

 1

TOWARD AUTOMATED HOLISTIC BEAT TRACKING,
MUSIC ANALYSIS, AND UNDERSTANDING

Roger B. Dannenberg
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

rbd@cs.cmu.edu

ABSTRACT
Most music processing attempts to focus on one particular
feature or structural element such as pitch, beat location,
tempo, or genre. This hierarchical approach, in which
music is separated into elements that are analyzed
independently, is convenient for the scientific researcher,
but is at odds with intuition about music perception. Music
is interconnected at many levels, and the interplay of
melody, harmony, and rhythm are important in perception.
As a first step toward more holistic music analysis, music
structure is used to constrain a beat tracking program.
With structural information, the simple beat tracker,
working with audio input, shows a large improvement.
The implications of this work for other music analysis
problems are discussed.

Keywords: Beat tracking, tempo, analysis, music
structure

1 INTRODUCTION
Music is full of multi-faceted and inter-related
information. Notes of a melody fall into a rhythmic grid,
rhythm is hierarchical with beats, measures, and phrases,
and harmony generally changes in coordination with both
meter and melody. Although some music can be
successfully decomposed into separate dimensions of
rhythm, harmony, melody, texture, and other features, this
kind of decomposition generally loses information,

making each dimension harder to understand.
In fact, it seems that musicians deliberately complicate

individual dimensions to make them more interesting,
knowing that listeners will use other information to fill in
the gaps. Syncopation can be exaggerated when the tempo
is very steady, but we hear less syncopation when tempo
is more variable. Confusing rhythms are often clarified by
an unmistakeable chord change on the first beat of a
measure. Repetition in music often occurs in some power-
of-two number of measures, providing clear metrical
landmarks even where beats and tempo might be
ambiguous.

It is easy to notice these interrelationships in music, but
difficult to take advantage of them for automatic music
analysis. If everything depends on everything else, where
does one start? If perception is guided by expectations,
will we fail to perceive the “truth” when it is unexpected?

Music analysis produces all kinds of data and
representations. How can the analysis of one dimension of
music inform the analysis of another, given the inevitable
errors that will occur? These are all difficult questions and
certainly will form the topic of much future research.

This paper describes a small step in this general
direction. I will show how information about music
structure can be used to inform a beat tracker. In all
previous beat trackers known to the author, an algorithm
to identify beats is applied uniformly, typically from the
beginning to the end of a work. Often times, beat trackers
have a tendency to be distracted by syncopation and other
musical complexities, and the tracker will drift to some
faster or slower tempo, perhaps beating 4 against 3 or 3
against 4.

In contrast, when musical structure is taken into
account, the beat tracker can be constrained such that
when a beat is predicted in one section of music, a beat is
also predicted at the corresponding place in all repetitions
of that section of music. In practice, these are not absolute
constraints but probabilistic tendencies that must be
balanced against two other goals: to align beats with sonic
events and to maintain a fairly steady tempo.

It might seem that if a beat tracker can handle one
section of music, it can handle any repetition of that
section. If this were the case, the additional constraint of
music structure would not help with the beat-tracking

Originally published as: Roger B. Dannenberg,
“Toward Automated Holistic Beat Tracking, Music
Analysis, and Understanding,” in ISMIR 2005 6th
International Conference on Music Information
Retrieval Proceedings, London: Queen Mary,
University of London, 2005, pp. 366-373.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page.

© 2005 Queen Mary, University of London

 2

problem. Tests with real data, however, show a dramatic
improvement when music structure is utilized. How can
this be? A simple answer is that the input data is audio,
and the detection of likely beat events is error prone.
Music structure helps the beat tracker to consolidate
information from different sections of music and
ultimately do a better job. This will be explained in
greater detail in the discussion section.

The next section describes related work. Then, in
Section 3, I explain the basic beat tracker used for
experiments. In Section 4, music structure analysis is
described, and the additions to the beat tracker to use
structure information are described in Section 5. In
Section 6, I describe tests performed and the results.
Section 0 presents a discussion, which is followed by a
summary and conclusions.

2 RELATED WORK
The literature has many articles on beat tracking. Gouyon
and Dixon have written an excellent overview with an
extensive list of references. [1] For this work, I relied
especially on the HFC (high frequency content) feature
[2] for detecting likely beat events, as used by Davies and
Plumbley [3] and also by Jensen and Andersen [4]. The
general structure of the beat tracker is related to that of
Desain and Honing [5] in that the tracker relies on
gradient descent. Desain and Honing adjust the times of
actual beat events to fit an expected model, whereas my
system adjusts a tempo estimate to fit the actual times.

This work is not unique in attempting to incorporate
music structure and additional features to analyze music.
In particular, Goto and Muraoka used knowledge of drum
beat patterns to improve beat tracking of popular (rock)
music with drums [6], and Goto used some music
classification techniques to handle music with drums
differently from music without drums [7].

3 THE BASIC BEAT TRACKER
In order to show that music structure can help with the
beat tracking problem, I first constructed a “baseline” beat
tracker to measure performance without any music
structure information. This beat tracker is based on state-
of-the-art designs, but it has not been carefully tuned.

As is common, the beat tracker consists of two parts.
The first part computes likely beat events from audio.
Likely beat events are time points in the audio that
suggest where beats might occur. These are represented as
a discrete set of (time, weight) pairs. The second part
attempts to identify more-or-less equally spaced beats that
correspond to the likely beat events. Not all likely beat
events will turn out to be beats, and some beats will not
coincide with a likely beat event. The baseline beat
tracker attempts to balance the two criteria of steady
tempo and good matches to likely beat events.

3.1 Likely beat event detection.

One might expect that beats would be simple to detect in
popular music, given the typically heavy-handed rock
beat. Unfortunately, the loud snare hits are not so different
spectrally from rhythm guitar chords or even vocal onsets
and consonants. Furthermore, much popular music
exhibits heavy dynamic compression, giving the music an
almost constant energy level, so looking for peaks in the
amplitude envelope is unreliable for detecting beats. High
frequency content (HFC) [2] and spectral flux [8] are
alternatives to RMS amplitude.

I use an HFC feature to detect likely beat events. Music
audio is mixed from stereo to a single channel and
downsampled to 16 kHz. FFTs of size 1024 are taken
using a Hanning window applied to each (possibly
overlapping) segment of 512 samples to yield a sequence
Xn of complex spectra1. The per-frame HFC feature is the
sum of the magnitudes weighted by the square of the bin
number [4]:

�
=

⋅=
512

1

2][
i

nn iiXhfc

 (1)

where |Xn[i]| is the magnitude of the ith bin of the nth

frame. Note that some authors use the square of the
magnitude and others weight linearly with bin number. To
detect events, some thresholding is necessary. A running
average is computed as:
 11 1.09.0 −− ⋅+⋅= nnn hfcavgavg (2)

The ratio hfcn/avgn exhibits peaks at note onsets, drum
hits, and other likely beat locations. Unfortunately, even
after normalizing by a running average, there will be long
stretches of music with no prominent peaks. This problem
is solved by a second level of thresholding which works
as follows:

�
�
�

⋅
>⋅=

=

+ otherwise 99.0
 if))95.0,max(,2min(

/

1
n

nnnn
n

nnn

thr
thrrrthr

thr

avghfcr (3)

Thus, the nominal threshold is 2, which captures every
strong peak (rn > 2) that occurs. When strong peaks are
not present, the threshold adapts to detect smaller peaks.
Whenever the threshold thrn is exceeded by rn, the time is
recorded along with rn, which serves as a weight in further
computation. (In the next section, these pairs of
(n/framerate, rn) will be referred to as (ti, wi), a
time/weight pair.) Since some peaks are broad and span
multiple samples, no further times are recorded until rn
dips below the threshold.

1 A step size of 64, yielding a frame rate of 250 Hz, was used to minimize
any time quantization effects. However, there does not appear to be any
significant difference when using even the lowest frame rate tried, 31.25
Hz.

 3

The adaptive median threshold method [9] offers an
alternative method for picking peaks from hfcn. This
method essentially replaces avgn with a local median
value of hfcn, and it does not adapt when peaks are close
to the median.

3.2 Beat tracking: initialization.

The beat tracking algorithm works from an initial beat
location and tempo estimation, so the next step is to
search for good initial values. This is not an on-line or
real-time algorithm, so the entire song can be searched for
good starting values. It is assumed that the likely beat
events will be highly correlated with a “beat pattern”
function shown at the top of Figure 1. This pattern
represents the expected locations of quarter notes (full
peaks) and eighth notes (half peaks), and is biased so that
the integral is zero. The pattern is not meant to model a
specific musical pattern such as a drum pattern. It merely
models alternating strong and weak beats at a fixed
tempo, and only this one pattern is used. The pattern is
stretched in 2% increments from a beat period of 0.3s
(200 bpm—beats per minute) to 1.0s (60 bpm)1. At each
tempo, the function is shifted by 5 increments of 1/5 beat.
Given a tempo and shift amount, the “goodness of fit”, gf,
to the data is given by:

� ⋅−−=
i

ii wttbptgf)/)((),,(00 φρφρ

(4)

where t0 is used to center the beat pattern over some
interior point in the song, � is the period, φ is the shift (in
beats), bp is the beat pattern function (top of Figure 1), and
(ti, wi) are the likely beat event times and weights
calculated in Section 3.1.2

Figure 1. Beat patterns used to search for initial
beat location and tempo.

Each configuration of tempo and shift is further refined
using a gradient descent algorithm to find the best local fit
to the data. Then the peaks of the beat pattern function are
sharpened as shown in the lower half of Figure 1 to
reduce the weight on outliers, and the gradient descent
refinement is repeated.

1 These are, of course, parameters that could be changed to accept a larger
range of tempi. In practice, the tracker will tend to find multiples or
submultiples when the “correct” tempo lies out of range.
2 Note that we can consider the entire, continuous HFC signal simply by
including every sample point rn in the set of data points (ti, wi). At least on
a small sample of test data, this does not improve performance.

All this estimates a tempo and offset for a general
neighborhood in the song near t0. We want to find a place
where beats are strong and the data is as unambiguous as
possible, so we estimate the tempo and beat offset at 5
second intervals (t0=5, 10, 15, …) throughout the entire
song. The values that maximize gf are used to initialize
the beat tracker.

3.3 Beat tracking.

Beat tracking is accomplished by extending the idea of the
beat pattern function and gradient decent. Imagine
broadening the window on the beat pattern function
(Figure 1) to expose more peaks and using gradient decent
to align the function with increasingly many likely beat
events. This is the general idea, but it must be modified to
allow for slight tempo variation.

Tempo (and period) is assumed to be constant within
each 4-beat measure, so a discrete array of period values
serves to record the time-varying tempo. Given a vector of
beat periods, pv, and an origin, t0, it is not difficult to
define a function from time (in seconds) to beat (a real
number). Call this the “time warp” function �pv, t0(t). The
goodness of fit function can then be modified to
incorporate this “time warping:”

� ⋅=
i

iitpv wtbptpvgfw))((),(
0,0 τ

(5)

This function maps each likely beat event from time to
beat, then evaluates the beat pattern at that beat. Recall that
the beat pattern has peaks at integer beat and sub-beat
locations.

If the only criterion was to match beats, we might see
wild tempo swings to fit the data, so we add a “tempo
smoothness” that penalizes tempo changes:

))
)(
)(

2,1.0,0(ln()(
1

1�
−
−

+
−⋅=

i ii

ii
pvpv
pvpv

gausspvts

(6)

where gauss(µ, σ, x) is the Gaussian with mean µ and
standard deviation σ, evaluated at x.

The beat tracking algorithm performs a gradient
descent to fit the predicted beats to the likely beat events.
The goal is to optimize the sum of gfw and ts, which
represent a good fit to the beat pattern and a smooth
tempo curve. Notice, however, that the beat pattern
function shown in Figure 1 rapidly goes to zero, so likely
beat events outside of a small window will be ignored.
Although not described in detail, the beat pattern bp
consists of a periodic beat pattern multiplied by a window
function. The window function can be widened to
consider more beats.

The beat tracking algorithm alternately widens the
window function for the beat pattern to consider a few
more beats at the left and right edges of the window.
Then, gradient descent is used to make slight adjustments
to the period vector (tempo curve), possibly taking into

 4

account more likely beat events that now fall within the
wider window. This alternation between widening the
window and gradient descent continues until the window
covers the entire song.

3.4 Beat tracking performance.

As might be expected, this algorithm performs well when
beats are clear and there is a good correspondence
between likely beat events and the “true” beat. In practice,
however, many popular songs are full of high frequency
content from drums, guitars, and vocals, and so there are
many detected events that do not correspond to the beat
pattern. This causes beat tracking problems. In particular,
it is fairly common for the tempo to converge to some
integer ratio times the correct tempo, e.g. 4/3 or 5/4. This
allows the beat pattern to pick up some off-beat accents as
well as a number of actual downbeat and upbeat events.

One might hope that the more-or-less complete search
of tempi and offsets used to initialize the beat tracker
might be used to “force a reset” when the tempo drifts off
course. Unfortunately, while the best match overall
usually provides a good set of initial values, the best
match in the neighbourhood of any given time point is not
so reliable. Often, it is better not to reset the beat tracker
when it disagrees with local beat information.

Human listeners can use harmonic changes and other
structural information to reject these otherwise plausible
tempi, and we would like to use structural information to
improve automatic beat tracking, perhaps in the same
way. The next two sections look at ways of obtaining
structure and using structure to guide beat tracking.

4 STRUCTURAL ANALYSIS
Previous work on structural analysis identified several
approaches to music analysis. [10] This work aimed to
find “explanations” of songs, primarily in the form of
repetition, e.g. a standard song form is AABA. For this
study, I use the chroma vector representation [11], which
is generally effective for the identification of harmony and
melody. [12] The chroma vector is a projection of the
discrete Fourier transform magnitude onto a 12-element
vector representing energy at the 12 chromatic pitch
classes. [13]

A self-similarity matrix is constructed from chroma
vectors and a distance function: every chroma frame is
compared to every other chroma frame. Within this
matrix, if music at time a is repeated at time b, there will
be roughly diagonal paths of values starting at locations
(a, b) and (b, a), representing sequences of highly similar
chroma vectors and extending for the duration of the
repetition. (See Figure 2.)

In many cases, it is possible to determine a good
“explanation” that covers the entire song, e.g. ABABCA.
One can imagine inferring the length of sections, e.g. 8 or

16 measures, and this could be extremely helpful for beat
tracking. However, not all songs have such a clear
structure, and we cannot make such strong assumptions.
For this study, only the paths in the similarity matrix are
used, but even this small amount of structural information
can be used to make large improvements in beat-tracking
performance.

b

b

a

a

Figure 2. Paths of high similarity in the similarity
matrix. Sections starting at a and b in the music are

similar.

5 BEAT TRACKING WITH STRUCTURE
When two sections of music are similar, we expect them
to have a similar beat structure. This information can be
combined with the two previous heuristics: that beats
should coincide with likely beat events and tempo
changes should be smooth.

The structure analysis finds similar sections of music
and an alignment, as shown in Figure 2. The alignment
path could be viewed as a direct mapping from one
segment to the other, but an even better mapping can be
obtained by interpolating over multiple frames. Therefore,
to map from time t in one segment to another, a least-
squares linear regression to the nearest 5 points in the
alignment path is first computed. Then, the time is
mapped according to this line.

But how do we use this mapping? Note that if beat
structures correspond, then mapping from one segment to
another and advancing several beats should give the same
result as advancing several beats and then mapping to the
other segment.1 The formalization of this “structural
consistency” is now described.

5.1 Computing Structural Consistency.

The “structural consistency” function is illustrated in
Figure 3 and will be stated as Equation 9. The roughly
diagonal line in the figure represents an alignment path
between two sections of music starting at a and b. (Note

1 We could state further that every beat in one segment should map
directly to a beat in a corresponding segment, but since alignment may
suffer from quantization and other errors, this constraint is not enforced.
Future work should test whether this more direct constraint is effective.

 5

that the origins of the time axes are not zero, but close to a
and b, respectively, to make the figure more compact.)
The time t1 is the time of the first measure beginning after
a. This is mapped via the alignment path to a
corresponding moment in the music u1. Next, we advance
4 beats beyond t1. To accomplish this, we use the time
warp function: �pv,t0(t1), add 4 beats, and then map back to
time using the inverse function:
)4)((1,

1
,2 00

+= − tt tpvtpv ττ (7)

Then, t2 is mapped via the alignment path to u2 as shown
by dashed lines. The resulting time should be consistent
with u1 plus 4 beats, which is computed in the same way
as t2:
)4)((1,

1
,2 00

+= − uu tpvtpv ττ (8)

In practice, there will be some discrepancy between u2
and the mapping of t2. This is illustrated and labeled
“error” in Figure 3.

t1 time (s)

tim
e

(s
)

4 beats

8 beats

error

error

4 beats

8 beats

a

b

t2

u1

u2

Figure 3. If beat locations are consistent with structure,
then advancing 4 or 8 beats in one section of music and
mapping to the corresponding point in another section
will be equivalent to mapping to the corresponding point
(u1) first, and then advancing 4 or 8 beats.

Having computed an error value for a 4-beat offset, a
similar procedure is used to compute the error at 8 beats
and every other measure that falls within the alignment
path. There may be multiple alignment paths, so all errors
for these alignment paths are also computed. The overall
“structural consistency” function is then:

� �
∈ ∈

=
w wpPp Ee

w egausssc
,

),2.0,0(

(9)

where w indicates a range of the song (a “window”) over
which the function is computed, Pw is the set of alignment
paths that overlap the window w, and Ep,w is the set of
error values computed for alignment path p within
window w. Although not mentioned explicitly, scw also

depends upon the period vector pv as implied by
Equations 7 and 8.

5.2 Beat Tracking With Structure Algorithm.

Now we have three functions to guide our beat tracker:
gfw is the “goodness of fit with time warping” function
that evaluates how well the likely beat events line up with
predicted beats, given a period vector that maps real time
to beats. ts is the “tempo smoothness” function that
evaluates how well the period vector meets our
expectation for steady tempo. sc is the structural
consistency function that measures the consistency of
beats and tempo across similar sections of music. These
three functions are simply summed to form an overall
objective function. Recall that sc is parameterized by a
window (a starting and ending time); this is set to match
the window of the beat pattern function used in gfw.

It remains to describe an algorithm that performs beat
tracking utilizing these three functions. The algorithm is
similar to the beat tracking algorithm of Section 3.3
(among other things, using a similar algorithm will help
us to isolate and assess the impact of structural
consistency). We begin with a small window around the
same t0 found in Section 3.2 and, as before, alternately
widen the window and perform a gradient descent
optimization of the period vector pv.

What is different now is that the existence of music
structure will force us to “jump” to other locations in the
song to evaluate the structural consistency function. These
other sections will need a well-defined period vector, and
because of the coupling between similar sections of
music, all similar sections will need to be considered
when attempting to use gradient descent to optimize the
objective function.

The new algorithm uses the concept of “islands,”
which are simply regions of the song that are relevant to
the computation. Each island has an associated period
vector and time offset. The “time warp” function, τ, is
defined on a per-island basis.

Initially, there is one island centered on t0, and the
period vector is only defined within the “shores” of the
island. When this initial island grows to overlap an
alignment path (or if the island already overlaps an
alignment path when it is initialized), the structural
consistency function will need to examine some other
place in the song, quite possibly “off the island.” When
this happens (see Figure 4), a new island is created. It is
initialized with a small window using an offset and period
vector that makes it consistent with the initial island.

Computation proceeds in a round-robin fashion,
looking at each island in turn. The island’s window is
widened and gradient descent is used to optimize the
island’s period vector. Then the next island is considered.

 6

At some point, islands will begin to overlap.
Overlapping islands are merged by consolidating their
period vectors. Ideally, islands will meet on an exact
measure boundary, but this does not always happen in
practice. To avoid large discontinuities, one of the vectors
is shifted by some integer number of beats so that the
vectors are maximally consistent at their meeting point.
When the vectors are merged, beat times are preserved
and it is assumed that gradient descent will fix any
remaining inconsistencies.

similar sections of music

initial island new island

Figure 4. New islands are created when parts of an
existing island are similar to music elsewhere in the song.
This allows for the computation and evaluation of
structural consistency as part of the beat-tracking
process.

Since islands never grow smaller, the algorithm
eventually terminates with one island covering the entire
song. At this point, all beat times are determined from the
single remaining period vector and time origin t0.

5.3 Implementation.

The HFC feature extraction is implemented in Nyquist
[14], and the structure analysis is implemented in Matlab,
while the beat tracking algorithms are implemented in
C++. Nyquist is then used to synthesize “tap” sounds and
combine these with the original songs for evaluation. The
total CPU time to process a typical popular song is on the
order of a few minutes. Using a compiled language, C++,
for the gradient-descent beat tracking algorithms is
important for speed, but other language choices were just
for convenience.

The beat tracking program logs the current period
vector and other information so that when the
computation completes, the user can display a plot of the
warped and windowed beat pattern(s) against the expected
beat events. The user can then visualize the iterative
search and optimization by stepping forward or backward
in time, and by zooming in or out of various regions of the
song. This feature proved invaluable for debugging and
verifying the behaviour of the program.

6 EVALUATION
Since beats are a perceptual construct, there is no
absolutely objective way to determine where beats occur.
Some listeners may perceive the tempo to be twice or half
the rate of other listeners. Furthermore, if the tempo is
slightly fast or slow, it will appear to be correct almost
half the time, as estimated beats go in and out of phase
with “true” beats.

For this study, the goal is to compare beat tracking
performance with and without the use of structural
consistency. To evaluate beat tracking, the beat-tracker
output is used to synthesize audio “taps,” which are mixed
with the original song. The audio mix is then auditioned
and subjective judgements are made as to when the beat
tracker is following the beat and when it is not. Tapping
on the “upbeat” and/or tapping at twice or half the
preferred rate are considered to be acceptable; however,
tapping at a slightly incorrect tempo, causing beats to drift
in and out of phase (which is a common mode of failure)
is not acceptable even though many predicted beats will
be very close to actual (perceived) beats. Beat tracking is
rated according to the percentage of the song that was
correctly tracked, and percentages from a number of songs
are averaged to obtain an overall performance score.
Although human judgement is involved in this evaluation,
the determination of whether the beat tracker is actually
tracking or not seems to be quite unambiguous, so the
results are believed to be highly repeatable.

Sixteen (16) popular songs were tested. Using the basic
beat tracking algorithm without structural consistency,
results ranged from perfect tracking through the entire
song to total failure. The average percentage of the song
correctly tracked was 30%. With structural consistency,
results also ranged from perfect to total failure, but the
number of almost perfectly tracked songs (> 95% correct)
doubled from 2 to 4, the number of songs with at least
85% correctly tracked increased from 2 to 6, and the
overall average increased from 30% to 59% (p < 0.0034).
(See Table 1.)

Table 1. Performance of basic beat tracker and beat
tracker using music structure information.

 Basic
Tracker

Tracker Using
Music Structure

Percentage tracked 30 59
Number tracked at
least 95% correct

2 4

Number tracked at
least 85% correct

2 6

7 DISCUSSION
The results are quite convincing that structural
consistency gives the beat tracker a substantial
improvement. One might expect that similar music would
cause the beat tracker to behave consistently anyway, so it
is surprising that the structural consistency information
has such a large impact on performance. However, one of
the main problems with beat tracking in audio is to locate
the “likely beat events” that guide the beat tracker. Real
data is full of sonic events that are not on actual beats and
tend to distract the beat tracker. By imposing structural
consistency rules, perhaps “random” events are averaged

 7

out, essentially bringing the law of large numbers into
play: structural consistency considers more information
and ultimately allows for better decisions.

Another advantage of music structure is that by

propagating good tempo information to new “islands,” the
beat tracker can more successfully approach regions of
uncertainty between the islands. Looked at another way,
regions that are difficult to track do not have as many
opportunities to “throw off” the beat tracker to the extent
that it cannot recover the correct tempo later in the song.
To further isolate this factor, one could use the islands to
determine the order in which beat tracking is performed,
but ignore the structural consistency function sc when
optimizing the period vectors.

7.1 Absolute Quality of Beat Tracker

One possible criticism of this work is that if the basic beat
tracker had better performance, structural consistency
might not be so useful. Are we seeing great tracking
improvement because the basic tracker is entirely
inadequate? The basic beat tracker is based on recent
published work that claims to be successful. Readers
should recognize that correlating the beat pattern function
with beat events is closely related to autocorrelation and
wavelet techniques used by other beat induction programs
[1] to detect periodicity. My method of widening the beat
pattern window and then optimizing the beat period vector
is closely related to other methods of entrainment for beat
tracking. While we do not have shared standards for
measuring beat-tracking performance, it seems likely that
any technique that can substantially improve the basic
beat tracker will offer some improvement to most others.

For comparison, Scheirer’s beat tracker [15] was used
to identify beats in the same test set of songs. The results
are difficult to interpret because Scheirer’s program does
not actually fit a single smooth tempo map to the data.
Instead, there are multiple competing internal tempo
hypotheses that can switch on or off at any time. As a
result, the output beats are often correct even when there
is no underlying consistent tempo. In many cases,
however, it seems that a little post-processing could easily
recover a steady tempo. Giving the output this subjective
benefit of the doubt, Scheirer’s tracker correctly tracked
about 60% of the songs. This is significantly better than
my baseline tracker, and essentially the same as my
tracker using music structure.

This may indicate that the baseline tracker could be
improved through tuning. It may also indicate that
searching for periodicity independently in different
frequency bands (as in the Scheirer tracker) is
advantageous. A third possibility is that using continuous
features rather than discrete peaks may be important;
however, modifying the baseline tracker to use continuous
hfc values appears not to make any significant difference.

Much more investigation is needed to understand the
many factors that affect beat tracker performance in
general. This investigation was designed to explore only
one factor, the use of music structure, while keeping other
factors the same.

7.2 The Non-Causal Nature

This algorithm is non-causal. It searches for a strong beat
pattern as a starting point and expands from there. When
music structure is considered, the algorithm jumps to
similar musical passages before considering the rest of the
music. Certainly, human listeners do not need to perform
multiple passes over the music or jump from one location
to another. However, musical memory and familiarization
are part of the listening process, and composers use
repetition for good reasons. Although inspired by
intuitions about music listening, this work is not intended
to model any more than a few interesting aspects of music
cognition.

7.3 Other Comments

Because the goal of this work was to explore the use of
structure in beat tracking, I did not try the system on jazz
or classical music, where the repetitions required for
structure detection are less common. Most of the test set is
music with drums. Further work will be needed to expand
these ideas to work with different types of music and to
evaluate the results.

The main goal of this work is to show that music
structure and other high-level analysis of music can
contribute to better detection of low-level features.
Ultimately, there should be a bi-directional exchange of
information, where low-level features help with high-level
recognition and vice-versa. For example, beat and tempo
information can help to segment music, and music
segmentation [16-20] can in turn help to identify metrical
structure. Metrical structure interacts closely with beat
detection. One of the fascinating aspects of music analysis
is the many levels of interconnected features and
structures. Future automatic music analysis systems will
need to consider these interconnections to improve
performance. This work offers a first step in that
direction.

8 SUMMARY AND CONCLUSIONS
Two beat-tracking algorithms were presented. Both use
high frequency content to identify likely beat events in
audio data. The first is a basic algorithm that begins by
searching for a good fit between the likely beat event data
and a windowed periodic “beat pattern” function. After
establishing an initial tempo and phase, the beat pattern
window is gradually widened as gradient descent is used

 8

to find a smoothly varying tempo function that maps
likely beat events to predicted beat locations.

A second algorithm is based on the first, but adds the
additional constraint that similar segments of music
should have corresponding beats and tempo variation. The
beat tracking algorithm is modified to incorporate this
heuristic, and testing shows a significant performance
improvement from an average of 30% to an average of
59% correctly tracked.

This work is based on the idea that human listeners use
many sources of information to track beats or tap their
feet to music. Of course, low-level periodic audio features
are of key importance, but also high-level structure,
repetition, harmonic changes, texture, and other musical
elements provide important “musical landmarks” that
guide the listener. This work is a first step toward a more
holistic approach to music analysis and in particular, beat
tracking. I have shown that musical structure can offer
significant performance improvements to a fairly
conventional beat tracking algorithm. It is hoped that this
work will inspire others to pursue the integration of high-
level information with low-level signal processing and
analysis to build more complete and effective systems for
automatic music understanding.

9 ACKNOWLEDGEMENTS

The author would like to thank the Carnegie Mellon
School of Computer Science where this work was
performed.

REFERENCES

[1] Gouyon, F. and Dixon, S. "A Review of Automatic Rhythm
Description Systems", Computer Music Journal, 29, 1,
(Spring 2005), 34-54.

[2] Masri, P. and Bateman, A. "Improved Modeling of Attack
Transients in Music Analysis-Resynthesis", Proceedings of
the 1996 International Computer Music Conference, Hong
Kong, 1996, 100-103.

[3] Davies, M.E.P. and Plumbley, M.D. "Causal Tempo
Tracking of Audio", ISMIR 2004 Fifth International
Conference on Music Information Retrieval Proceedings,
Barcelona, 2004, 164-169.

[4] Jensen, K. and Andersen, T.H. "Beat Estimation on the
Beat", 2003 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), New Palz,
NY, 2003, 87-90.

[5] Desain, P. and Honing, H. "The Quantization of Musical
Time: A Connectionist Approach", Computer Music
Journal, 13, 3, (Fall 1989), 55-66.

[6] Goto, M. and Muraoka, Y. "Music Understanding at the
Beat Level: Real-Time Beat Tracking of Audio Signals", in

Rosenthal, D. and Okuno, H. eds. Computational Auditory
Scene Analysis, Lawrence Erlbaum Associates, New Jersey,
1998.

[7] Goto, M. "An Audio-Based Real-Time Beat Tracking
System for Music with or without Drums", Journal of New
Music Research, 30, 2, (2001), 159-171.

[8] Alonso, M., David, B. and Richard, G. "Tempo and Beat
Estimation of Musical Signals", ISMIR 2004 Fifth
International Conference on Music Information Retrieval
Proceedings, Barcelona, 2004, 158-163.

[9] Bello, J.P., Duxbury, C., Davies, M. and Sandler, M. "On
the Use of Phase and Energy for Musical Onset Detection in
the Complex Domain", IEEE Signal Processing Letters, 11,
6, (June 2004), 553-556.

[10] Dannenberg, R.B. and Hu, N. "Pattern Discovery
Techniques for Music Audio", Journal of New Music
Research, 32, 2, (June 2003), 153-164.

[11] Bartsch, M. and Wakefield, G.H. "Audio Thumbnailing of
Popular Music Using Chroma-based Representations", IEEE
Transactions on Multimedia, 7, 1, (Feb. 2005), 96-104.

[12] Hu, N., Dannenberg, R.B. and Tzanetakis, G. "Polyphonic
Audio Matching and Alignment for Music Retrieval", 2003
IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), New Palz, NY, 2003,
185-188.

[13] Wakefield, G.H. "Mathematical Representation of Joint
Time-Chroma Distributions", International Symposium on
Optical Science, Engineering, and Instrumentation, SPIE'99,
Denver, 1999.

[14] Dannenberg, R.B. "Machine Tongues XIX: Nyquist, a
Language for Composition and Sound Synthesis", Computer
Music Journal, 21, 3, (Fall 1997), 50-60.

[15] Scheirer, E. "Tempo and Beat Analysis of Acoustic Music
Signals", Journal of the Acoustical Society of America, 104,
(January 1998), 588-601.

[16] Tzanetakis, G. and Cook, P. "Multifeature Audio
Segmentation for Browsing and Annotation", Proceedings
of the Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), New Paltz, NY, 1999.

[17] Logan, B. and Chu, S. "Music Summarization Using Key
Phrases", Proceedings of the 2003 IEEE International
Conference on Acoustics, Speech, and Signal Processing
Proceedings (ICASSP 2000), Istanbul, Turkey, 2000, II-
749-752.

[18] Foote, J. "Automatic Audio Segmentation Using a Measure
of Audio Novelty", Proceedings of the International
Conference on Multimedia and Expo (ICME 2000), 2000,
452-455.

[19] Aucouturier, J.-J. and Sandler, M. "Segmentation of Musical
Signals Using Hidden Markov Models", Proceedings of the
110th Convention of the Audio Engineering Society,
Amsterdam, The Netherlands, 2001.

[20] Peeters, G., Burthe, A.L. and Rodet, X. "Toward Automatic
Audio Summary Generation from Signal Analysis", ISMIR
2002 Conference Proceedings, Paris, France, 2002, 94-100.

