Contemporary Music Review, © 1996 OPA (Overseas Publishers Association)

1996, Vol. 13, Part 2, pp. 63-76 Amsterdam B.V, Published in The Netherlands
Reprints available directly from the publisher by Harwood Academic Publishers GMbH
Photocopying permitted by license only Printed in Malaysia

Extending Music Notation Through
Programming

Roger B. Dannenberg

Traditional notation has led to the continuation of a traditional music approach in which scores are
static descriptions to be realized by performers. Borrowing programming concepts from computer
science leads to score-like descriptions with the capability of expressing dynamic processes and
interaction with performers. The implications for composition, performance, and future research are
discussed.

KEYWORDS music notation, programming, improvisation, computer composition

1. Introduction

The composition of notated music is a central concept in Western Art Music. Tra-
ditional compositions are static in that they have a fixed description, the score.
Although no two performances are alike, performances are often considered to be
mere renderings of information already present in the score.

Advances in computer science and the ubiquitous computer are changing our
perception and mental models of the world. More and more, we tend to think of
things and systems as dynamic decision-making processes rather than static forms.
Non-deterministic scores and aleatoric music (probably unrelated to computing)
marked the beginnings of this transition in Western Art Music, but one could
argue that jazz embraced these ideas earlier and took them further.

I conjecture that music notation and the composer/ performer tradition is largely
responsible for continuing the static nature of musical compositions. I hope to
show how computers and digital signal processing offer new possibilities for
composers and performers by introducing decision-making, interaction and cog-
nitive processing into what might be called a score. Notation plays a critical role
in this transition.

2. Traditional Notation

Traditional music notation has had a deep-rooted effect upon contemporary music.
Concepts as basic as beats and scales are firmly rooted in traditional notation, and
it is only natural that these concepts form the basis of formal musical training.
With such pervasive influence, it is no wonder that music notation exerts a
Whorfian restriction and regulation of fundamental concepts in contemporary

63

64 Roger B. Dannenberg

music. In other words, the language and notation we use exerts a large influence
on what we think and create.

Acceptance of the limitations of music notation only leads to a deeper entrench-
ment of old concepts and a difficulty imagining what lies beyond. The following
sections will show how music notation is being extended in an interesting direc-
tion. The point is not so much that there is anything wrong with music notation
as it stands, rather that there is rich new territory to be explored by considering
notations with fundamentally new properties and semantics.

Traditional musical notation gives rise to models of how music is made and
what music is; for example, composition, orchestration, and performance are all
part of the traditional model of music-making, and these terms are closely tied to
notation. We traditionally consider a “work” to be somehow embodied in the
notation. No two performances are alike, and yet each performance is (for good
reasons) not considered to create a new work. Only the static notated aspect of the
creation is honored with the title “composition”. We should expect that funda-
mentally new notations can give rise to new models or paradigms for making
music. In addition to describing new notation, I will show how new notation points
toward changes in fundamental concepts of music structure, including the rela-
tion and even the meanings of composition and performance.

3. Computer Languages

One of the great triumphs of computer science has been the formal understand-
ing of computation. We not only know how to express computational processes,
but we can prove that the notations we use, called programming languages, are
“universal” in the sense that they can express any computable function. That is,
we can show that some languages are as powerful as any language could be. We
have even learned that there are some functions that cannot be computed. In
contrast, music notation is incapable of expressing more than a very limited form
of computation, so there is much to be gained from the languages of computer
science.

We should take care to note that terms like “programming language”, “express”,
and “powerful” must be defined carefully for any of this to make sense. Rather
than digressing into a long essay on theoretical computer science, let us not worry
too much about the details. The important thing is that we are talking about com-
putation and programming languages that express computations.

What does it mean to express computation in a musical work? In general, this
means that the music includes a specific procedure to be followed. For practical
reasons, the procedure, called an algorithm (Knuth 1975) must (1) be finite, that is,
an algorithm must terminate in a finite number of steps, (2) be unambiguous, that
is, each step must be well defined and have an exact meaning, (3) have zero or
more inputs, that is, information may be provided for the algorithm to process,
(4) have one or more outputs, that is, information is computed by the algorithm,
and (5) be effective, that is, each step of the algorithm must be doable in a finite
amount of time using a finite amount of resources.

The concept of computational music or computer programs as scores has, until
recently, been an interesting way to augment the capabilities of a composer in

Extending Music Notation 65

producing a more traditional form of score. In this scenario, the output of the
program is a traditional score. Modern computers and computer music systems
have introduced a new possibility: that a score might be made to interact with
decisions made during a performance. In this case, performances may be quite
different from one another. For algorithms used in musical performances, the input
is usually considered to be a stream of performance information obtained from
live players and the output is control information sent to synthesizers to produce
sound.

The possibility of interactive or reactive scores is not entirely new, but the pre-
cision, speed, and consistency with which procedures can be followed by com-
puters during a performance is unprecedented. A consequence is that a composer
can — by careful specification of procedures - maintain control over performances
while at the same time giving human performers, conductors, and even listeners
an active decision-making role.

Following the premise that notation has a large effect on the music it expresses,
it is only logical to investigate notation as a step toward a new kind of com-
putationally oriented music. In the following sections, I will present a notation
and a model of computation that seems particularly adept at expressing musical
procedures The notation is called TPL, for Temporal Programming Language,
and is intended to promote an interesting set of working concepts. Since the
emphasis is on concepts, many practical considerations are ignored here. The
author’s current research is on practical realizations of TPL concepts.

4. Related Work

The use of formal techniques in composition is hardly a new idea, but the tran-
sition from informal theories and methods to completely specified formal proce-
dures is fairly recent. John Cage, in his efforts to leave musical decisions to chance,
developed highly formal procedures which were carried out by hand (Cage 1969)
and by computer (Austin 1968). Hiller and Isaacson (1958, 1959), Xenakis (1971),
and Koenig (1970) were among the first to use computers to perform compositional
procedures.

The use of compositional procedures in live performance has been a more re-
cent occurrence. Among the first composers of this genre are Salvatore Martirano,
Joel Chadabe (1984), and George Lewis (Roads 1985). With the advent of personal
computers and VLSI-based digital synthesizers, there are now hundreds of per-
formers and composers making interactive computer-based compositions. Robert
Rowe’s book (1993) is an excellent text on the subject.

The Temporal Programming Language (TPL) is derived from the language Arctic
(Dannenberg 1984a, Dannenberg & McAvinney 1984, Dannenberg, McAvinney &
Rubine 1986, Rubine & Dannenberg 1987) which has roots in early sound synthe-
sis languages such as Music V (Mathews 1969) and also the 4CED system (Abbot
1981). TPL is a declarative language in contrast to the imperative approaches of
Formes (Rodet & Cointe 1984) and Formula (Anderson & Kuivila 1986) or the
visual programming language approaches of Kyma (Scaletti 1989), Peter Desain
(1986), or The Patcher (Puckett 1988). Music Structures (Balaban 1989) offers a
notation related to TPL, intended for music analysis rather than real-time per-
formance.

66 Roger B. Dannenberg

5. Notation and Improvisation

As a composer and improvising performer, I am very much aware of certain
strengths and weaknesses of conventional notation. Notation is idea for planning,
refining concepts, and working out multiple levels of interrelationships in music.
The consistent use of motives, modes, and rhythms requires some sort of plan-
ning and therefore a notation to preserve the plan.

On the other hand, conventional notation is very constraining to performers.
Concentrating on a score inevitably distracts the performer from other tasks and
restricts the set of musical options available to the performer. Of course, great
music is made this way, but great music of a different nature is made by impro-
visers. As a performer, I want music to capitalize on the potential of unconstrained
improvisation.

Can we have the advantages of both notation and improvisation? Jazz musi-
cians usually rely on notated (and memorized) chord progressions and melodies
to bring a compositional framework to a performance. Composers often insert
improvisational or aleatoric passages to relax the usual constraints of composed
music. With enough rehearsal, great performers can internalize a composer’s
instructions to the point that they do not seem constraining or distracting. Com-
puter systems provide a new and interesting way to deal with this question. The
fixed framework of most compositions (including traditional jazz performances)
is a direct result of the static nature of traditional notation. In order to work out
structures in time, time must be represented. Traditional notation leads us to time-
line representations with a beginning, an end, and a total ordering of events in
between. It is hard for a composer to give meaningful choices to a performer
because of what might be called “musical predestiny”: the ending is fixed in
notation before any improvisation even begins.

Imagine, instead, that a composer could stop time in the middle of a perform-
ance. For simplicity, assume that one player improvises and others perform a
notated score. As the improviser makes choices, the composer stops time, adapts
the composition now in progress to accommodate the choice, and lets time con-
tinue. The composer and improviser now operate on a more equal footing, and
musical predestiny is no longer a problem. Notice that the composer and there-
fore the composition, can respond to the performer in any fashion. The impro-
viser can set the musical direction and travel into new territory, or the composer
can cleverly deflect improvisation initiatives to support a predetermined idea or
goal. The range of possibilities for musical structures and new genres is hard to
imagine.

Although it is unlikely that human composers will ever be able to stop time,
computer composers can make decisions so quickly that for all practical purposes,
we can regard time as having stopped. It might be impossible for humans to play
scores that change rapidly, but music synthesizers have no difficulty responding
to changes in a few milliseconds. Thus, if we accept some limitations, it is possible
for an improviser and composer to interact in real time in a way that releases the
improviser from the bonds of a static score and yet retains a great amount of struc-
tural planning and control for the composer.

Extending Music Notation 67

The practical realization of this concept is the interactive computer music com-
position. Typically, one human performer is monitored by a computer system
which in real time responds to the performer by directly controlling music syn-
thesizers. The computer runs a program written by a composer. In essence, the
program is an intelligent surrogate for the composer. To the extent that this sur-
rogate can make musical decisions that satisfy the composer, this approach can be
effective.

This section has outlined in some detail one of the motivations for interactive
scores. It should be clear that notation for expressing interactive decision making
and music making is critical to this endeavor. The following section begins a
description of one approach to a high-level expressive notation for interactive
music compositions.

6. A Simple Music Language

Any music notation must have two aspects: the specification of sound material
and the specification of the control structure that organizes those materials. For
example, in common practice notation, most symbols denote sound material.
Notes, the staff, key signatures, articulation markings, and ties all specify aspects
or details of the sound to be produced. Common practice notation also includes
a control structure. Some of the control structure is graphical; that is, notes are
placed in order from left to right and simultaneous events are aligned vertically.
Other control information is explicit: rests, repeat signs, first and second endings,
the sign, and codas. a

Computation enlarges the possibilities for both sound material and for control
structure. Here, we will focus only on the control structure possibilities of a new
notation, ignoring almost completely the sound material aspect. In that sense, the
notation to be presented is incomplete ~ what computer scientists would call a
“toy language” - in that it is intended to explore language design principles only.
By taking this new notation as a kernel, various practical languages can be devel-
oped that share a common semantic foundation. (Rubine & Dannenberg 1987,
Dannenberg 1989, Dannenberg & Fraley 1989).

In TPL, we will assume that there is already a means for specifying individual
sounds or notes. The exact interpretation of this specification is independent of
other aspects of the notation, so we are justified in not elaborating on sound
specifications. The notation we use will be functional notation; for example, we
might specify a note with a pitch of A4 and a duration of one quarter by writing
note(A4,Q). In many of our examples, we will use letters such as p, g, 7, and s to
designate sounds. We assume that all sounds have an intrinsic duration; the
duration of s is denoted by s, .

When we combine sounds, the result will always be a new, usually more com-
plex sound. TPL can be used to arrange notes in time as does traditional notation,
or TPL can combine simple sounds (not necessarily notes) to form complex sounds.
An example is mixing and shaping sinusoids to form a complex set of harmonics
in a single tone. In this way, TPL can extend the concept of score into the “inte-
rior” of notes without additional linguistic mechanisms.

68 Roger B. Dannenberg

7. Sequence, Simultaneity, and Timing

All music organizes sound in time, so any notation must address this issue. To
specify simultaneous sounds, the following notation is used:

;18 ...,

where g, 7, and s are all sounds, and the semicolons ;' are notational elements
that indicate that the sounds are to be simultaneous. The ellipsis indicates that
there may be arbitrarily many sounds, and the set of simultaneous sounds is called
a collection. A collection has an associated duration which is the duration of the
longest component:

g:rs .., =max(q, , Vs s Sy -+
To indicate a sequence of sounds, the “|” separator is used:
[glrisl..]

In this case, g starts at relative time zero, r starts at q, (recall that this denotes
the duration of g), s starts at g, +,, and so on. We call this a sequence.

dur
s

-
o

Figure 1.

Consider the example of common practice notation in Figure 1. We might notate
this in TPL as follows:

[[note(D4, Q) | note(C4, Q)] ;
[note(F4, Q) | note(A4, Q)]

Here, we have expressed the pitch sequence D4-C4 starting simultaneously with
the sequence F4-A4. An alternative expression would be:

[[note(D4, Q); note(F4, Q)] |
[note(C4, Q); note(A4, Q)11

In this case, we have described a sequence of two two-note chords, D4-F4 fol-
lowed by C4-A4. According to the definition of sequences given above, the sec-
ond chord starts after a delay equal to the duration of the first chord, which is a
collection.

To specify timing in the general sense, the “@” or shift operator is introduced.
The operator can be applied to any expression in order to shift the starting time
of the designated sound by a given amount. For example,

het;ret ;..

means to start g at (relative) time f,_ and to start r at (relative) time ¢ . Another way
. . i . T :
to describe the shift operator is in terms of musical rests. Suppose there is a special

Extending Music Notation 69

sound function called rest(d) that represents a silence or rest of length d. Then a
shift of a sound by d is equivalent to a rest of length d followed by the sound:

q@d={restd) | q]

8. Abstraction and Parameterization

We now have a simple language for organizing sounds in time. The language
is already almost as expressive (if not so convenient) as conventional music
notation. An interesting extension is to allow for hierarchical decomposition of
sounds. For example, suppose we would like to construct a melodic sequence
G-A-E-D and use it many times. We can define a new sound as follows:

define melody is
[note(G, Q) | note(A, Q) | note(E, Q) | note(D, Q) I;

Defined terms such as melody are called abstractions. Wherever an abstraction is
used, the term’s definition can be substituted. For example:

[melody | melody] is equivalent to
[[note(G, Q) | note(A, Q) | note(E, Q) | note(D, Q)1 |
[note(G, Q) | note(A, Q) | note(E, Q) | note(D, Q) 11];

This example is not too compelling; after all, how many times does one want
an exact replication of the same sound? It is far more useful to be able to express
an entire class of similar sounds within a single definition. We use parameters to
control variable quantities within the class of similar sounds. For example, this
program shows a melody transposed according to a parameter;

define mel(root) is
[note(root + 5, Q) | note(root + 4, Q) |
note(root + 3, Q) | note(root + 11, Q) J;

Here, root stands for an arbitrary pitch to be provided when mel is used. For
example, mel(D4) is equivalent to:

[note(D4 + 5, Q) | note(D4 + 4, Q) |
note(D4 + 3, Q) | note(D4 +11,Q) 1;

Notice that D4, called the actual parameter is substituted for root, called the
formal parameter, throughout the definition of mel to obtain the resulting expres-
sion. Since all pitches were written as offsets from the parameter root, the result-
ing phrase is transposed accordingly. Consequently, mel(E4) would sound a whole
step higher than mel(D4). The following example shows a more elaborate use of
mel:

[mel(D4) |
[mel(G4) ; [note(E4, H) | mel(A3)]1]

The resulting sound will contain three instances of mel at different transposi-
tions. For example, the first occurrence, mel(D4), will produce the sequence
G4-Fi#4-F4-B4. This is because root will first have the value D4, and the pitch
expression root + 5 is G4, root + 4 is F#4, and so on.

70 Roger B. Dannenberg

The behavior mel is an abstraction because it describes the behavior of a large
class of simple melodies that differ only in transposition. More complex abstrac-
tions that differ in rhythms, loudness, and even structure can be constructed and
designed to generate sounds according to a few parameters.

9. Control Constructs

Increased expressiveness is offered by additional language elements called con-
trol constructs. The sequential and simultaneous are examples of control constructs.
Another one is the conditional. For example,

if c then g else r

means to evaluate ¢ at the beginning ‘of the sound. If c is true then sound g is
produced; otherwise, sound r is produced. The Boolean (truth) value ¢ and the
sounds q and r can be arbitrarily complex expressions.

Another control construct is the iteration construct, which specifies repetition of
a given sound. The expression

repeat i from 1 to 10 in g

means to repeat sound g ten (10) times. The variable i, essentially a form of
parameter, takes on a new value from the sequence {1, 2, ... 10} on each iteration
of q. As with the conditional, g4 can be any sound expression and the starting and
ending values for i (1 and 10 in this case) can be any numerical expression.

A good example to illustrate the use of conditional and iteration constructs is
a model of the traditional first and second endings;

repeat i from 1 to 2 in
[MainPart |
if i = 1 then FirstEnding
else SecondEnding]

where MainPart, FirstEnding, and SecondEnding are all sounds. Each of these can
be defined in terms of other sounds using abstraction.
Recursive definitions are also possible in TPL. The following defines a sound
of infinite duration:
define infinite is
[note(C4, Q) | infinite];
The sound infinite is defined to be the note C4 followed by another instance of
the sound infinite. This recursion generates an infinite repetition on C4.

10. Termination

Sounds can be stopped before they reach their normal point of completion using
the do-until construct:

do g until ¢ then r

Extending Music Notation 71

means play sound g until ¢ becomes true, then play sound r. If 4 finishes before
¢ becomes true, then the do-until construct is complete and r is not played. The
condition ¢ may be an expression to be continuously monitored until it becomes
true, or it may be an event expression:

event key(i)

which is true whenever key is invoked anywhere in the program. The expression
may be used in conjunction with a test of the parameter(s):

event key(i) and i = 50

is true whenever an instance of key is invoked with the parameter 50.

11. Response to External Input

TPL programs can respond and interact with (musical) external events. The
mechanism is to invoke an abstraction (see Section 8) at the time a corresponding
event occurs in the external world. For example, assume that a music keyboard
is connected to a TPL program during performance. Key #20 is pressed at time 10,
key #23 is pressed at time 15, and pedal #1 is depressed at time 16. We define this
to be equivalent to evaluating the following expression concurrently with the
program:
[key(20) @ 10; key(23) @ 15; pedal(1) @ 16]

In other words, events in the real world correspond to the evaluation of ab-
stractions in TPL.

12. An Example

To put everything together, we will examine a short program in TPL that interacts
with a keyboard performance. First, we will define a sequence to be played (with
transposition) when certain keys are pressed:

define sequencel(p) is [
note(p, Q) | note(p -1, Q) |
note(p + 3, E) | note(p + 5, E) |
[note(p - 2, Q); note(p - 3, Q) 1 |
note(p - 5, E) | note(p - 6, E) |
note(p + 5, E) | note(p + 8, E) |
[note(p + 4, E); note(p + 2,E) 1];

Another sequence will play a trill:

define sequence2(p) is [
note(p, S) | note(p + 2, S) | sequence2(p) 1;

Assume that ten (10) additional sequences are defined, but not shown for the
sake of brevity.
Now, we will define a connection between these sequences and a piano-like

72 Roger B. Dannenberg

keyboard that is responsible for generating the events keydown(k) and keyup(k)
when key k is pressed and released, respectively. The function keyisdown(k) is true
if and only if key k is pressed.

define keydown(k) is [
ifk>12
then [
if keyisdown(1)
then do sequencel(k) until (keyup(n) and k = n);
if keyisdown(2)
then do sequence2(k) until keyup(n) and k = n);

if l'ceyisdown(12)

then do sequence12(k) until keyup(n) and k = n);
]

l;

In this program, keys 1 through 12 act like switches (or perhaps organ stops)
that enable the other keys to perform the sequences. If key 1 is down and key 20
is pressed, then keydown(20) is evaluated. This expression keyisdown(1) will be true,
so the expression

do sequencel(k) until keyup(n) and k = n

will be evaluated. This will in turn start sequence1(20), 20 being the value of k. This
sequence will continue until it either finishes on its own or until key 20 is re-
leased. In this case the until part is evaluated, with n = 20.

keyup(20) and k = 20

Since k does equal 20 in this expression, sequencel is terminated.

If key #2 is also down when key #20 is pressed, the second if expression will
also be evaluated and sequence2 will be started at the same time as sequencel. The
same applies to sequences 3 through 12. Thus, the keyboard has a fairly elaborate
response, and the system as a whole has aspects of a conducting system in addi-
tion to an instrument. All of this can be expressed compactly using TPL.

13. Programs and Compositions

With short examples like these, it is impossible to demonstrate the full potential
of computational music notations. Just as more conventional scores occupy many
pages and take months or years to compose, computer programs are often thou-
sands of lines in length and also take months or years to write'. Now that we have
illustrated some principles with examples, let us consider some of the ways that
programs might be used for composition.

One possibility is to extend the notion of musical instrument by using programs
to determine the relationship between a performer’s gestures and the resulting

! Large software systems require over a million lines of program text and hundreds of man-years
to develop.

Extending Music Notation 73

sound. The first example shows how piano keys might be used to trigger melodic
sequences. Like the prepared piano, programmed instruments allow essentially
new instruments to be developed by composers to achieve specific effects that
would be impossible otherwise. Hyperinstruments (Machover & Chung 1989) are
a good example of this approach.

A second possibility is to incorporate memory. Memory allows the output of
programs to depend upon earlier input, and various transformations of recorded
performance information are possible. Recorded information can also be com-
bined with new input, for example repeating a previous pitch sequence according
to a new rhythm.

Another use of memory is to store conventional scores that are synchronized
with live performers. Max Mathews (Mathews & Abbot 1980) and Morton
Subotnick have explored approaches to “conducting” the playback of scores stored
in computer memory. Dannenberg (Dannenberg 1984b, Bloch & Dannenberg 1985,
Dannenberg & Mukaino 1988) and Vercoe (Vercoe & Puckett 1985) have built sys-
tems that follow a soloist in a score and synchronize the automated performance
of a stored score.

These examples are in one way or another based on existing models: the instru-
ment, the tape recorder, serialism, the conductor, the performer. As the sophisti-
cation of these approaches increases, the programmed behavior becomes more
sophisticated and more complex. At some point, programs reach a degree of
complexity described in Section 5, where we can say that the programs are “com-
posing” or “improvising”.

There are key differences between human composition/improvisation and the
sort that is programmed for computers. First, any moderately sized program will
have a fairly restricted musical vocabulary. This will tend to make its output more
stylistically consistent from one performance to the next. Secondly, the computer-
generated music can respond to other performers almost instantly. This is also
true of good jazz performers, but only to a limited extent: an intricate musical
response or musical interplay takes time to develop; hence, the more elaborate
the response, the less immediate it will be.

The result of this computer-based approach is a hybrid of composition and
improvisation, where composers and performers share in the creative process and
where the “composition” is the live interaction between the performer and ma-
chine. Experience has shown that there is a wide range of choices available to the
composer in terms of how much of the structure is predetermined. The style of
dynamic interaction among computers, performers, conductors, and audience is
open to exploration.

14. Future Research

An interesting question is “at what level do musicians and machines communi-
cate?” The example TPL programs show how complex interactions can take place
without any deep understanding or intelligence on the part of the machine. This
might be called the “performance gesture” level of interaction. Input gestures
and sequences are processed, and output gestures are obtained. One of the goals
of recent research has been to raise the level of musical interaction between
musicians and machines above the level of gestures.

74 Roger B. Dannenberg

Music Understanding refers to the recognition of structure and pattern in music
by computer, and at least fairly low-level music understanding capabilities have
been achieved already. For example, computer systems that can follow a performer
in a score (Bloch & Dannenberg 1985, Vercoe & Puckett 1985) or follow a conduc-
tor’s baton (Mathews & Abbot 1980) have been developed. An experimental sys-
tem that listens to a blues improvisation to determine the tempo and identify
chord changes has been described (Dannenberg & Mont-Reynaud 1987). Music
understanding will allow computer systems to perceive performers’ tempo
changes, phrasing, themes, and harmonic directions (Rowe 1993). This in turn
will give composer/performers a new vocabulary for creating interactive compo-
sitions.

Another direction for research is toward integration and control of sound pa-
rameters at many levels. It is now possible to vary dynamics, articulation, spec-
tral content, spatial distribution, reverberation and other effects with both syn-
thesized and live audio. Computer systems can control these parameters in real-
time and therefore composers can use all of these parameters to their musical
advantage.

15. Conclusion

We began with a look at notation as a force that ties contemporary music to tra-
dition. Accepting the hypothesis that a more expressive notation might lead to
new musical territory, we examined a notation (TPL) based on computer languages.
TPL can express traditional static musical structures as well as dynamic struc-
tures.

Equipped with new notation and the concept of interactive programs as musi-
cal scores, we can begin to think about the implications for contemporary music.
A hybrid between composition and improvisation emerges as one possibility,
offering an intriguing blend of tradition and technology.

Technology has many shortcomings that require research, including problems
of music understanding and the rapid obsolescence of computers and sound
processors with each new electronic generation. Purely musical research is also
needed. The roles of performers, composers, conductors, and listeners must be
reexamined. Even the role of live music changes to become a creative rather than
a recreative process. There is much to explore.

16. Acknowledgments

I'wish to thank Georges Bloch, Xavier Chabot, and George Lewis for sharing their
musical insights and experience regarding interactive computer music systems.
The School of Computer Science, the Music Department, and the Studio for Crea-
tive Inquiry (formerly the Center for Art and Technology) at Carnegie Mellon and
Yamaha have generously supported much of the development of these ideas.

Extending Music Notation 75

References

Abbot, C. (1981) The 4CED Program. Computer Music Journal 5(1):13-33 (spring).

Anderson, D.P. and Kuivila, R. (1986) Accurately Timed Generation of Discrete Musical Events.
Computer Music Journal 10(3):48-56 (fall).

Austin, L. (1968) An Interview with John Cage and Lejaren Hiller. Source: Music of the Avant-
Garde, Issue 4, 2(2):11-19. Reprinted in Computer Music Journal, 16(4):15-29 (Winter), 1992.

Balaban, M. (1989) Music Structures: A Temporal-Hierarchical Representation For Music. Ben Gurion
University Department of Mathematics and Computer Science Technical Report FC-TR-021
MCS-313.

Bloch, J.J. and Dannenberg, R.B. (1985) Real-Time Computer Accompaniment of Keyboard
Performances. In Proceedings of the 1985 International Computer Music Conference, pp. 279-290.
Computer Music Association.

Cage, John. (1969) Silence. Cambridge, MA: MIT Press.

Chadabe, J. (1984) Interactive Composing: An Overview. Computer Music Journal 8(1):22-27.

Dannenberg, R.B. (1984a) Arctic: A Functional Language for Real-Time Control. In 1984 ACM
Symposium on LISP and Functional Programming pp. 96-103. Association for:Computing Ma~
chinery.

Dannen?:arg, R.B. (1984b) An On-Line Algorithm for Real-Time Accompaniment. In Proceedings
of the 1984 International Computer Music Conference pp. 193-198. Computer Music Association.

Dannenberg, R.B., McAvinney, P. (1984) A Functional Approach to Real-Time Control. In Pro-
ceedings of the 1984 International Computer Music Conference pp. 5-15. Computer Music Asso-
ciation.

Dannenberg, R.B., McAvinney, P, Rubine, D. (1986) Arctic: A Functional Language for Real-
Time Systems. Computer Music Journal 10(4):67-78 (Winter).

Dannenberg, R.B. and Mont-Reynaud, B. (1987) Following an Improvisation in Real Time. In
Proceedings of the 1987 International Computer Music Conference pp. 241-248. Computer Music
Association.

Dannenberg, R.B. and Mukaino, H. (1988) New Techniques for Enhanced Quality of Computer
Accompaniment. In Proceedings of the 1988 International Computer Music Conference, pp. 243~
249. Computer Music Association.

Dannenberg, R.B. (1989) The Canon Score Language. Computer Music Journal 13(1):47-56 (sgring).

Dannenberg, R.B., and Fraley, C.L. (1989) Fugue: Composition and Sound Synthesis With Lazy
Evaluation and Behaviora{Abstraction. In Proceedings of the 1989 International Computer Music
Conference, pp. 76~79. Computer Music Association. .

Desain, P. (1986) Graphical Programming in Computer Music, a Proposal. In Proceedings of the
1986 International Computer Music Conference, pp. 161-166. Computer Music Association.
Hiller, L. and Isaacson, L. (1958) Musical composition with a high-speed digital computer. Jour-

nal of the Audio Engineering Society 6(3):154-160 (July).

Hiller, L. and Isaacson, L. (1959) Experimental Music: Composition with an Electronic Computer.
New York: McGraw Hill.

Knuth, D. (1975) The Art of Computer Programming. Addison Wesley.

Koenig, G.M. (1970) Project 1. In Electronic Music Reports, pp. 32-44. Institute of Sonology, Utrecht
University.

Machover, ?: and Chung, J. (1989) Hyperinstruments: Musically Intelligent and Interactive
Performance and Creativity Systems. In Proceedings of the 1989 International Computer Music
Conference, pp. 186-190. Computer Music Association.

Mathews, M.V. (1969) The Technolo _E)J;\Computer Music. Boston: MIT Press.

M?thews, M.V. and Abbot, C. (198%{ e Sequential Drum. Computer Music Journal 4(4):45-59

winter).

Puckette, M. (1988) The Patcher. In Proceedings of the 1988 International Computer Music Confer-
ence, pp. 420-429. Computer Music Association.

Roads, Curtis. (1985) Improvisation With George Lewis. The Computer Music and Digital Audio
Series. Composers and the Computer. Los Altos: William Kaufmann, pp. 74-87 (Chapter 5).
Rodet, X. and Cointe, P. (1984) FORMES: Composition and Scheduling of Processes. Computer

Music Journal 8(3):32~50(fall).

Rowe, R. (1993) Interactive Music Systems. Cambridge: MIT Press.

Rubine, D. and Dannenberg, R.B. (1987) Arctic Programmer’s Manual and Tutorial. Carnegie
Mellon University Technical Report CMU-CS-87-110.

76 Roger B. Dannenberg

Scaletti, Carla. (1989) The Kyma/Platypus Computer Music Workstation. Computer Music Jour-
nal 13(2):23-38 (summer).

Vercoe, B. and Puckette, M. (1985) Synthetic Rehearsal: Training the Synthetic Performer. In
Proceedings of the 1985 International Computer Music Conference, pp. 275-278. Computer Music
Association.

Xenakis, I. (1971) Formalized Music. Bloomington: Indiana University Press,

