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ABSTRACT 
Most music processing attempts to focus on one particular 
feature or structural element such as pitch, beat location, 
tempo, or genre. This hierarchical approach, in which 
music is separated into elements that are analyzed 
independently, is convenient for the scientific researcher, 
but is at odds with intuition about music perception. Music 
is interconnected at many levels, and the interplay of 
melody, harmony, and rhythm are important in perception. 
As a first step toward more holistic music analysis, music 
structure is used to constrain a beat tracking program. 
With structural information, the simple beat tracker, 
working with audio input, shows a large improvement. 
The implications of this work for other music analysis 
problems are discussed. 

Keywords: Beat tracking, tempo, analysis, music 
structure 

1 INTRODUCTION 
Music is full of multi-faceted and inter-related 
information. Notes of a melody fall into a rhythmic grid, 
rhythm is hierarchical with beats, measures, and phrases, 
and harmony generally changes in coordination with both 
meter and melody. Although some music can be 
successfully decomposed into separate dimensions of 
rhythm, harmony, melody, texture, and other features, this 
kind of decomposition generally loses information, 

making each dimension harder to understand. 
In fact, it seems that musicians deliberately complicate 

individual dimensions to make them more interesting, 
knowing that listeners will use other information to fill in 
the gaps. Syncopation can be exaggerated when the tempo 
is very steady, but we hear less syncopation when tempo 
is more variable. Confusing rhythms are often clarified by 
an unmistakeable chord change on the first beat of a 
measure. Repetition in music often occurs in some power-
of-two number of measures, providing clear metrical 
landmarks even where beats and tempo might be 
ambiguous. 

It is easy to notice these interrelationships in music, but 
difficult to take advantage of them for automatic music 
analysis. If everything depends on everything else, where 
does one start? If perception is guided by expectations, 
will we fail to perceive the “truth” when it is unexpected? 

Music analysis produces all kinds of data and 
representations. How can the analysis of one dimension of 
music inform the analysis of another, given the inevitable 
errors that will occur? These are all difficult questions and 
certainly will form the topic of much future research. 

This paper describes a small step in this general 
direction. I will show how information about music 
structure can be used to inform a beat tracker. In all 
previous beat trackers known to the author, an algorithm 
to identify beats is applied uniformly, typically from the 
beginning to the end of a work. Often times, beat trackers 
have a tendency to be distracted by syncopation and other 
musical complexities, and the tracker will drift to some 
faster or slower tempo, perhaps beating 4 against 3 or 3 
against 4. 

In contrast, when musical structure is taken into 
account, the beat tracker can be constrained such that 
when a beat is predicted in one section of music, a beat is 
also predicted at the corresponding place in all repetitions 
of that section of music. In practice, these are not absolute 
constraints but probabilistic tendencies that must be 
balanced against two other goals: to align beats with sonic 
events and to maintain a fairly steady tempo. 

It might seem that if a beat tracker can handle one 
section of music, it can handle any repetition of that 
section. If this were the case, the additional constraint of 
music structure would not help with the beat-tracking 

Originally published as: Roger B. Dannenberg, 
“Toward Automated Holistic Beat Tracking, Music 
Analysis, and Understanding,” in ISMIR 2005 6th 
International Conference on Music Information 
Retrieval Proceedings, London: Queen Mary, 
University of London, 2005, pp. 366-373. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. 

© 2005 Queen Mary, University of London 



  
 

 2 

problem. Tests with real data, however, show a dramatic 
improvement when music structure is utilized. How can 
this be? A simple answer is that the input data is audio, 
and the detection of likely beat events is error prone. 
Music structure helps the beat tracker to consolidate 
information from different sections of music and 
ultimately do a better job. This will be explained in 
greater detail in the discussion section. 

The next section describes related work. Then, in 
Section 3, I explain the basic beat tracker used for 
experiments. In Section 4, music structure analysis is 
described, and the additions to the beat tracker to use 
structure information are described in Section 5. In 
Section 6, I describe tests performed and the results. 
Section 0 presents a discussion, which is followed by a 
summary and conclusions. 

2 RELATED WORK 
The literature has many articles on beat tracking. Gouyon 
and Dixon have written an excellent overview with an 
extensive list of references. [1] For this work, I relied 
especially on the HFC (high frequency content) feature 
[2] for detecting likely beat events, as used by Davies and 
Plumbley [3] and also by Jensen and Andersen [4]. The 
general structure of the beat tracker is related to that of 
Desain and Honing [5] in that the tracker relies on 
gradient descent. Desain and Honing adjust the times of 
actual beat events to fit an expected model, whereas my 
system adjusts a tempo estimate to fit the actual times. 

This work is not unique in attempting to incorporate 
music structure and additional features to analyze music. 
In particular, Goto and Muraoka used knowledge of drum 
beat patterns to improve beat tracking of popular (rock) 
music with drums [6], and Goto used some music 
classification techniques to handle music with drums 
differently from music without drums [7]. 

3 THE BASIC BEAT TRACKER 
In order to show that music structure can help with the 
beat tracking problem, I first constructed a “baseline” beat 
tracker to measure performance without any music 
structure information. This beat tracker is based on state-
of-the-art designs, but it has not been carefully tuned. 

As is common, the beat tracker consists of two parts. 
The first part computes likely beat events from audio. 
Likely beat events are time points in the audio that 
suggest where beats might occur. These are represented as 
a discrete set of (time, weight) pairs. The second part 
attempts to identify more-or-less equally spaced beats that 
correspond to the likely beat events. Not all likely beat 
events will turn out to be beats, and some beats will not 
coincide with a likely beat event. The baseline beat 
tracker attempts to balance the two criteria of steady 
tempo and good matches to likely beat events. 

3.1 Likely beat event detection. 

One might expect that beats would be simple to detect in 
popular music, given the typically heavy-handed rock 
beat. Unfortunately, the loud snare hits are not so different 
spectrally from rhythm guitar chords or even vocal onsets 
and consonants. Furthermore, much popular music 
exhibits heavy dynamic compression, giving the music an 
almost constant energy level, so looking for peaks in the 
amplitude envelope is unreliable for detecting beats. High 
frequency content (HFC) [2] and spectral flux [8] are 
alternatives to RMS amplitude. 

I use an HFC feature to detect likely beat events. Music 
audio is mixed from stereo to a single channel and 
downsampled to 16 kHz. FFTs of size 1024 are taken 
using a Hanning window applied to each (possibly 
overlapping) segment of 512 samples to yield a sequence 
Xn of complex spectra1. The per-frame HFC feature is the 
sum of the magnitudes weighted by the square of the bin 
number [4]: 
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where |Xn[i]| is the magnitude of the ith bin of the nth 

frame. Note that some authors use the square of the 
magnitude and others weight linearly with bin number. To 
detect events, some thresholding is necessary. A running 
average is computed as: 
 11 1.09.0 −− ⋅+⋅= nnn hfcavgavg  (2) 

The ratio hfcn/avgn exhibits peaks at note onsets, drum 
hits, and other likely beat locations. Unfortunately, even 
after normalizing by a running average, there will be long 
stretches of music with no prominent peaks. This problem 
is solved by a second level of thresholding which works 
as follows: 
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Thus, the nominal threshold is 2, which captures every 
strong peak (rn > 2) that occurs. When strong peaks are 
not present, the threshold adapts to detect smaller peaks. 
Whenever the threshold thrn is exceeded by rn, the time is 
recorded along with rn, which serves as a weight in further 
computation. (In the next section, these pairs of 
(n/framerate, rn) will be referred to as (ti, wi), a 
time/weight pair.) Since some peaks are broad and span 
multiple samples, no further times are recorded until rn 
dips below the threshold. 

                                                           
1 A step size of 64, yielding a frame rate of 250 Hz, was used to minimize 
any time quantization effects. However, there does not appear to be any 
significant difference when using even the lowest frame rate tried, 31.25 
Hz. 
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The adaptive median threshold method [9] offers an 
alternative method for picking peaks from hfcn. This 
method essentially replaces avgn with a local median 
value of hfcn, and it does not adapt when peaks are close 
to the median. 

3.2 Beat tracking: initialization. 

The beat tracking algorithm works from an initial beat 
location and tempo estimation, so the next step is to 
search for good initial values. This is not an on-line or 
real-time algorithm, so the entire song can be searched for 
good starting values. It is assumed that the likely beat 
events will be highly correlated with a “beat pattern” 
function shown at the top of Figure 1. This pattern 
represents the expected locations of quarter notes (full 
peaks) and eighth notes (half peaks), and is biased so that 
the integral is zero. The pattern is not meant to model a 
specific musical pattern such as a drum pattern. It merely 
models alternating strong and weak beats at a fixed 
tempo, and only this one pattern is used. The pattern is 
stretched in 2% increments from a beat period of 0.3s 
(200 bpm—beats per minute) to 1.0s (60 bpm)1. At each 
tempo, the function is shifted by 5 increments of 1/5 beat. 
Given a tempo and shift amount, the “goodness of fit”, gf, 
to the data is given by:  

� ⋅−−=
i

ii wttbptgf )/)((),,( 00 φρφρ
 

(4)
 

where t0 is used to center the beat pattern over some 
interior point in the song, � is the period, φ is the shift (in 
beats), bp is the beat pattern function (top of Figure 1), and 
(ti, wi) are the likely beat event times and weights 
calculated in Section 3.1.2 

 

 

Figure 1. Beat patterns used to search for initial 
beat location and tempo. 

Each configuration of tempo and shift is further refined 
using a gradient descent algorithm to find the best local fit 
to the data. Then the peaks of the beat pattern function are 
sharpened as shown in the lower half of Figure 1 to 
reduce the weight on outliers, and the gradient descent 
refinement is repeated. 

                                                           
1 These are, of course, parameters that could be changed to accept a larger 
range of tempi. In practice, the tracker will tend to find multiples or 
submultiples when the “correct” tempo lies out of range. 
2 Note that we can consider the entire, continuous HFC signal simply by 
including every sample point rn in the set of data points (ti, wi). At least on 
a small sample of test data, this does not improve performance. 

All this estimates a tempo and offset for a general 
neighborhood in the song near t0. We want to find a place 
where beats are strong and the data is as unambiguous as 
possible, so we estimate the tempo and beat offset at 5 
second intervals (t0=5, 10, 15, …) throughout the entire 
song. The values that maximize gf are used to initialize 
the beat tracker. 

3.3 Beat tracking. 

Beat tracking is accomplished by extending the idea of the 
beat pattern function and gradient decent. Imagine 
broadening the window on the beat pattern function 
(Figure 1) to expose more peaks and using gradient decent 
to align the function with increasingly many likely beat 
events. This is the general idea, but it must be modified to 
allow for slight tempo variation.  

Tempo (and period) is assumed to be constant within 
each 4-beat measure, so a discrete array of period values 
serves to record the time-varying tempo. Given a vector of 
beat periods, pv, and an origin, t0, it is not difficult to 
define a function from time (in seconds) to beat (a real 
number). Call this the “time warp” function �pv, t0(t). The 
goodness of fit function can then be modified to 
incorporate this “time warping:”  
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This function maps each likely beat event from time to 
beat, then evaluates the beat pattern at that beat. Recall that 
the beat pattern has peaks at integer beat and sub-beat 
locations.

 

If the only criterion was to match beats, we might see 
wild tempo swings to fit the data, so we add a “tempo 
smoothness” that penalizes tempo changes: 
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where gauss(µ, σ, x) is the Gaussian with mean µ and 
standard deviation σ, evaluated at x.  

The beat tracking algorithm performs a gradient 
descent to fit the predicted beats to the likely beat events. 
The goal is to optimize the sum of gfw and ts, which 
represent a good fit to the beat pattern and a smooth 
tempo curve. Notice, however, that the beat pattern 
function shown in Figure 1 rapidly goes to zero, so likely 
beat events outside of a small window will be ignored. 
Although not described in detail, the beat pattern bp 
consists of a periodic beat pattern multiplied by a window 
function. The window function can be widened to 
consider more beats. 

The beat tracking algorithm alternately widens the 
window function for the beat pattern to consider a few 
more beats at the left and right edges of the window. 
Then, gradient descent is used to make slight adjustments 
to the period vector (tempo curve), possibly taking into 



  
 

 4 

account more likely beat events that now fall within the 
wider window. This alternation between widening the 
window and gradient descent continues until the window 
covers the entire song. 

3.4 Beat tracking performance. 

As might be expected, this algorithm performs well when 
beats are clear and there is a good correspondence 
between likely beat events and the “true” beat. In practice, 
however, many popular songs are full of high frequency 
content from drums, guitars, and vocals, and so there are 
many detected events that do not correspond to the beat 
pattern. This causes beat tracking problems. In particular, 
it is fairly common for the tempo to converge to some 
integer ratio times the correct tempo, e.g. 4/3 or 5/4. This 
allows the beat pattern to pick up some off-beat accents as 
well as a number of actual downbeat and upbeat events. 

One might hope that the more-or-less complete search 
of tempi and offsets used to initialize the beat tracker 
might be used to “force a reset” when the tempo drifts off 
course. Unfortunately, while the best match overall 
usually provides a good set of initial values, the best 
match in the neighbourhood of any given time point is not 
so reliable. Often, it is better not to reset the beat tracker 
when it disagrees with local beat information. 

Human listeners can use harmonic changes and other 
structural information to reject these otherwise plausible 
tempi, and we would like to use structural information to 
improve automatic beat tracking, perhaps in the same 
way. The next two sections look at ways of obtaining 
structure and using structure to guide beat tracking. 

4 STRUCTURAL ANALYSIS 
Previous work on structural analysis identified several 
approaches to music analysis. [10] This work aimed to 
find “explanations” of songs, primarily in the form of 
repetition, e.g. a standard song form is AABA. For this 
study, I use the chroma vector representation [11], which 
is generally effective for the identification of harmony and 
melody. [12] The chroma vector is a projection of the 
discrete Fourier transform magnitude onto a 12-element 
vector representing energy at the 12 chromatic pitch 
classes. [13] 

A self-similarity matrix is constructed from chroma 
vectors and a distance function: every chroma frame is 
compared to every other chroma frame. Within this 
matrix, if music at time a is repeated at time b, there will 
be roughly diagonal paths of values starting at locations 
(a, b) and (b, a), representing sequences of highly similar 
chroma vectors and extending for the duration of the 
repetition. (See Figure 2.) 

In many cases, it is possible to determine a good 
“explanation” that covers the entire song, e.g. ABABCA. 
One can imagine inferring the length of sections, e.g. 8 or 

16 measures, and this could be extremely helpful for beat 
tracking. However, not all songs have such a clear 
structure, and we cannot make such strong assumptions. 
For this study, only the paths in the similarity matrix are 
used, but even this small amount of structural information 
can be used to make large improvements in beat-tracking 
performance. 

b

b

a

a

 
Figure 2. Paths of high similarity in the similarity 
matrix. Sections starting at a and b in the music are 

similar. 

5 BEAT TRACKING WITH STRUCTURE 
When two sections of music are similar, we expect them 
to have a similar beat structure. This information can be 
combined with the two previous heuristics: that beats 
should coincide with likely beat events and tempo 
changes should be smooth.  

The structure analysis finds similar sections of music 
and an alignment, as shown in Figure 2. The alignment 
path could be viewed as a direct mapping from one 
segment to the other, but an even better mapping can be 
obtained by interpolating over multiple frames. Therefore, 
to map from time t in one segment to another, a least-
squares linear regression to the nearest 5 points in the 
alignment path is first computed. Then, the time is 
mapped according to this line. 

But how do we use this mapping? Note that if beat 
structures correspond, then mapping from one segment to 
another and advancing several beats should give the same 
result as advancing several beats and then mapping to the 
other segment.1 The formalization of this “structural 
consistency” is now described. 

5.1 Computing Structural Consistency. 

The “structural consistency” function is illustrated in 
Figure 3 and will be stated as Equation 9. The roughly 
diagonal line in the figure represents an alignment path 
between two sections of music starting at a and b. (Note 
                                                           
1 We could state further that every beat in one segment should map 
directly to a beat in a corresponding segment, but since alignment may 
suffer from quantization and other errors, this constraint is not enforced. 
Future work should test whether this more direct constraint is effective. 
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that the origins of the time axes are not zero, but close to a 
and b, respectively, to make the figure more compact.) 
The time t1 is the time of the first measure beginning after 
a. This is mapped via the alignment path to a 
corresponding moment in the music u1. Next, we advance 
4 beats beyond t1. To accomplish this, we use the time 
warp function: �pv,t0(t1), add 4 beats, and then map back to 
time using the inverse function: 
 )4)(( 1,

1
,2 00

+= − tt tpvtpv ττ  (7) 

Then, t2 is mapped via the alignment path to u2 as shown 
by dashed lines. The resulting time should be consistent 
with u1 plus 4 beats, which is computed in the same way 
as t2: 
 )4)(( 1,
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In practice, there will be some discrepancy between u2 
and the mapping of t2. This is illustrated and labeled 
“error” in Figure 3. 

t1 time (s)

tim
e 

(s
)

4 beats

8 beats

error

error

4 beats

8 beats

a

b

t2

u1

u2

 

Figure 3. If beat locations are consistent with structure, 
then advancing 4 or 8 beats in one section of music and 
mapping to the corresponding point in another section 
will be equivalent to mapping to the corresponding point 
(u1) first, and then advancing 4 or 8 beats. 

Having computed an error value for a 4-beat offset, a 
similar procedure is used to compute the error at 8 beats 
and every other measure that falls within the alignment 
path. There may be multiple alignment paths, so all errors 
for these alignment paths are also computed. The overall 
“structural consistency” function is then:  
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where w indicates a range of the song (a “window”) over 
which the function is computed, Pw is the set of alignment 
paths that overlap the window w, and Ep,w is the set of 
error values computed for alignment path p within 
window w. Although not mentioned explicitly, scw also 

depends upon the period vector pv as implied by 
Equations 7 and 8. 

5.2 Beat Tracking With Structure Algorithm. 

Now we have three functions to guide our beat tracker: 
gfw is the “goodness of fit with time warping” function 
that evaluates how well the likely beat events line up with 
predicted beats, given a period vector that maps real time 
to beats. ts is the “tempo smoothness” function that 
evaluates how well the period vector meets our 
expectation for steady tempo. sc is the structural 
consistency function that measures the consistency of 
beats and tempo across similar sections of music. These 
three functions are simply summed to form an overall 
objective function. Recall that sc is parameterized by a 
window (a starting and ending time); this is set to match 
the window of the beat pattern function used in gfw. 

It remains to describe an algorithm that performs beat 
tracking utilizing these three functions. The algorithm is 
similar to the beat tracking algorithm of Section 3.3 
(among other things, using a similar algorithm will help 
us to isolate and assess the impact of structural 
consistency). We begin with a small window around the 
same t0 found in Section 3.2 and, as before, alternately 
widen the window and perform a gradient descent 
optimization of the period vector pv.  

What is different now is that the existence of music 
structure will force us to “jump” to other locations in the 
song to evaluate the structural consistency function. These 
other sections will need a well-defined period vector, and 
because of the coupling between similar sections of 
music, all similar sections will need to be considered 
when attempting to use gradient descent to optimize the 
objective function. 

The new algorithm uses the concept of “islands,” 
which are simply regions of the song that are relevant to 
the computation. Each island has an associated period 
vector and time offset. The “time warp” function, τ, is 
defined on a per-island basis.  

Initially, there is one island centered on t0, and the 
period vector is only defined within the “shores” of the 
island. When this initial island grows to overlap an 
alignment path (or if the island already overlaps an 
alignment path when it is initialized), the structural 
consistency function will need to examine some other 
place in the song, quite possibly “off the island.” When 
this happens (see Figure 4), a new island is created. It is 
initialized with a small window using an offset and period 
vector that makes it consistent with the initial island. 

Computation proceeds in a round-robin fashion, 
looking at each island in turn. The island’s window is 
widened and gradient descent is used to optimize the 
island’s period vector. Then the next island is considered. 
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At some point, islands will begin to overlap. 
Overlapping islands are merged by consolidating their 
period vectors. Ideally, islands will meet on an exact 
measure boundary, but this does not always happen in 
practice. To avoid large discontinuities, one of the vectors 
is shifted by some integer number of beats so that the 
vectors are maximally consistent at their meeting point. 
When the vectors are merged, beat times are preserved 
and it is assumed that gradient descent will fix any 
remaining inconsistencies. 

similar sections of music

initial island new island   

Figure 4. New islands are created when parts of an 
existing island are similar to music elsewhere in the song. 
This allows for the computation and evaluation of 
structural consistency as part of the beat-tracking 
process. 

Since islands never grow smaller, the algorithm 
eventually terminates with one island covering the entire 
song. At this point, all beat times are determined from the 
single remaining period vector and time origin t0. 

5.3 Implementation. 

The HFC feature extraction is implemented in Nyquist 
[14], and the structure analysis is implemented in Matlab, 
while the beat tracking algorithms are implemented in 
C++. Nyquist is then used to synthesize “tap” sounds and 
combine these with the original songs for evaluation. The 
total CPU time to process a typical popular song is on the 
order of a few minutes. Using a compiled language, C++, 
for the gradient-descent beat tracking algorithms is 
important for speed, but other language choices were just 
for convenience. 

The beat tracking program logs the current period 
vector and other information so that when the 
computation completes, the user can display a plot of the 
warped and windowed beat pattern(s) against the expected 
beat events. The user can then visualize the iterative 
search and optimization by stepping forward or backward 
in time, and by zooming in or out of various regions of the 
song. This feature proved invaluable for debugging and 
verifying the behaviour of the program. 

6 EVALUATION 
Since beats are a perceptual construct, there is no 
absolutely objective way to determine where beats occur. 
Some listeners may perceive the tempo to be twice or half 
the rate of other listeners. Furthermore, if the tempo is 
slightly fast or slow, it will appear to be correct almost 
half the time, as estimated beats go in and out of phase 
with “true” beats.  

For this study, the goal is to compare beat tracking 
performance with and without the use of structural 
consistency. To evaluate beat tracking, the beat-tracker 
output is used to synthesize audio “taps,” which are mixed 
with the original song. The audio mix is then auditioned 
and subjective judgements are made as to when the beat 
tracker is following the beat and when it is not. Tapping 
on the “upbeat” and/or tapping at twice or half the 
preferred rate are considered to be acceptable; however, 
tapping at a slightly incorrect tempo, causing beats to drift 
in and out of phase (which is a common mode of failure) 
is not acceptable even though many predicted beats will 
be very close to actual (perceived) beats. Beat tracking is 
rated according to the percentage of the song that was 
correctly tracked, and percentages from a number of songs 
are averaged to obtain an overall performance score. 
Although human judgement is involved in this evaluation, 
the determination of whether the beat tracker is actually 
tracking or not seems to be quite unambiguous, so the 
results are believed to be highly repeatable. 

Sixteen (16) popular songs were tested. Using the basic 
beat tracking algorithm without structural consistency, 
results ranged from perfect tracking through the entire 
song to total failure. The average percentage of the song 
correctly tracked was 30%. With structural consistency, 
results also ranged from perfect to total failure, but the 
number of almost perfectly tracked songs (> 95% correct) 
doubled from 2 to 4, the number of songs with at least 
85% correctly tracked increased from 2 to 6, and the 
overall average increased from 30% to 59% (p < 0.0034). 
(See Table 1.) 

Table 1. Performance of basic beat tracker and beat 
tracker using music structure information. 

 Basic 
Tracker 

Tracker Using 
Music Structure 

Percentage tracked 30 59 
Number tracked at 
least 95% correct 

2 4 

Number tracked at 
least 85% correct 

2 6 

7 DISCUSSION 
The results are quite convincing that structural 
consistency gives the beat tracker a substantial 
improvement. One might expect that similar music would 
cause the beat tracker to behave consistently anyway, so it 
is surprising that the structural consistency information 
has such a large impact on performance. However, one of 
the main problems with beat tracking in audio is to locate 
the “likely beat events” that guide the beat tracker. Real 
data is full of sonic events that are not on actual beats and 
tend to distract the beat tracker. By imposing structural 
consistency rules, perhaps “random” events are averaged 
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out, essentially bringing the law of large numbers into 
play: structural consistency considers more information 
and ultimately allows for better decisions. 

 
Another advantage of music structure is that by 

propagating good tempo information to new “islands,” the 
beat tracker can more successfully approach regions of 
uncertainty between the islands. Looked at another way, 
regions that are difficult to track do not have as many 
opportunities to “throw off” the beat tracker to the extent 
that it cannot recover the correct tempo later in the song. 
To further isolate this factor, one could use the islands to 
determine the order in which beat tracking is performed, 
but ignore the structural consistency function sc when 
optimizing the period vectors. 

7.1 Absolute Quality of Beat Tracker 

One possible criticism of this work is that if the basic beat 
tracker had better performance, structural consistency 
might not be so useful. Are we seeing great tracking 
improvement because the basic tracker is entirely 
inadequate? The basic beat tracker is based on recent 
published work that claims to be successful. Readers 
should recognize that correlating the beat pattern function 
with beat events is closely related to autocorrelation and 
wavelet techniques used by other beat induction programs 
[1] to detect periodicity. My method of widening the beat 
pattern window and then optimizing the beat period vector 
is closely related to other methods of entrainment for beat 
tracking. While we do not have shared standards for 
measuring beat-tracking performance, it seems likely that 
any technique that can substantially improve the basic 
beat tracker will offer some improvement to most others.  

For comparison, Scheirer’s beat tracker [15] was used 
to identify beats in the same test set of songs. The results 
are difficult to interpret because Scheirer’s program does 
not actually fit a single smooth tempo map to the data. 
Instead, there are multiple competing internal tempo 
hypotheses that can switch on or off at any time. As a 
result, the output beats are often correct even when there 
is no underlying consistent tempo. In many cases, 
however, it seems that a little post-processing could easily 
recover a steady tempo. Giving the output this subjective 
benefit of the doubt, Scheirer’s tracker correctly tracked 
about 60% of the songs. This is significantly better than 
my baseline tracker, and essentially the same as my 
tracker using music structure.  

This may indicate that the baseline tracker could be 
improved through tuning. It may also indicate that 
searching for periodicity independently in different 
frequency bands (as in the Scheirer tracker) is 
advantageous. A third possibility is that using continuous 
features rather than discrete peaks may be important; 
however, modifying the baseline tracker to use continuous 
hfc values appears not to make any significant difference. 

Much more investigation is needed to understand the 
many factors that affect beat tracker performance in 
general. This investigation was designed to explore only 
one factor, the use of music structure, while keeping other 
factors the same. 

7.2 The Non-Causal Nature 

This algorithm is non-causal. It searches for a strong beat 
pattern as a starting point and expands from there. When 
music structure is considered, the algorithm jumps to 
similar musical passages before considering the rest of the 
music. Certainly, human listeners do not need to perform 
multiple passes over the music or jump from one location 
to another. However, musical memory and familiarization 
are part of the listening process, and composers use 
repetition for good reasons. Although inspired by 
intuitions about music listening, this work is not intended 
to model any more than a few interesting aspects of music 
cognition. 

7.3 Other Comments 

Because the goal of this work was to explore the use of 
structure in beat tracking, I did not try the system on jazz 
or classical music, where the repetitions required for 
structure detection are less common. Most of the test set is 
music with drums. Further work will be needed to expand 
these ideas to work with different types of music and to 
evaluate the results. 

The main goal of this work is to show that music 
structure and other high-level analysis of music can 
contribute to better detection of low-level features. 
Ultimately, there should be a bi-directional exchange of 
information, where low-level features help with high-level 
recognition and vice-versa. For example, beat and tempo 
information can help to segment music, and music 
segmentation [16-20] can in turn help to identify metrical 
structure. Metrical structure interacts closely with beat 
detection. One of the fascinating aspects of music analysis 
is the many levels of interconnected features and 
structures. Future automatic music analysis systems will 
need to consider these interconnections to improve 
performance. This work offers a first step in that 
direction. 

8 SUMMARY AND CONCLUSIONS 
Two beat-tracking algorithms were presented. Both use 
high frequency content to identify likely beat events in 
audio data. The first is a basic algorithm that begins by 
searching for a good fit between the likely beat event data 
and a windowed periodic “beat pattern” function. After 
establishing an initial tempo and phase, the beat pattern 
window is gradually widened as gradient descent is used 
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to find a smoothly varying tempo function that maps 
likely beat events to predicted beat locations. 

A second algorithm is based on the first, but adds the 
additional constraint that similar segments of music 
should have corresponding beats and tempo variation. The 
beat tracking algorithm is modified to incorporate this 
heuristic, and testing shows a significant performance 
improvement from an average of 30% to an average of 
59% correctly tracked. 

This work is based on the idea that human listeners use 
many sources of information to track beats or tap their 
feet to music. Of course, low-level periodic audio features 
are of key importance, but also high-level structure, 
repetition, harmonic changes, texture, and other musical 
elements provide important “musical landmarks” that 
guide the listener. This work is a first step toward a more 
holistic approach to music analysis and in particular, beat 
tracking. I have shown that musical structure can offer 
significant performance improvements to a fairly 
conventional beat tracking algorithm. It is hoped that this 
work will inspire others to pursue the integration of high-
level information with low-level signal processing and 
analysis to build more complete and effective systems for 
automatic music understanding. 
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