis, the
Wmmmmummumwmmmodmmms (sinusoidal

,mmm.m«s.mvﬂopogmm)onaatMandyzod
characteristics of the sounds [8]. Adjusting the modules is usually camied out by a trial-and-
errorphasothatislaboﬂousanddoosnotdwaysassureapoﬂoctmatd\ingbommtho
original and synthesized signal. For most nonfinear methods generality is limited and control
is not intuitive. ‘

« Subtractive synthesis models all consist of the output of a (usually harmonically rich) sound
source passed through a parameterized filter. We distinguish between analysis-based and
non-analysis-based subtractive synthesis. in analysis-based subtractive synthesis [25] a
source function (usually white noise or train of periodic puises) is fed into a time-varying
digital filter. Thocoomdomsofmem«mnyboobumdbylhoarpredlcﬂvcanalyslsofan
input signal. |nmmmwmlmmw.hmmmm
mmmmmmpn Evaluating analysis-based subtractive

mudﬁmnm“bmm&nmamw. The
Mbmﬂ.“hﬂmmﬂoﬁmmm However, the large fMlers and high

most three parameters. mmmmv«wms«mmnmmpmm.
numuuhmomm,mmmw.tom«m. Non-analysis-based
WMmW.MM.NWMW.quMMM

-mmmm,zs.qummummmwmnqmm

digital sounds. mmmnummmmmmwmwmysomd.
and as many as desired given enough memory. Sampling systems may include ditferent
control faciities among

. This combination of functions
for moditying the liorary of recorded signais. However the
mdmm.nmwmmdmﬂclm.mmmeﬁoﬂ
MMM.MMMM(MWn)bvwlm,andﬂrrbralcommlls
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which are pitch transposition, filtering, amplitude enveiopes,
means



2 Thuﬁon.sanplhq!sgomrdmdenmndyetﬂdommmum.otm
mﬁn)mmmhmtsknphwmﬂoxibmty.

o Physical modeiing synthesis directly simulates the propagation of acoustical waves inside an
instrument. The instrument is usually described by a noniinear source function oxciting a
Imumonaﬂ'mltmﬂym:doaoousﬂcdlosm. The wavequide fitter approach maps the
instrument into a set of digital filters or delay lines [48, 48], and the mechanical approach
considers a set of equations expressing the movements of a system of masses and springs
that modeis the instument (1, 2]. Utimately this kind of synthesis should lead to an accurate
reproduction ot any instrumental sound. However, the complexity of the analysis and the
wmdwmnmmosymmuommmmmamm.xpmm.
Furthermore, the control of physical modeis is not straightiorward, requiring detailed

moModqoo'Mdﬂvaom‘appﬂodbym.msidmszlmmm

ThissuodnctsmdyMthopmpqnlesoim.pdndpaldlgnﬂsynmesistod\mquesshowsmmmmis
atradooﬂbetweeﬂemdencyandgonerallty(excopﬂorsmﬂng) and that no technigue scores highly on
all criteria

2.3. Our Goals _
Ou'pdrnlrygodhtomasmph.dﬂdantﬂoxibh.andlnmﬂwmomoddroptodudngamMgo

of traditional instruments. Among the techniques previously cited, only sampiing, physical modeling, and
addlﬂﬂsymhoshloadtommratOmprodwﬂonoansounds. We rule.out sampiing due to its
inflexibility of control, and rule out physical modeiing as it currently requires excessive computation anc
complex control. Additive synthesis is not entirely satistactory as it is inefficient and requires a large
amount of data deosinatod\ntquomatkeepsmoadvamagesc!addmosynmosts.am
smuﬁanoouslylsmgmaontandoﬂmsimpbroonw. WQmMImtomgonoralltyfor«ﬂdonq

and simplicity.
Tommmmwummmmmdm.mMam

“yﬁsnnddtommsynm. ln.ddﬂon.uﬂysbhmospowddanﬁhnhpoum
mammmumm'm. in the next section we introduce 2@




3.1. Additive Synthesis Considered

Roughly speaking, the cost of a digital synthesis method is proportional to the number of independent
oscillators and to the bandwidth of control information needed to reproduce a single voice. Many
researchers have reduced the control information bandwidth using a number of different data reduction
schemes. Grey {21] and Moorer [31], have proposed the use of piecewise-linear functions to approximate
the amplitude and frequency functions for each partial. This method has been extensively used in digital
synthesizers where the number of oscillators is large [50, 7). Strawn (51] and Schindler [42] have
extonded the plecewise-iinear approximation by organizing the enveiopes breakpoints into hierarchical
gdescriptions. Smith and Serra [49] use a tracking phase-vocoder analysis that retains only the essential
teatures exhibited by the short-time spectrum. Charbonneau [11] and Sasaki [41] have sougit data
nducuanmﬁodsmatloadtoasuednctmdglobalrepresamaﬂonownspodrdonvolope.

Even when using one of the above data-reduction techniques, the cost of additive synthesis remains
high. Additive synthesis requires one osciliator per partial, thus many oscillators are often necessary to
synthesize a single voice. Simiarly the number of parameters to control remains considerable.
W.bknpmwﬁndﬁdcncyofﬂ:todm&wo.mmmmwmmmsof
reducing the number of oscillators per voice.

3.2. An Attempt at Spectrai Variation via Table Lookup

Fixed-waveform synthesis (or table-lookup synthesis) uses only one oscillator per voice. The oscillator
scans a constant waveform table periodically, scaling the output by an ampiitude envelope (see section
3.3). Thus, over a given time interval, only harmonic sounds with a constant spectrum can be generated.
If the waveform currently addressed is instantaneously changed to a ditferent one, the resuiting spectrum
will change, and by generalizing the same procedure to a set of waveforms, dynamic spectral variation
can be produced. For example, smooth timbral transitions can be obtained by reading successively a
sequence of waveforms that are “very close” to each other [15]. Unfortunately, avoiding perceptual
mmmu(ddu)ammpommawmmmduw.«]. In other
m,mmmwwﬂmwmmmmwmmmpm.
necessitating a large control bandwidth.

m.nnmmmmmammmmmsm@um,smn
is costly to change smoothly between spectra. However, f we allow ourseives two table-lookup
mwmmﬂMMmmmmmwmm. Using this insight,
we can construct a wavetable interpolation oscilator based on two table lookups. It will be possible to
MMMMbyabwmmmwmodbyaModspmmm.
smmmmmwnmmmmmmmmmmw«waﬂm
synthesis algorithm,

3.3. Table-Lookup Synthesis

Ap«bdcbnoﬁhmlyhmﬂcpﬂs“asbﬁyvayhganﬁﬂu«mvﬂopombodﬂdmﬂv
mmdmmmommmsynmumnm[zn. The technique consists of reading repeatedly a
sequence of numbers stored in a memory. Thomxnborsnpros«ﬂﬂnsanphsofomcydoofa
digiized waveform and the memory s called a wavetable.

Tmmhmymdowbodbymﬂolmmdm:



Mx Freq(n) ()]
srate

Phaseinc(n) =

Phase(n) = Phase(n—1)+ Phaseinc(n) {modM]
¥(n) = Amp(n) x W{Phase(n)] €))

where
n is the number (index) of the sample being computed,
M is the (constant) number of samples in wavetable w,
sraze is the (constant) sampiing rate of the output signal,
Freq(n) is the instantaneous frequency at sample n,
Amp(n) is the ampiitude scale factor at sampie n,
W{m] is the m sample of the fixed wavetable W,

and

Phaseinc(n) Is the phase increment at sample #,

Phase(n) is the phase accumuiator at sampie », and

¥n) is the output signal at sample ».
Fwo(ﬂma-i)shmadaqrunafmosdlaotbaodonmmequaﬂm.

Amp(n) : é,g@\ﬁ > y(n)

alll, all,
W] T

Pha,selm:(n}—a(-b"r j{ Phase(n) |

Figure 3-1: Tabie-lookup ocscillator

nnmw»;-om:ynﬂmhmmmdctm. Setting Amp(n) and
Freq(n) t0 constant functions insures periodicity (since Phaseinc(n) 18 constant, Phase(n), and thus y(n) wil
be periodic). Fmpld\mbowbdbyvmrrq(n).wibmunplummwbpomaybo
imposed on the output by varying Amp(s).

In um.mn)mrn«u)nmwm-mlmm. in implementations
containing ramp hardware, Amp(n) and Freq(n) may be updated on every sample (le.
Amp(n) = Amp(n—1)+ AmpPhaselncr(n)). R is often the case that Amp(n) and Freq(n) are updated at a lower
rate (l.8. Amp(n) = Amp(n—1) except at update times). This update rate imposes an upper fimit on how fast
mmwmmdhmbaﬂﬂom.

nbwommglnpusinqmuﬂnconummmmwn)mdrreq(n)malowodtobonmcuom
of the output of another table-lookup oscilator, complex wavetorms will be generated via ampiltude and
frequency modulation, respectively. Such modifications will not be considered here, and from now on we
shall assume that Amp(n) and Freq(n) are siowly varying. Given these assumptions, since the table hoids
nmqaammm.wpwmmmmwmm



between harmonic amplitudes always fixed.

1.4. The Waveform Interpolation Osclilator
waveform interpolation I8 similar in implementation to table lookup (figure 3-1) but uses two phase-
locked wavetables, W, and W, each one loaded with a different waveform (figure 3-2).

c(n) 4@
allh, — allr,
Wi fm] |
Phaselnc(n I| %5—> y(n)
A . -
werm I
) &

Figure 3-2: The Waveform Interpolation Qscillator

The two tables have the same length A, and are indexed with the same phase value Phase(n). The
interpolation signal can be expressed as
¥(n) = o(r) W, [Phase(n)] + d(n) Wp[Phase(n)} 4)
where
c(n) is the ampiltude scale factor of the left wavetable at sampie

d(n) s that of the right,
and

n, Y(n), Phase(n), and Phaseinc(n) are as before.

m.mm“amlmmohﬂonMBMedhmmmmmowm
whose phases Phase(n) are constrained 10 be equal. An altemate view Is to consider a waveform

interpolation oodldortoboatdﬂo—loomposcﬂldorwhosotabhbdynmcaw computed as the linear
combination of two fixed wavetables.

Let us consider this latter view in a bit more detail. w.nwm.oquaﬂon(ﬁas'

yin) = W, [Phase(m)]
where W™ is the “effective” wavetable in use at sample »:

Wigylm] = c(m) W (m] + ) Wglm] ' )



Are we justified in caling W, the effective wavetable at sample n? In other words, are the short-time
3p.cualpropoﬂhso¢mommatmphndosotomouthatwouldhavemulhdhadwodomslmph
\able-iookup synthesis using fixed wavetable W,,? To answer, we consider the short-time frequency
domain behavior of the wavetorm interpolation oscillator at sample n. We expect that the output spectrum
is a linear combination of the spectra of the two wavetables W, and W,, the combination coefficients
being c(n) and d(n). I tact. it one assumes that c(n) and d(n) are constant over the window duration, then
i is easy to show that the short-ime Fourier transtorm [37] at sampie n of the sequence y(n) (call it
Y (e/™) satisfles

Y (¢/®) = c(n)L (e/®) + AR (e/®) 6

where L (¢/™) and R,(e/®) are the short-time Fourier transforms of W, [Phase(n)] and Wo(Phase(m).
respectively. Since c(n) and d(n) are not in fact constant, but are assumed to be slowly varying, equation
(6) is only approximately true. To the extent that the spectrum Y, (e/™) is the desired linear combination of
the spectra of the left and right wavetables, we are justified in caling Wy, the effective wavetable at
sampie n.

We see that the effect of interpolating waveforms is to interpolate the cormesponding spectra. Thus, we
propose to generate spectral variation through waveform interpolation.

3.5. Arbitrary Spectral Evolution via Waveforms Interpolation

We wouid like to use waveform interpolation (equation (4)) to generate a spectral evoiution. By
“spectral evolution” we mean a sound in which the ratios between the amplitudes of the harmonics
change over time. There are two ways of achieving spectral evolution. First, as «(n) and d(n) may vary
dynamically over time, the interpolated waveform, and thus the resuitant spectrum, varies over time. As
wadn)wan)mmmmdmwmmmmmm(bdngdgau
W.m'mW"mM'uMWMM').

mmmumwmspmmmummmmmnmummmm
of a sound. Fam.wmmwm(mu))mmmmksd
Mmbﬁdluhdﬂ“bﬂ“mmgﬁlmdmmm
combinations. To avoid discontinuities at the point when a waveform is changed (the problem discussed
hmaz).wmdummhwawmm,mmmmm
the scaling factor assodiated to the wavetable being changed is zero.

mmwmmaamdommu)mmammm
sequence( (ng W), (1, W, . . . . (ng.Wg_,) }. Where n; represents the sampie at which the reading of
waveform W, starts. Atmypolmmm.womimerpolatmgbcmonmotm“vdonn'pm
(WoW ), (W, Wy, ..., (Wo_aWa ) :

lnmngmmmmdu)md(n)amm«mmmmmmwm
vaiue zero at some n;, rising linearty to its maximum at n,,, and again reaching zero at »,,. 1t is not
noonsaymc(n)mddn)hmtmfotm;dmnlsmqulndlsmatmmconmusmdhavovduo
zero at the points their respective wavetabies change.

Tommmmmmmw.mmmmun)mm). Given the
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Figure 3-3: Interpolation of successive waveforms

sequence of wavetorms W oo WQ_|). L(n) and R(n) respectively determine the waveform in the loft
mddghtwavetabhotﬂnmerpolathoosdlator. Inah-'dwanlmpnmentaﬂon.mm:\cﬂonsare
used 10 trigger the change of waveform in each table.

We have
y(n) = c(n) Wu,.,[l’htm(n)] + d(n) W,(.,(Pmd(n)l N

For convenience, we set a_ =ny 8nd np=ng . Thommbbwllboﬂbdwmwonnmod
waveforms, and the right with odd ones as follows:

Lin)=2 where nySR<ny,;

Rin)m2+1 where n,, Sa<ny,, ®)
ﬂnmcrn«hbmddddcwmnmmkwmdmm

c(m)=0 when nsny

An)=0 when nan, )]

AwmmmdmmisNUmemmmomem. This is
MWMMMMWBdn)Mdn)mMMNWWMwma
each sample equais unity. w.cmrmﬂomisspodalcasooioquaﬁonma



10

y(n) = (1=sp(n) ) Wy [Phase(n)] + sp(n) W gin)[Phase(m)] 10

spiaym d A=) (g =ng)  nySn<iy,,
(ng;=m)/(Ag;=ny () My SRSy

3.6. Spectral Interpolation Analysis

Problems may occur when interpolating between two waveforms whose phase distributions are
different. Phase canceilation and phase shifting occur when interpolating between two waveforms whose
corresponding harmenics are out of phase. Phase canceilation causes the ampiitude of each harmonic in
the interpolated signal to be less than expected [10]. Even when the ampiitudes are the same,
interpolating between two out of phase harmonics results in an unintentional but perceptible timbre
change, often perceived as a frequency shit. We feel that it the phases are arbitrary, wavetorm
interpoiation often gives undesirable resuits.

Toawummumwmwmlmmmuuwmmorpdaﬂmpm.wowilonly
im«pdmbmonspocﬂwhmmspaﬁhghumorﬂGmdlan«. For natural sounds, it is in
gmrdnotmocasnma!mocomspondhghamom:otud\poﬂodmmmm. in order to conduct
ouoxpoﬂmontsonwavdormkﬂorpolaﬂonsynm”ls.mwilrolyonmassmnpﬂonmathasbeen
extensively used in digital signal coding of speech and musical signals. The assumption is that the ear is
not very sensitive to phase information, so this information can be thrown away (18]. In addition to
ignoring phase shifts of given harmonic in time, we ignore the initial phase differences between difterent
harmonics.? We use the term synthesis by spectral interpolation to mean that we have constrained the
corresponding harmonics of each generator wavetable to be in phase.

ExprmmgnnloﬂmdMwavotablesotmmupolaﬂngosdllatmasmomdmwmpocﬂve
harmonics, we have
" H=l
W"[m]-.z.b ot cos (2rhmie] +67)

B,
W.{m]-g o cos 2uhmiH +8}) (n

Ma’;me‘;nmmmmmmnﬁmmmmm.ma‘,fanae:
are defined analogously for the right wavetable.
Substituting (11) in (5) we obtain

H-1 H-1
wE [ml=c(m) h) at cos (2hmiH +85) +d(n) z o cos 2ram/H + &) (12)

Assuming the corresponding harmonics in W, and W, are in phase (L.e. g- =0l =0,) we have
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H=1
£ (mi= ; (c(myat +d(n)a ) cos 2rhm/H +8,) (13)

Thus, the effective ampiitude of the 4™ harmonic in the effective wavetable Wﬁ‘, is

am= amas + dmay. (18)

Thus, given the constraints of spectral lntorpolaﬁon..tho ampitude of a harmonic of the output at sample »
ucqudtomohodaommﬂonctmoanpmwoofﬂnmpocﬂvohmmmobﬂwm
wavetables, the combination coetficients being c(n) and d(n) as expected.

in this section we have desclibed the process of generating an acoustic signal whose spectral
composition can be dynamically modified through the interpolation of wavetorms. in the next section we
address the question of the analysis and reconstruction of an acoustic signal using such a model.

4. The Reconstruction Problem

Spmﬂlmdauoncmbomodmmlzoalmdassdmmmdm. We will discuss
motyposofmMmsunabbformbtypootsynﬁnslsmdmmmopmbbmoIMan
control parameters by automatic analysis techniques.

4.1. Reproducing Harmonic Sounds

in section (3.3) we showed that a table lookup oscillator controlled with siowly-varying functions can
generate only harmonic sounds. The same result applies to the waveform interpolation oscillator.* Thus,
we will be able to reproduce only harmonic sounds.

wmmmmm:mmommmmmammaw
waveform interpoiation? M,wmmmmammammmm
spectium, nawmummmwhwmmm(mmm
Mmm)mmummwbmmmmm.

mmammummmmmm.mmmmmmm. A
wmmbmmmdmwnmmsmmm.

4.2. Role of the Analysis
Tonproducoasmmmogonoraﬂonnndddosaibodbymoquaﬂmm.mpoﬂma
mdlm:pohﬂanbomenp&sdmdom. Thowuvdonmlw,-}modlnmﬂoan
called generator wavetabies. mmmmmawmdmm.
mamm«wmm.mm«mwmmmm1mwmmu

“This is not exactly true. nhm&bmmmmmwwmmm
Wmno;-uhmmummmbmmpﬂ. However, as we discuss in section
(3.0.Ihnul-0dmemq~ndulyMMMhmvadlwmﬂ.wby-mm
“mmmhMMNw(mms.Q).
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number of periods in the signal. Thoﬂmﬂtnkusformoimerpolauon to go from one generator wavetable
to the next ((m,,—n,)/srare) is cailed the interpoiation intervaj, During the synthesis, the periods located
over an interpolation interval are computed with the interpolation formuia (7). The function of the analysis
preceding the synthesis is to select the generator wavetabies, interpolation intervais, and weighting
functions (c(n) and 4(n)) such that the resynthesized signai sounds like the original.

4.3. Non-Automatic Derivation of the input Parameters in the Time Domain

Ommdmdyshmlmm“rwnqmogmmwavmdﬂammuauymmmmm
original signal. hmm.mwmdaammwmmuwmm.mmmm
hobolovostoboﬂnonsatofslqntﬂcmtspoctald\mgos. Thnopoﬂoda(oad\mdndtoﬂloxacuyM
points) will be the generator wavetables, and the intervals between successive selected periods, the
interpolation intervals. Time-linear interpolation may be used (Iin which c(n) and d(n) are determined from
the interpolation intervais), or the user may specify (by, say, drawing) the Mixing functions directly, subject
to equation (9).

Thunmsowrdhcomonhneaauodamd%mmdlyubdhyww«omm«pdwon
parameters:
-ﬂnobuwaﬂonmdlm«pmauonofmoﬂm&domdnowmmumoslgndlslabmbm.

This is due to the large amount of information displayed, and the difficulty of intuiting
significant spectral changes from time-domain functions.

¢ Even in the simple case of time-linear interpolation, the process of axtracting the generator
wavetables manually from the original signal is inherently trial-and-error. Periods are
selected, a signal is synthesized based on the selection, the result compared to the original,
and the process is repeated until satisfactory results are obtained. In theory, this process
has to be repeated for each new sound to be synthesized.

onmdukutommuwygmonﬂxhghmcﬂomalweﬂ.vnpmbbmmwm
mm.mmmmmammmmuwmmm
synthesized signal.

omemnlmwmtoadMammmm
possible. mum.mmmuummm.momhmw-m
mmmmmmmm.mnmmwsmub'
Mﬁa«y.hm«bnﬂmnmbmmmmormwmormm
Wrong ones.

-mmmnmommmmlmdmmmmm
mmmammmmwmwm. The

Non-automatic analysis is clearty difficult and labor-intensive. Thus, our effort has focused on building
ammmmmmmmummmmmm.mmmmy
selects (or computes) the generator wavetables, interpolation intervals, and weighting functions.
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5, Analysis/Synthesis by Spectral Interpolation

in this section we present the analysis aigorithm that precedes the spectral interpolation synthesis.
The analysis aigorithm takes as input the acoustic signal that we wish to regenerate, and outputs the
controt data for the synthesis.

In order to extract from the acoustic signal the relevant information for driving the synthesis, we follow
several consecutive steps: digital recording of the sound, spectral analysis of the digitized sound, and
data reduction. At the end of the analysis we arrive at a set of data describing (to some approximation)
unodqhalmdmordlngtomospocuﬂlm«pohﬂonmodd. This set is then fed into the waveform
interpolation synthesizer (or its software simulation) to verify the analysis.

5.1. Digital Recording

For the purpose of analysis we start to work with isolated tones played (as nearly as possible) at a
constant pitch. Thosonsmcumsdbwustostudyupuamymmproducﬂmofmoanpnmdospem
variations by spectral inmterpoiation. mmdysbu\dsymshdosalbodhonwilsﬂlmkmtoms
whose pitch is not constant. However, since vibrato and connected pitches are facets of the tone we wish
1o control explicitly, we handle these at a higher level. This is briefly mentioned in Section 7 and wil be
described in a forthcoming paper. ’

The sound coming from the instrument is recorded using a microphone, and then sent to an
analog/digital converter that transforms the analog signal into a stream of 16-bit samples. The sample
rate and the anti-aliasing filter must be chosen according to the bandwidth of the signal. in addition we
dloosoasarnpleratematloadstomwmgefnmnberotsampdosp«poﬂod. For a given pitch, there are
usually several possible sample rates in the system that can be suitable. We try to keep the sampie rate
cose 10 16 kHz, as we low-pass filter the signal at 6.4 kHz. it it is not practical to record at arbitrary
mmu.mhupoumwmmnm(m«mmmmm.mm
change the sample rate efficienty. hmmwwmnmm.mmw
groups of notes for & given instrument. wmmwmnmm.mm
mmmmwnmnn.m-mgnmmmwmmnpm
with the spectral interpolation model.

5.2. Spectral Analysis

m.mmmmmwmmdmmsmn-ﬂm&mestm(pm
vocoder, heterodyne filter, DFT). Womaw»wmonmnnmm«m n
m.mmwumm,moﬁmmmmwmd
each harmonic. Slncowoneofdodmomatampbratotolmunmimogmpoﬁod.wonoodonlyto
check that the period Is correct. We do this using Moorer's optimum comb [30] and/or a simple peak
detector.

mmmmmmmmmmm.mmmmmmmm
harmonics. Fasmmmmm.mammm”mrmmomwm. The
Discrete Fourier Transform of the i period of the discrete signal x(n) is defined by:

_ P=1 )
x:"-gmpmﬂWP 0SAsP-1, 0Si<N, (15)
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mrbmolmqmmmopododlnnumofwmhs.andN,lsmotmalnumborofponodsmmo
tone. Equation (15) is equivalent to taking the Short-Time Fourier Transtorm of the signal x(n) by using a
rectanguiar window of duration 2, and sampiing it every 2 sampies.

The compiex DFT at period i, X:", can be expressed in terms of its real and imaginary parts:
X:D = R:" +j1:°
The amplitudes of the DFT, a5, are given by
ay> = X7 = Qi REZR+(12))
. The phase 6;° is given by
) <>
9, = atan(——)
R

As the signal x(n) is real, the OFT ampittudes are symmetric: |X;>|=(XS>,|. Thus, we have at most
L-1y2] harmonics (ignoring the DC component at A=0). In actuaiity, we caiculate # hammonics,
Hs(P-1)2 ], possibly ignoring some higher harmonics. We ignore the higher harmonics for a number of
reasons: they often have insignificant ampiitudes, the pitch-synchronous DFT computes them
inaccurately, and we want to avoid aliasing when the tone is resynthesized at higher pitches. For
simplicity, we evaluate the sum (equation 15) directly for each harmonic h, 1SASH. This is often more
efficent than using the FFT to compute the entire DFT, since # may be significantly less than P12 (so
thoroisnonoodtoculaﬂatoalll'rzhumoﬂa),mdrlslngmrunotapMMMo(maMng FFT
methods awkward).

TTnMormbrpnuﬂondmoﬂm-lmewmmmmdﬂmoﬁbmpthona
mmmmmmm-wummxmmmahm
the exact ampiitudes of the harmonics. Hﬁnm.nbnotpoﬂodyhmmic.wnmopoﬂodlsmtm
umqrunumas-npm.mwummmnmummmwo«mm«m
mmn(mazmp).mmmmmmmmwmmmm
may not be in the center of the band. Nom.mmmmmwmhqmdlm
computation of equation (15). m.mmmmmmmmmmmamsmm
time Fourler transform (one measure every P samples).

The DFTs resukt in a vecior of ampiitudes on each period of the tone. We call 5 the spectrum
measured at period /.

P u(a)<,ab, ... 4y, .. ay<>) (16)

The list of DFT spectra with their time indices is {(ng.5®),(n, <), . . . Ay (SN >)) We call this
ist the “spectral envelope” of the tone. To reproducs the tone using the spectral interpolation model, we
want to transform the list of DFT spectra into suitable data for the waveform interpoiation synthesizer.
That is the subject of the next section.
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5.3. Spectral Paths and Spectral Ramps

For the remainder of section 5 we describe several algorithms that process the time-ordered list of DFT
spectra |(,.°,_s¢),(n,,s<'>). ey S<Vp-12)}. The purpose of each aigorithm is to obtain the control
data needed to drive the spectral-interpolation oscilator (equations (16), (11), (7)): a list of Q spectra
(with associated times) and the scale functions c(n) and 4(n). The number of spectra used for the
synthesis Q shouid be much less than the number of spectra coming from the Fourier analysis Np.

lnordortooxplainhowmodatamducﬂonwodcs.wowammoxpmsmim«polaﬂonbemantwo
spectra §<> and S (successive in the synthesis) in terms of their individual harmonics.® Analogously to
equation (14), we can express the instantaneous interpolated harmonics at sampie n, ayP(n), as®

aP(mym qmay” + din)ay”  mSn<n;  LSASH an

The effective spectrum at sample n, S</>(n), is

§9P(n) = (n) S + d(n) <P nSn<n; (18)
We call the sequence of spectra 9P (n), n;Sn<n;, the spectral path from S to §P. A spectral path
mbuofhoﬂbdmd\connectead\hmnonica'molnmuspoms“’bhhmicatsm
order in the final spectrum §°, Aspowdpamlsdoﬂnodbyasdoftwoanpﬂ!udospom(ﬁamplm«
values for each spectrum), and a mixing function defined by the two coefficients c(n) and d(n), for
nsSn<n,.
i j
The interpretation of a spectral path is straightforward when the interpoiation is linear in time. In this
case, the harmonic ampiitudes (equation (10)) are given by:

SIP(n) = (1-5p(n)) S + sp(m) §P nsn<n,

d:ip('l) = (1-JP(R))¢:b* m(n)a? 1SASH nmSa<n
l-n'-

sp(n) =

(19
ll- ”‘

Equation (19) is equiveient to:

afp (n)= a:b+

n—R
L@P-a>) 1SASH nsSnc<n 20)
R]—ll‘

Here, the effect of interpolating between two spectra is that the ampittude of each harmmonic ramps
Inearty from its value in the first spectrum to its vaiue in the second. For this reason <> (consisting of H
ampiitude ramps) is called & spectral ramp. A spectral ramp is defined by the set of H initial and H final
mmmmw.wmmmmmwaﬂm(ni-ni).

Figure 5-1 shows three successive spectral amps. Representing an ampiitude spectrum evolution

WMMMMMMMNMMwMMMNDﬂthN
analysis. \Mlbuhon.nheuo.mdwMm(uoucﬂonummmmmmhw.

WthMSmmmmdMMwaS&bhhumwh
wavelorm for S i In the right. 1 this s not the case, as happens every other pair of spectra. the roles of c(n) and &(x) must be
intsrchanged. mmummmmmmmmymnmmmn
mmuwwmm.
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amp

W\

time

harmonic
number

Figure 5-1: Three Spectral Ramps

mspmﬂmbsmmusMaMuImtappmemmmmdeudhumonic
ampiitudes. Hmvor.mmasttom.usudnpmemaﬂomwfuaddﬂvosynm«ss[m].mo
breakpoints that define the plecewise linear function for each harmonic are simuftaneous.

In order to ensure that the reproduced spectra are close to the original spectra, the data reduction
algorithm is based on an efror-minimization process. The various methods we use to determine the
spectral paths in order to minimize our error criteria are described in the foilowing sections.

5.4. Data-Reduction using the Time Linear Spectral Interpolation Representation
w.ﬂstmidummspmalmpsfwmym. Thoﬂﬂngownspocnlonvolopowimasnwl
mmwmbb-odmmwnqm: mmmomdmﬁrnp«iodd
mm,meMmehmdnd\Wpoﬂodlnm For sach
WWmMmWMDMMhmmehM
WMMMMNMMNMWW. When the error exceeds a
MhthMqudmmpoﬂodbm The process is repesated using
mmdmenhlwmdunmnwW.Ttllloopboxowtodmﬂl

w.mmmmmumnmspmw.mmnmmumm
ramp interpolation using original spectra. nsdocusmdmoﬂmmmspodnlemdopod
ﬂnotighdmaamoimam:pocnlramps. The second method is called spectral ramp
Imterpolation using computed spectra. R uses a linear regression aigorthm to compute the spectral

5.4.1. Spectral Ramp interpolation Using Original Spectra
Comidoroquatlon(19)MMnosanmorpolatedspodruns“P(n)onnd\mphnwimmmo
ramp S<P. Fonhowposoofmoasu!nqmﬁonoronmospowalrunps“i’.womodtocompam\m
successive computed spectra 59P(n), n;Sa<n, to the corresponding sequence of DFT spectra 59> with
iSl<](sh¢n‘aiPl'ldni-jP). mnmmodmw\phunmuudwdmmmaﬂn
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DFT spectra, 1.@. with a tme interval equal to the period P. We consider that the interpolated spectrum on
period [ is equal to the spectrum computed at sampie »,=(P, i.e S9P<>u5P(n). Given this notation
equation (20) can be rewritten:
n=-n;

P> aa+ @P-a) iSlej 1)

I‘Ij—ﬂi

Gomparing the ampiitudes of the hammonics of spectrum 5> with values given by equation (21)

produces an emor £25. E57 s defined as the meen square error on the A harmonic ampittudes:”
SR -é @ P> - ay” P 22)
Using the following notation:
Aa;f 2a”- af’ Aa',: = a:b- a:b an'i = n;=n, an' & ny=n, 23)

equation (21) becomes:
<Py m g e A pgi
a, >ma, + ! Aay 28)
From equations (24) and (22) we deduce:

ap o An G o
E<1>’z(—'-A"h*"’h -a,")
-t Al

H i " .
S (A s - a2 @5)
- A/
The global error £<7 within the spectral ramp S< is defined as the sum of the efors on the individual
spectra?

= .
E"‘P-Z -57ig 26)
[ |
nmoonorE"'PbWMthME_moMMWmtommnm
<j+l>mdcomputomonnm&‘“‘"mmm(zs).,zf,f"mmmm(25).

Otherwise we store the data defining the previcus the spectral ramp S<V~'>, and we compute the next
ramp starting at spectrum (n_,, 5~).

5.4.2. Spectral Ramp Interpoiation Using Computed Spectra
ThoUmarHcgrudondgoﬂhmbawuyotﬂﬂngMulmwmtoamdpdms[m].
We use a variant of linear regression called anchored regression [40]. Given a fixed point called the
mwamdmm.mmngrmionalqodlhmhdsmoslopoofﬂnlhopassing
mmmommmunmmammmmmmmmmmnm We
mmmmmmmmmuwmummsmdm. Instead of
procosslngoachhmmsMW(mmmaMythamdmmuddmmt

™he averaging fector L is amitied here as k is assumed constant for the tone under study.
%mmmmmklMumms‘b-hwmhhmdm.nmf::-o.
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lengths) we perform 4 lineer regressions on a fixed ime interval, and we compute a giobal eror on the
resulting spectral ramp.

The anchors (or the endpoints of the spectral ramps) are notated S~ The prime is used to
differentiate the anchors from the DFT spectra. The anchored regression algorithm works as follows: We
start with an anchor (n,5°). For the first anchor we take (n,, S>). For each successive consecutive
OFT spectrum (n,5<), j>i, we compute H lines. The 4™ line goes through its anchor (n,a’y<i>) and
comes closest (ln the least squares sense) to the set of points (n,,,a,<i+1>), . . <(npay<>). The error
mﬂnspoc&ﬂmhmﬂodamosmndunmmdmoﬂwmm it the error is below a
threshoid £, the next DFT spectrum (a,,,5*1>) is examined. Otherwise the spectral ramp §* <v-'> is
used. Inﬂhasom.endpoirnotmospmdmmpis l.S"‘) The H coordinates of §* <>

a’,<j~1>, for 1Sh<H, are computed using the slopes of the & bost lines. The endpoint (n. e Al K™
thonusodasthonewand\orandmpmcessnsrepeatedtogotmonextspecu-alramp

Using a simpie least squares ft, it is straightforward to compute the best spectral ramp. Since each of
moHllmtomIngthospodnlmpS"‘PmstgomJghmocoordlan(ni,a’fb)udﬂhois
defined by an equation of the form

P> amP(n-n)+d'\ <> 1ShsSH isis) @n

where m: ig the siope of the /™" line of the ramp.
.}

Defining £ to be the sum of the squared errors of each harmonic within the ramp §’ <, we have
= i (ay<t>= (MP (ny=n.)+a,<i>) P (28)
bmie |
The total error on the spectral ramp £97 is the sum of the errors on each harmonic;
H
ﬁP-;s:"’ 29)
By using the notation previously defined (equation (23)) we can write: _
ESP o i (Adlj- mP anil2 (30
]
ESP = Zi( ﬁ (A} - m® Ani ) an
Dmmmmommmmb .mobUn
EP 2 t (8dij- mZP Anily Ani 32
amwb =]

smmeammﬂvauvof;’;-o gives the siope of each iine:
dmy

"Here the prime is omitied because the snchar is not computed.
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, S
m:‘P.‘-;"
) (At

I.~T3}

(33)

As we mentioned before, if the total error £<> is less than the threshold, we add the next spectrum
§<*1> to our set, and caiculate the error £<V*1>. Interestingly, we do not have to reevaiuate from scratch
the sums in equations (31) and (33) when we add the new spectra. Rewriting (30) gives

EP = i aaR-2mP Y anilaay+ (myP)? t \any P (34)
It i+l el
Now, each of the sums in (33) and (34) may be computed incrementally:

0> a g (hymaly (k) =0

0P agsH" v (an- 1P

0P hym g+ (aay M P

g (hy Sy + Aaf At for i<isj and IShSH @39)

Now, m " (equation (33)) and E;” (equation (34)) can be computed as

s o (k)

oo (h)
£ « 6P W)= 21meP PR+ mP 0T T

mmumwummwmdoammummm«ummnmm
nﬂsbpolawdmwhonm:spmumbhmm. In other words, we Can Compute every
ofror £GP givl>, ....E“thsmmonanumtolummms“P.

5.4.3. First Results

AMcunpchospodﬂm(deMMod).mmymmmmbywdudm
mﬂom(ﬂ)md(w)hsm.msmsmmmsmmmmmm
waveform generator. Thowuv«ocmgon«atoroomputesomcydootawavdomfromagivonamnudo
spectrum. Onopubddﬂnmwhmbobtdnodbyaddhqﬂshom.oad\wdodbym
corresponding ampiltude. mphuudmmmwsmmmwtooax.somnm
M«mmmmmmdoutozmamoboqimhqmdaanddmm.Thhlnho
technique is used in the Bradford Musical instrument Simulator [13]. After two waveforms defining a
spocualmmhmboonloadodmmowavotabbs.mowavetablesmnad,scahdbytwoopposito
Mram(m)mdaddodtotorthoutpms!qnd.Thopfocossisnpoatodunlworyspodnlmp
has been synthesized.
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The degree to which the synthesized signal approximates the input signal depends on the number of
spectral ramps output by the data reduction algorithm. This number can be modified by varying the
threshold £__.. For each tone. we run the aigorithm several times using different threshoids. We then
choose the synthesized signal with the smallest number of spectra (largest threshoid) that is perceptuaily
indistinguishable from the original tone. The chosen spectral ramps areé an accurate (and usually
succinct) representation of the tone.

We have obtained very good resuits on a number of instruments beionging to the woodwind and brass
families (bassoon, darinet, saxophone, trumpet, trombone). The average reduction rate on the number of
spectra Q/N, is on the order of 10%. mtwoalgoﬂm"n.spmmhwpouonushgoﬂgmal
spectra and spectral ramp interpolation using computed spectra, were found to be aimost identical in
terms of the data reduction they achieve and in their computational cost. For an equivalent data
reduction rate, the two algorithms lead to a similar perceptual output. Using computed spectra usuaily
achieves a siightly greater data reduction, since by computing spectra a given amount of error can be
spread over a longer spectral ramp than is possible using original spectra.

MmmmmmmmmmWMWmmmmh. Figure
5-2 shows a sampied trombone tone'?. Beneath the tone are the spectra which resulted from the DFT
analysis of the tone. Und«ﬂmomhospomwoctodbymodanmducﬂondqocm.'m
synthesized tone is shown under the selected spectra.

When applied to sounds whose ampliitudes vary rapidly (as in a rapid tremoio), the data reduction was
less effective, aithough always below 50%. In this kind of situation, a large number of spectral ramps
mnoedodtotmd(mod\angesinanpmudo(mdmo«oonospondlngspocmmmqos). As our
algoﬂhmproooedssequenﬂaﬁywimoutanyglobalviowofmostqnd.Rdoesnottakoadvamagooftho
oscillation between two close spectra, characteristic of the tremolo., To improve the data reduction (in
Mm“!nm.mmmmmmod.bundmmnmuﬂmum By relaxing
ﬂnmﬁmmdhscdmmc(n)wdn)(m(18))botwooppoahlmarmxpssmvrlng
to unity, we allow arbitrary combinations of the two waveforms. Thus instead of resorting to the
- computation of new waveforms, we look for more compiex time-varying mixing functions, with the hope
that these wilt result in greater data reduction. The noniineer interpolation analysis is described in the
next section.

5.5. Data-Reduction using the Noniinear Spectral Interpolation Representation

in this section we consider that the paths connecting the harmonics (equation (17)) c(n) and d(n) are
arbitrary functions of time. To determine the optimal set of spectral paihs we use a similar procedure as
presented in the previous section. But, instead of optimizing the spectra defining the ends of the spectral
path, we select two spectra in the DFT st 5> and 5> separated by an arbitrarily large time interval, and
we minimize the square error within the spectral path by choosing the best coefficients c(n) and d(n). if
the error is larger than the threshold £, we try the same operation with a smaller interpoiation duration,
i.o we try the spectral path that finks together the spectra $<° and S~ and so on.

Within the spectral path 5, the harmonics of the interpolated spectrum 5% at period ! are computed

"Mﬂy.pmdhwpubudhunmmwnmuﬂlhwmhm
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Figure 5-2: Synthesis by Time Linear Spectral Interpolation




as (17):
aSh<> = an)ay<> + dinay<i>  withn=ip  isl<j 37

Using the notation
cmc(n)  dy=d(n)

equation (37) can be written as:

a:‘t<l> = a,<d> + dja <>

(38)
or equivalently
S = e, 5 +d) 5P (39)

Thoonoronspoctumsf:wminmoramps“”isdcnnodasﬂnmnnsquanerroronmo
harmonics'?:

. H
EL 2 Y @y (ciayd>+ diayep) P (40)
I~ D <
The error is minimized by setting the two partial derivattves_;?_md T:’"_m zero:
! 4
ELL

H H H
=2¢, Z a,<i>* + 2d, Z a<i>a,<j> -2 Z ay<d>aq,<i> =0
t i~ =i I~

3531: H H H
=5 = Zd,z a,‘<]’>2 +2¢ Z a<i>a s> =2 z a<>a,<p>=0
! = =i -

Wbam.maﬂmhwwmmﬁhuﬁumrnc,wd,:

H H H
), ay<d>? +di Y ay<d>a,g> = Y ay<d>a,d>

-t -l 4

H N o

c,; ayd>a, <> + J,ZI aypi= ZI ay<ay<> (41)

The existence of a solution (c, d)) 10 the system (41) depends upon the vaiue of its determinant and on
the values of the constant terms of the system. Consider the initial equation (equation (39)). If the two
vectors 5> and S~ are Inearly independent (In a vector space of dimension H) It is possibie to find a
unique solution (c,d;) which minimizes the error. Otherwise the problem remains underdetermined or
impossible’2,

The noniinear interpolation modet has been tried on a number of tones. In practice, there are two kinds

"'Here agein we omit the averaging factor 1/H.
'%There is an infinlly of solutions when the constant terms are zero, otherwise thers are no solutions.



23

of situations for which equations (41) have no unique solution:

« One of the vectors S< or §%> is zero or close to zero; this happens usually when one of the

spectrum is located in a low-energy segment of the signal (for exampie at the beginning or at
the end of the note).

« The vectors are not zero but are linearly dependent or nearty dependent; this happens
usually in the sustain part of the envelope, when the tone is played with a constant loudness
or when the amplitudes of the harmonics are varying strictly linearty (which is rare on natural
sounds)'3.

We have investigated several methods for dealing with such cases.

In the first method, equation (39) is repiaced by a one vector decomposition by, for example, assuming
d,=0.

S a5 42)

c, being a real number. Expressing equation (42) in terms of the harmonic amplitudes yields

aj,’:<b - ¢,a,<i> 1ShsH 43)
The error on spectrum :;'if> is now
" H g H
ESL = Y (ayP<b - ay<b P = Y (qayei> - ay<t>)? (44)
ha i hw |
Setting the derivative of the error with respect to ¢, to zero we obtain
H
z a<i>a<h>
= :I.H_—_— 45)
z a, >3
1

mmmmmmnwmmumubym(u)munm
within the spectral ramp is taken as the sum of the errors on the individual spectra. if the global error
exceeds the threshold a shorter spectral path will be tried.

This method is straightforward. Udommddylllgnotrohbb. The main problem is an occasionally
perceptible discontinuity between the two spectra 5.7 =c; 5 and 5. it it was the case that §> and
5> were truly dependent, there would be no discontinuity. However, our test for dependency checks
mmmmhmmﬂ.nmmnboxacﬁyzuo,sonbmlymmms‘bmﬁb
are not strictly dependent, This difference can be occasionally perceived as a soft click in the signal.
Thhisoxacnyﬂnsmpfobhmaotngotswhonswnehingwavofornnasdlscussodlnsocﬂona.z

The second method uses a linear interpolation to avoid the discontinuity when we abruptly change
spectra.

3yvhen the two vectors S and 557 ss well as 5 are clase 1o 2o but not sirictly zero, we can find a sokution.
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: m=n; .
S:’:-c,(s‘b-o-"f_n_(S"P-S‘")) (46)
J

u’-"
so that d,-c,......._
n—n;

The ampiitudes of the harmonics in spectrum S5 are

. — (ay<p-aya>)  15hsH @7
l

; n
a:‘P<b o (ay<d>+ L
o

The orrorE > is expressed as
E:‘: = z (ay<t> = ¢/(a,a> LT + ah<]> nn
-l n=n; ni=
By minimizing the efror (48) with respoct 0 c, we obtdn.
H -n:
Z(a"<b Z(a,,cb 4 +a,,<j> —)
"

) ) (48)

a= -y — (49)
(a,‘<z> -+ ay<p> ~ \y '
% oo a1

The resulting error is obtained by replacing c, by its value in equation (48).

| o
An altemative formulation wouid be 10 take d; = —— 3o that
j- i

S¢ -c,S“’+ ~% s (50

A

) n-n;
a:'i’ <> =cpaya> +

a,,<p L (51
This yieids the optimai ¢,

H ny-
- n=

»
ay<>a<b)
A

— (52)
; ay<>?

=

These iast two variants of nonfinear interpolation assures the continuity of the output signai, while
allowing a high spectral reduction rate.

By applying the noniineer interpolation analysis we have been able to greatly reduce the number of
waveforms needed 10 accurately resynthesize the tone. The reduction is greatest during the sustain
portion of the tone. However we now need many points (two numbers per period) to represent the scaling
functions ¢, and d, These scaling functions are usually well behaved, so we are abie to approximate
them with piecewise-linear functions containing a small number of breakpoints. This we do after we have
computed the spectral paths representing the entire tone. WQmﬁnMradroqressbnalgomhmot
[40] to automatically perform the fitting.
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Wodonathmanlmmnulagmmformpuungspocﬂpaﬂuasmhadforcompuung
spectral ramps (section 5.4.1). Thus, the effort expended in computing the optimal spectral path between
$< and S5 does not heip at all in computing the optimal path between $<> and $</*>, or between 5>
and $9-1>. Our non-linear interpolation algorithm which iterates until the error threshold is crossed (as do
the time-iinear aigorithms of section 5.4.1 is quite time consuming. We could reduce this time by doing
binary search, or better yet by developing some kind of incremental algorithm. We have done neither of
these, but have instead experimented with a fixed spectral path length, as we now describe.

To speed up the analysis process we have the option of using an arbitrary fixed interpolation interval,
Le. woappmdmatohotom%albtatspo@ﬂpﬂuoﬂdmﬂcdlongm. On a given tone, we run this
algorithm several times varying the spectral path length. We then listen to the resulting resynthesized
tones, and choose the one with the longest spectral paths (fewest spectra) which sounds
indistinguishabie from the original. Figure 5-3 shows the same input tone as in figure 5-2 synthesized via
non-linear interpolation method.

5.6. Results

The noniinear interpolation analysis using fixed-length spectral paths (section 5.5) and the linear
interpolation analysis (section 5.4) are both very efficient. The linear modei is more efficient, partly due to
the fact that the noniinear model requires an additional smoothing of the synthesis input parameters. The
nonlinear analysis generally resuits in an improved data reduction rate.

The table shows resuits of applying linear and nonlinear interpolation to several tones. All the tones
shown in this table were digitized and resynthesized at a 16 kHz sample rate. The duration column gives
the duration of the tone in seconds, 2 is the period of the tone in number of samples, N, is the total
number of periods in the tone (and thus the total number of DFT spectra), 4 is the number of harmonics
lno.d'lspocn'um.mhodlshodgodhn(m«mmmsadformomdysh.Qisthommborof
spOwUuudhmsynmah(mhﬂfuagmtm).gj:bmmmmmpumndmm
unsymhnlzor.kIsunspmmmo.wmm:hmmmmmmp«msom
to the synthesizer. The latter three columns are used to characterize the efficlency of the
analysis/synthesis process:

-wsismonmmmwmmmmOswmw, Q/duration.

-Rbmwmm,m,mmmmmmmmmmmm
mmuwmwmm«mmmmmmmm.

-betal:bmmm«ds-bnbytup«smndmnomosynﬁmtz«. 1t is equal to the
mep«m.Mommethdhm.H(u.mo
anplltudoofnd\hmmnlchcododushgombyuaain[w]). For nonlinear interpolation,
g\':*pdnunb«otbnd(pohnporsocondotc(n)mdd(n)anaddcdassumtngtwobwesper

nt

Eadwotmﬂwtmshownlnmomhawmw.dzodvhmm. For a given tone
mdnnmod.motmhabmnsynmauodusmganmb«ddﬂonmmmhouvm. Ot these, the
tmsoloctodtoboshowninmotdalolsthotonosynmoslzodusingmosrnallostnumberotspecu'amat
is judged to be indistinguishable from the original tone. Thus, the numbers in the table are subjective, but
mbﬂovohym%mmﬂnmﬂmmnowm:ymmmm.mmW
mmmwmwmwmmm.



26

time

9 : : : O.OTS : 0.1
(seconds)
input
signal

—— ™ ™

specra

I N
mp T~ T

=

Q.15 0.2
T T T T T L

T T T T
MWWWAMWWW‘#

BEEEEEEE ECECESRSNSSSSSSSSSsS=

. ™ N~ ~
\/ o Te——
— r\_’—'

Figure 5-3: Synthesis by Nonlinear Spectral Interpolation
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name duration | P Ny, | H method Q| Qs R Nbytesis
Bassoont | 1.44 204 | 111} 40| Linear 16| 11.1| 14% | 444
Bassoon1 Noniinear | 12| 8.3 | 11% | 388
Bassoon2! 2.12 136 | 249 | 40| Unear 19 9.0 | 8% | 359
Bassoon2 ' Nonfinear | 14| 6.6 | 6% | 323
Bassoon3 | 1.06 81 | 211 | 30| Uinesar 18| 17.0| 9% | 509
Bassoon3 Nonfinear | 11| 10.4}| 5% | 400
Clarinet! | 1.25 103 | 194 40| Linear 23| 18.4] 12% | 736
Clarinet1 Nonlinear | 20| 18.4 10% | 704
Clarinet2 | 3.77 91 | 663 | 25| Linear 21| 56 | 3% | 139
Clarinet2 Nonlinear| 18| 4.8 | 3% | 175

In the table we did not mention which linear method was used to compute the spectral ramps (section
5.4.1 or section 5.4.2) as the two methods perform aimost identically.

Since the resuit of spectral interpolation can be exactly computed using additive synthesis, it is
interesting to compare the two methods in terms of efficiency. We will use the following parameters: r,
the sample rate, N, the table size, 4, the number of harmonics, w, the number of waveforms per second.
and 0. the number of operations per second.

For additive synthesis, we have one oscillator per harmonic (h osciilators) and each sample requires
one muitiplication for the ampiitude, one addition to increment the phase, and one addition to sum the
oscillator output into an accumulator. The total of operations per second is

om3rh.

This figure ignores the computation of ampittude ramp functions which could contribute as much as
another addition and a comparison to each sampie of each oscillator. in practice, ampiitude ramps are
often computed at low sampie rates 10 reduce the computation requirement.

Fammmmw.ammmmmammmmmmm
harmonic and each waveform sample for a total of 3AN operations. To increment the phase and
mmmmmmmmmmmmm.wﬂwmp«mpn.
Mumyhgbymowmmm(w)mm\pr(r).nMvdy.m:

o= 3IANW+5r.

The ratio of spectral interpolation to additive synthesis computation is
(57 + 3ANW)3hr = 5/3k + wiN/r.

The 573k term represents one interpolating oscillator versus h sine wave oscillators. The term wiV/r
mmomdmmhmnlcsimoamvetabhvcrsuscomptmhg harmonics at the sample
rate.

ummaum«:oxpmu.mmumwmmmwwu
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don*\audbymcwofconpumgwlvmmu. Thus.tfnmoma'medhaonmttnsizoownm
atdhmnb«dtﬁbsmmodp«smnd. Thnrohﬂwadvamageolspocu-u interpolation over
additive synthesis increases with the sampie rate. For a table size of 512 sampies and a sample rate of
16 kHz, the ratio varies from 0.30 to 0.63 in typical data. nm.samphratomincnasodto&skHLth.
ratio would vary from 0.13 to 0.24. This represents a substantial reduction in the number of operations
required by spectral interpolation synthesis with respect to summation synthesis, even if we ignore the
cost of extra ampiitude ramps and additional control information also required by additive synthesis.

The tones compared are those that gave the best resuits. Thoeotonoobdongtomomodwindfwnuy.
Thomynmodsofmbwmmwngsmdmmducﬂmnmm«dmpmmm
identical tones when compared to the originais. in particular, the attacks of the trumpet and the trombone
tones did not sound perfectly natural. lnfact,lnmashghnumberofspomdidno(ad\bvemo
desired matching between the synthesized and original attack. We believe this is due 1o the fact that our
analysis/synthesis method does not handie inharmonicity in general, and brass tones often show
inharmonic properties in the attack. Whonwoapplythopnmsyndmnomoﬁonnnon-hmomcattack
mwmspmmm;m.mnmmtoammwmdyﬂs
M(mammw«)nbmwnqmmmwmmmwmmpm
inharmonicities (see section 3.3). Inommknpmoadvmmmm.spmmtorpohuonmodd
whuoamiev!nqmnnawanm.mhavoinwsﬂqatodatedmlquﬂnmd\asamodaMIs
spliced onto a synthesized sustain, as we describe in the next section. An evaluation of this hybrid
technique is given at the end of that section.

synthesized sustain portion obtained by analyzing the tone using one of our aigorithms previously
described 4, w.wom«mmmcmmmmmwmtom. We then

mmcmmmmummmmwmmm.

memnbmmmuMammmam“. On the other
m.mmmuNMbMammmmmmm. As our synthesis
wwmmmm.mmwmmmmwwmw
inharmonic portions of the tone. Faummbbomulsmmmmmm
occur at the start of the tone and are of short duration. As one might expect, the two methods we use for
mm(wmmmmmwmmmmmmmm
of the attack. mmmmmmmmnmmnog«mmamm
mmmmmmmmwm. in actuaiity this method is not totally
mlablo(ahutmhnwnotm:datmldnqitso)sowoareoccastonanyfomodtochoosemoattad(
d point manually by exarnining a piot of the signal.

'“Here we are using the term ‘sustain’ 1 refer 10 the pert of & tone after the sttack. R inciudes what is normaily thought of as the
Sustain portion as well as the reisase portion of the tone.

'Mn“mbm.ﬁm&d“‘ |nm.-mmd-mmqmu'm
MbMdNWM(mMMmmuwdmmmbuum-
posaible. '
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Connecting a sampied attack to a synthesized sustain requires that for each harmonic the phase of the
sampied harmonic matches the phase of the coresponding synthesized harmonic at the transition point.
If some comresponding harmonic phases are not equal we may hear a click in the signai due to the
instantaneous phase shifts. If the fransition occurs at a zero crossing in the signal, the dick Is attenuated,
but often stil perceivable. . We have tried two techniques for achieving smooth transitions, phase
imerpolation and simple phase matching.

in the phase interpolation technique we attempt to gradually shitt the phases of the harmonics in the
sampled attack to be zero or x'S. To this end, we divided the attack portion into two segments. The first
is used unchanged; the second is processed so that by the end of it the harmonic phases are zero or x'7.
We have to find a way of shifting the initial phases ot the harmonics of the second segment to zero so
that the frequency shift resuiting from the phase shift is imperceptible. We tried to use a phase
interpolation algorithm, based on {36], where the phases are progressively interpolated (using cubic
polynomiais) from their original value to zero or r. In order {0 reduce an eventual perceptual effect, we
decrease the phase shift per sample by using a long interpolation time interval, from 5 to 10 periods or
more, if necessary. Also, to reduce the giobal frequency shift, we tried to use opposite directions for each
harmonic. in any case, the phase interpolation aigorithm has been successtul on those few cases where
the phase shifts to be applied were very small. Unfortunately, for real signais such as trumpet and
trombone tones, the shifts that we had o apply were quite large. n most cases, the phase interpolation
was always perceived as a frequency shift, whose magnitude was not acceptable. Although this is a
negative result, we found it surprising: in general the relative phases of the harmonics of a signal cannot
be arbitranly rearranged in an imperceptibie manner, aven over many periods. Consider adjusting the
relative phase of the second harmonic. in the worst case the harmonic will be = radians out of phase, but
this represents only =/2 radians of the fundamental. If an adjustment is made over ten periods, we are
shifing the second harmonic by at most /20 radians per period. Higher harmonics will have even less
phase shift per period, and yet the shift is clearty perceptible.

Thus, we decided to compute the first waveform of the synthesis using the phases measured at the
transition. This is the simple phase maiching technique. As we can interpoiate only between spectra
having identical phases, all the waveforms used during the synthesis are computed with those phases.
By doing this, the phase match at the transition is favitiess. In addiion, computing the waveforms with
the phases found at the end of the attack did not alter the quallly of the synthesized signal.

Using the simple phase matching technique we have obtained very high quality reproductions of brass
instruments. Figure 5-4 shows the same input tone as the two previous figures synthesized using a
sampled attack. The armow in the figure points to the transition between sampled sound and synthesized
sound.

‘%hummmmmndom. We wish to use the Bradiord Musical Instrument Simulator [14] hardware for our
synthesis. This hardware currently requires the phases of the harmonics in the wavetable to be zero or x. A number of benefits
come as a consequence of this restriction: the transition between successive wavetable lockups is continuous. the update rate of
he ampiltude scaling factors in the oscillator can be low, only & small number of bits are nesded to code the ampiitude factors, and
very cheap multipliers (gate arrays) can be used. We wouid have iked to maintain these advantages.

"7iisally, the poirt where the attack s broken shouki be one where the harmonic phases are as near as possbie 1o thewr final
valuse, z8ro or 2. We wrole programs which searched for such points, but in practice R was never possible to find one where more
Mnbudhhumhmebutourmm.
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mmmmmdopmmodatamducﬂonramobtﬂmdbycombwngsanplhgmdspocuu
interpolation on several tones. The table uses the following parameters. durarion is the total duration of
the tone in seconds, srare is the sampie rate in kHz, P is the period of the tone in number of samples, v,
is the total number of periods in the tone, 4 s the number ot harmonics, Q is the number of spectra sent
to the synthesizer, anack is the number ot samples copied directlty from the original tone, Nbytes/s is the
number of 8-bit bytes per secopd sent to the synthesizer (exciuding the attack samples), and merhod I the

linear or nonlinear interpolation algorithm.

name duration | srate P| Np |H|mehod | Q | QS | R | amack | Nbytes/s
Trombone!l | 0.39 13513.5| 58} 81 25| Unear | 5 | 142 | 6% 500 | 320
Trombone2 | 0.96 13513.5| 58| 210 | 25| Unear | S | 5.4 2% | 500 | 130
Trumpet1 0.55 13201 30| 211 | 6 { Linear | 5 | 10.5 | 2% | 1000 | 54
Trumpet2 0.99 13201 30,389 |6 | Linear | 7 | 77 2% | 1000 | 42

Saxophone! | 4.82 16604 48| 1666 20| Nliinear | 83 | 13.2 | 4% | 500 300

The hybrid technique, sampling and spectral interpolation, can be appiied without restriction to any kind
of sound whose sustain is harmonic, which is the case for most orchestral instruments.

6. Related Work

We have presented and discussed the technique of waveform interpolation for the analysis and
resynthesis acoustic instruments. We use a succession of wavetables that are dynamically mixed to
reproduce analyzed spectral evolutions. Until now, waveform interpolation has been used in a number of
other contexts by different peopie. Some of these past applications are similar to ours, some not. We
now review this related work. '

8.1. Mixing Waveforms to Generate Dynamic Sounds
WMMMMWWMWMMQMMWMMOMW
is not new. Several commercial syrithesizers have impliemented this technique. The digital instrument
mnbyumumu[a:nmwmmammamamm(m In
this instrument, the waveforms are manuaily extracted from real tones. In fact, to avoid phase problems
Matsushita [33] advocates using the Fourier Transform. The Matsushita digital instrument uses the same
synthesis algorithm as we do. However, the work differs from ours as it does not use any automatic

analysia.

The Prophet VS [35, 3] from Sequential Circuits uses “Digital Vector Synthesis”. Each voice is the
result of simuitaneously mixing four wavetables. Uniike our oscillator, the wavetable contents of the Vs
are fixed over the course of a note. The four way interpolation is dynamically altered as a function of
envelope generators, keyboard velocity, joystick position, as well as other factors.

The Keytex CTS-2000 is a crosstable sampied synthesizer(28]. It uses the technique of waveform
interpolation. A voice is the sum of two oscillators, each with independent wavetables, frequencies, and
ampiitudes. Each oscillator can generate an interpolated succession of exactly three different complex
wavetables. The synthesizer comes with a number of wavetables stored in ROM. Unfortunately, there is
no way for the user to specify his own wavetables.
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6.2. Voice Point interpoiation

Voice point interpolation is a technique whereby the user specifies signals or synthesis parameters at a
number of points, and interpolation is used to compute the signal at points between the specified points.
A point is a location in a space, the dimensions of the space most often being pitch, velocity, key
pressure, and other controller input. Voice point interpolation is interesting as it attempts to efficlently
model the timbre of an instrument as a function the control inputs.

Bradford Musical Instrument Simulator (13, 14] uses voice point interpolation to reproduce timbre
mmmmuwmmmorgmtm.mgmmmm. For this two dimensional
spmmmtwow:vdotmmorpolaﬂonosdlatm. vammmpumuamunofmo
mmmmmmwwumnemmwmsmvmmmmisachiovod
byvaryingmonﬂxofmooutpmofmomaosdlmm. It is easy to see how this scheme can be

generalized to higher dimensional spaces, three dimensions requiring eight waveforms, four dimensions
requiring sixteen waveforms, etc.

6.3. Timbre interpolation
mmmummaouudm.mdaﬂmofwmwdsm Y. Lo [23] uses
‘lm«pdaﬂonofpo:ﬁonsdﬂnslgnd(caﬂodbnmnonpmdtmﬂmm. The breakframes are
nomalized in length and recomputed by FFT for phase control. A similar model is applied for
interpolating between different timbres. [21] to dynamically combine timbres. To interpolate between

instruments, Grey [21] uses interpolation of envelope breakpoints defining the ampiitude and frequency
harmonics.

6.4. Combination of Sampled Sounds with Synthesized Sounds
xmwa.mlmmmmmmmmmmmmm:mmm

mmmmwmhmsm Their synthesis technique was based on

summation of sinusoids rather than interpolation. The Roland D-50 [20] seems 10 be able to combine

ssnpbdamdemsynﬂmlzodsmm. Atmmhavommummﬁononmomm
the D-50 uses o insure smooth transitions.

7. Directions for Future Work
wQMWWMmemmdumrdMﬁxod-QO. To relax
mm,nmmmwmmmmm:m«m,mmm
mm.wumm-mmmm«whmmmwmmmmmmd
frequency. Tomunph.ho&m-myinghmﬂcymstwbodmmhodbympndum
method. Thossg\dcmm.nbomamphd[ﬂ]atasampllngratomatvmmproporﬂontomo
measured frequency. The effect is to “flatten” the frequency variations and obtain a fixed number of
samples per period. Thos-mmqmncyumtmaﬁoncanbosublomdtomotngmsmform
reduction before resynthesis.

We have concentrated on sounds with a highly stable period. it wouid be interesting to apply the same
tmnmmmmmmmmuom«mmsmmmmmm
wwmmwwmmmm,mmnmmmm.
mmwummwmmm? Can this extension 10 our basic techniques
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be autornated?

Finally, this study is the first stage of a two-stage project to meet the criteria of generality, efficiency
and control. So far, we have not discussed the problem of control. OQur plan is to develop a
characterization of an instrument, be it real or artificial, as a muiti-dimensional space of spectra. Typical
dimensions would be amplitude and frequency, which are input parameters to this synthesis model.
Other parameters, such as bow position, lip pressure, etc. can be introduced as additional dimensions.
variations in pitch, ampiitude, and cther parameters give rise to a trajectory in this space, and spectral
interpoiation can be used to reproduce the corresponding spectral evolution. Variations of this technique
have been alluded to by Grey (21], Covitz and Ashcraft [15], Sazaki and Smith (41] and Bowier [8]. We
have aiready produced synthesized crescendos using a one-dimensional space of spectra and we are
now developing analysis software for muiti-dimensional spaces.

8. Conclusions

We have described techniques for the automatic analysis and resynthesis of musical tones based on
spectral interpolation. These techniques are interesting for several reasons. First, automatic analysis is
inwmmnbmmmmpmduahmmndssud\ammdmmmems.
Second, we have achieved a high degree of data compression without perceptual degradation in quality
or realism for a large and musically useful class of sounds. Third, the computation rate for synthesis is
very low compared to other methods with equivalent generality. Finally, the data obtained from the
analysis is in a form that can be modified and manipulated in various musically useful ways such as
stretching, pitch changing, and interpolation between the spectra of different tones. We are currently
studying an extension of this technique in which sequences of spectra are obtained not from a specific
tone being reproduced, but by sampling an arbitrary trajectory in a precomputed spectral space. This
extension promises a combination ot simple and intuitive control, computational efficiency, and realistic
production of traditional instrument tones.
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