
Roger B. Dannenberg and Patrick van de Lageweg, “A System Supporting Flexible Distributed Real-Time
Music Processing.” InProceedings of the 2001 International Computer Music Conference.San Francisco:
International Computer Music Association, ISBN 0-9713192-0-0, 2001, pp. 267-270.

A System Supporting Flexible Distributed Real-Time Music
Processing

Roger B. Dannenberg and Patrick van de Lageweg

School of Computer Science, Carnegie Mellon University
email: dannenberg@cs.cmu.edu

Abstract
Local-area networks offer a means to interconnect personal
computers to achieve more processing, input, and output for
music and multimedia performances. The distributed, real-
time object system, Aura, offers a carefully designed
architecture for distributed real-time processing. In contrast
to streaming audio or MIDI-over-LAN systems, Aura offers
a general real-time message system capable of transporting
audio, MIDI, or any other data between objects, regardless
of whether objects are located in the same process or on
different machines. Measurements of audio synthesis and
transmission to another computer demonstrate about 20ms
of latency. Practical experience with protocols, system
timing, scheduling, and synchronization are discussed.

1 Introduction
Local-area networks offer a fast, general, reliable way to

interconnect personal computers. Unlike MIDI or AES-
EBU, which require special interfaces and are restricted to a
single format, networks communicate any digital data, and
high data rates are available. Many other researchers have
used local and wide-area networks for music data, including
MIDI and audio (see references). Most of this work has
focused on point-to-point transmission only. Open Sound
Control (Wright and Freed 1997), for example, is a network-
oriented protocol for controlling synthesis engines. We
introduce a system,Aura, designed to take advantage of
general-purpose PCs and ordinary low-cost local area
networks to implement powerful real-time music programs.

The main thrust and feature of this work is a software
foundation that supports networking and distributed real-
time processing from the ground up. This means more than
simply providing a real-time transport from one machine to
another or accommodating music data types such as MIDI
and digital audio over Ethernet. Imagine a truly connected
system where sensors are in two-way communication with
decision-making software, where physical models and
compositional algorithms engage in a dialog to generate
music, and where graphical virtual worlds exchange
information with sound worlds to create a coherent and
synchronized multimedia presentation. These sorts of
applications require a flexible approach where software

objects can communicate easily, regardless of their function
and location. Ideally, there should be just one
communication mechanism, whether objects are located
together or on separate computers. This property, called
transparency, enables systems to be reconfigured without
rethinking the entire communication structure and possibly
recoding objects to use different communication
mechanisms. All this must be done in a way that enables
low-latency, real-time performance. If communication even
occasionally blocks computation for just a few milliseconds,
the system will be limited in some applications.

Aura differs from other systems in some important
regards. First, Aura manages a collection of objects that
communicate over logical connections. There may be
hundreds or thousands of objects and connections in an
Aura system, not just a small number of point-to-point
virtual MIDI or audio channels. Second, Aura imposes very
little structure on messages and objects. Simple data in the
form of numbers, strings, and object names are sent across
connections to control sound, graphics, devices, and
computation. More structured data, including buffers of
audio samples and MIDI messages can also be sent. Third,
all objects communicate in the same way, so network
communication is simply the consequence of sending any
message to a remote object.

Because Aura has been described previously in terms of
objects and messages (Dannenberg and Rubine 1995,
Dannenberg and Brandt 1996), this paper focuses on
extensions to provide communication over local area
networks. The mechanisms described here are based on
Aura, but the general techniques and results should be
applicable to other real-time systems.

2 Spaces, Zones, Objects, and Names
Spaces.Aura’s abstraction for a machine is theSpace,

short for Address Space, representing a shared address space
with multiple threads.

Zones. Aura computation takes place in zones. A zone
consists of a single thread and a collection of objects that
share the thread. (See Figure 1.) Because the thread is
shared, objects cannot execute long loops or suspend;
however, they can easily defer computation by sending



268

themselves a timed message. As long as objects do not
compute for too long, other objects in the same zone will be
able to meet their real-time requirements.

Address Space

Zone

Zone

Zone

Objects

Zone

Address Space

Figure 1. Aura system with two address spaces (on
separate machines), each with zones containing objects.

Typically, objects are assigned to zones according to
real-time requirements: low-latency audio computation goes
in one zone, music control computation goes in another, and
graphics and user interfaces go in a third, for example. By
using several zones, time-critical zones can achieve low
latency by preempting other zones, and long-running
computation can run in lower-priority zones without
blocking time-critical audio computation.

Objects. Aura objects send and receive asynchronous
messages, perform computation in response to a message,
and send messages. Objects are based on C++ objects,
which are extended by the Aura preprocessor with symbol-
table information. The typical Aura message sets an
attribute to some value. The default message handler looks
up the attribute in a symbol table, maps the attribute to the
location of a corresponding C++ member variable, and sets
the variable to the value carried in the message.

Aura applications are created by interconnecting objects.
Objects have input and output ports, inspired by familiar
MIDI and A/V components, by which objects are
interconnected. Since interconnections are external to
objects, collections of objects can be reconfigured to
different locations without changing code within the objects.

Names. In most programming languages, objects are
referenced by their address in memory, but an address is not
sufficient to designate an object when there are multiple
address spaces. Therefore, Aura uses 64-bit integers to
provide globally unique names for objects. An object name
tells where to deliver a message; in fact, the high-order 16
bits encode the object’s address space number and zone.

Because Aura is a real-time system, it is important for an
object in processA to be able to create an object in process
B without actually waiting onB. In practice, this requires
that processA can create the unique name for the new object
in B without any knowledge of the memory configuration of
B and without consulting a centralized name resource. To
accomplish this,A combines its own address space and zone
(16 bits) with a locally unique 32-bit sequence number to
form a globally unique 48-bit identifier (see Figure 2).
Using this scheme, any zone can generate a globally unique
name for a new object anywhere, in constant time.

Object Sequence NumberCreator’sAddress
Space Zone ZoneAddr.Sp.

and

Object Identifier

Figure 2. Aura names are globally unique object
references.Address Space:small integer corresponding
to a computer. Zone: one of many zones in the Address
Space.Object Identifier: names an object within a Zone.
(Object address is obtained from a per-zone hash table.)

3 Message Delivery
To make a connection from one object to another, the

64-bit name of the receiver object is placed on thereceivers
list of the sender object. When an object sends a message,
the Aura runtime system delivers a copy of the message to
every object on the list. The first step is to compare the
address space and zone bits of the receiver's name to those
of the sender. If they match, the message is destined for the
same zone: A hash lookup is performed to find the address
of the receiver, and a receive method is called to deliver the
message immediately (and synchronously) to avoid copying
overhead. If the message differs in the zone bits but not the
address space, the message is copied to a shared-memory
FIFO queue that is read by the receiver's zone. The
receiver's zone thread polls the queue, removing and
delivering messages to local objects.

If the address space bits do not match, the message is
delivered to a special proxy object found in a table indexed
by the address space bits. The proxy object forwards the
message over a network to a companion object in the
receiving address space. The message is then delivered
using the local delivery mechanisms presented above. This
design allows new proxy objects to be plugged in to support
any interprocess communication mechanism desired.

The pseudo-code in Figure 3 illustrates the message send
procedure, although it omits the handling of timestamps. In
the full implementation, messages with future timestamps
are held in a priority queue in the destination zone and
delivered at the designated time. Messages to proxies are
“wrapped” so that they are delivered immediately, and then
“unwrapped” so that the final delivery obeys the timestamp.

function SendTo(dest, msg):
if (dest.addr_space != my_addr_space):

SendTo(addr_space_proxy[dest.addr_space],
Wrap(dest, msg))

elif (dest.zone != self.zone): // interzone
out_queue[dest.zone].enqueue(dest, msg)

else: // intrazone
target = hash_lookup(dest.object_id)
target.receive(message)

Figure 3. Message delivery pseudo-code. Inter-address-
space messages are sent to a (local) proxy object for
forwarding; inter-zone messages are delivered via a
shared-memory FIFO queue, and local messages are
delivered by invoking the receive method of the target.



269

4 Distributed Operation
We have implemented several versions of this system,

and there have been at least a few interesting and somewhat
surprising results, which are described below.

4.1 Timing Issues Under Linux
The Linux kernel normally uses a 100 Hz clock for

scheduling, which makes it difficult for a process to perform
timed actions with better than 10ms of precision. In Aura,
we can get around this limitation by using the audio device
to wake up the highest priority audio zone every 32 sample
frames. This zone, in turn, can signal other zones at lower
priority so that they wake up frequently. It should also be
possible to recompile the kernel with a different HZ setting,
but our approach works with unmodified kernels.

4.2 UDP vs. TCP
In our first implementation, we used UDP (Comer

2000), a simple network protocol, to transmit data over the
network. UDP was chosen because it seemed to be the most
suitable protocol for a real-time system. Also, UDP has been
used in other real-time MIDI and control systems reported
in the literature. (Goto, Neyama, and Muraoka, 1997) UDP
has the potential drawback that message delivery is not
guaranteed, but previous studies have found UDP to be
reliable across local area networks in controlled situations.
In our case, perhaps because there were multiple machines
transmitting messages in a less orderly fashion, we observed
dropped UDP packets. This makes UDP unusable without
additional protocols to retransmit lost packets. For this
reason, we switched to TCP/IP (Comer 2000), a reliable
protocol.

TCP/IP is said to have problems in real-time systems
because of its buffering and retransmission policies. We ran
into just one difficulty. The default behavior of TCP is to
attempt to merge messages into network packets to achieve
greater efficiency. This can be avoided using the
TCP_NODELAY option, which eliminates merging and
delays, but increases the number of messages. With this
option, the timing behaviors of TCP and UDP appear to be
identical. Of course, if a packet is lost, TCP will stop and
recover, causing a delay, while UDP will simply lose the
message. To regain some of the lost efficiency due to
TCP_NODELAY, we send audio in packages of 320 samples
even though audio is normally computed in 32-sample
blocks. It might also be a good idea to merge messages at
the Aura level, before sending them to the operating system,
to avoid too many short messages. (Fober 1994)

4.3 Global Clocks and Time Management
All messages carry timestamps, and messages destined

for remote zones are delivered to the zone as soon as
possible. They are then held locally and delivered to the
object within the zone at the designated time. As described

by Brandt and Dannenberg (1999), clocks are synchronized
so that timestamps are consistent across the network. This
allows messages to be delivered with precise timing if they
are computed early, and otherwise messages are delivered as
soon as possible.

This earlier work does not consider the case of
delivering audio across a network. In our current
implementation, we designate amaster system with an
audio interface assumed to be running at exactly 44.1kHz
(or any other standard rate), and one or moreslavesystems,
whose audio sample rates may drift above or below the
master rate. The slave systems can be configured in two
ways: (1) Audio computation is synchronized to the local
DAC, but time is synchronized to the master. This allows
the slave to operate more or less like a MIDI synthesizer.
Control information is passed asynchronously via Aura
messages and audio is converted to analog locally. (2)
Audio is synchronized to the global clock. Since the global
clock is synchronized to the master’s DAC, audio may be
returned to the master, mixed with other audio, and output
to the master DAC. Audio computation can be sample-
accurate, although some latency will be incurred as audio is
shipped over the network. Without option (2), it is
impossible to stream audio without either resampling or
adding additional synchronization hardware.

4.4 The Virtual Patchbay
Because processes do not initialize simultaneously, it is

necessary to wait for all Aura processes to start running
before creating a distributed set of objects. Furthermore, if
an Aura process crashes, it may leave objects with
“dangling” references to non-existent objects. In many
cases, it would be nice if the system could automatically
make connections between objects as they are created, and
disconnect “dead” objects when their process is terminated.

A solution to this problem is thevirtual patchbay, a
replicated distributed database of virtual patch points, which
are simply named by text strings. The virtual patchbay
essentially follows the “publish/subscribe” metaphor.
Programs can issue requests to connect from an object to a
patch point and from a patch point to an object. If the source
for a patch point does not exist at the time of a request, the
request is saved in the distributed database until a source
becomes available. When a process terminates, address
space proxy objects notify their local virtual patchbay,
which releases the affected connections.

With this facility, object connections can be made
asynchronously and systems can become more fault-
tolerant.

5 Current Status
The distributed Aura system is now in its third

generation, and development is focused on Linux, where we
have run with audio buffers as short as a few milliseconds,
even with substantial network loads. This is possible partly



270

because of the multithreaded structure of Aura, which in
turn is enabled by the distributed object model. We can
create and join multiple instances of Aura on different
processors, create objects remotely, and connect objects
across address spaces. We constructed new audio “patch”
objects that stream audio packets from one machine to
another for further processing or playback.

We are currently modifying the system to make
configuration and reconfiguration simpler. The idea is use
logical names for zones and to map logical names to actual
zones at runtime according to a configuration description.
For example, one might have logical zones named
AudioOutput and AudioDSP which might be the same on a
single processor system for debugging but separated in a
distributed production version. Also, the virtual patchbay is
designed, but not yet implemented.

Network Audio Timing

18.378

18.38

18.382

18.384

18.386

18.388

18.39

18.392

18.394

0 2000 4000 6000 8000 10000

Block Number

T
im

e
(s

ec
on

ds
)

Figure 3. Arrival time of audio from network (lower
curve) and the time data is written to audio device (top).

For convenience, we have been running on Linux
machines without low-latency kernel patches using 10MHz
Ethernet. Figure 3 shows timing measurements at the
receiver of an audio stream. The lower curve is the time at
which a 320-sample message arrives, and the upper curve is
the time at which the first sample of that message is written
to the audio device driver. The horizontal axis is the
message number, and the vertical axis is the difference
between the measured time and “nominal time” (sample
number / sample rate). We subtract nominal time to
emphasize timing jitter over absolute time. The overall slope
is due to drift between the system clock and the DAC clock.
The lines are parallel in the long term because of clock
synchronization on the two machines. The short-term
variations in the lower curve show the combined effects of
operating system scheduling, network latency, and internal
buffering. Overall, Aura delivers messages from source to
sink in about 2 to 6 ms, with an additional few ms of jitter
due to the operating system. In addition, the source buffers
10 blocks of audio, an additional 7ms (not shown), before
sending a message over the network. Allowing 5ms to get
audio through the device driver, this gives a total of around
20 ms from the time a sample is computed on one machine

to the delivery of analog output at the other machine. Future
work will explore the use of fast Ethernet and other network
media to reduce this latency further. It should also be noted
that additional buffering might be necessary to recover from
packet loss (although none was observed in these simple
tests). Network utilization is assumed to be low, and Aura
uses one priority for all network traffic. More sophistication
would be required for high network load factors.

6 Conclusions
We find Aura to have several distinct advantages over

other software systems for interactive music: Aura messages
are open-ended, with no particular built-in notions of
instruments, voices, etc., allowing Aura to reflect the needs
of the application. Aura object location is largely transparent
to the application, so no difficult steps are required to
reconfigure a program to run on a network of computers.
Finally, transparency and network-wide naming allows new
connections between objects to be created as needed without
rethinking or violating any formal system structure. These
properties seem to support the creation of interesting
interactive systems for music.

Latency, particularly for audio connections, is still an
important concern. One of the advantages of Aura is that the
architecture hides the network details from the application.
Since networking is implemented using ordinary Aura
objects, it will be easy to incorporate networking
improvements into Aura or to experiment with different
networking strategies.

I am very grateful to IBM Research and their Computer
Music Center for financial, technical, and moral support and
many enthusiastic, stimulating conversations.

References
Brandt, E., and R. B. Dannenberg. 1999. “Time in Distributed

Real-Time Systems.”Proceedings of the 1999 International
Computer Music Conference. ICMA, pp. 523-6.

Comer, D. 2000.Internetworking with TCP/IP Vol. I: Principles,
Protocols, and Architecture.Prentice Hall.

Dannenberg, R. B. and E. Brandt. 1996. “A Flexible Real-Time
Software Synthesis System,”Proceedings of the 1996
International Computer Music Conference,ICMA, pp. 270-3.

Dannenberg, R. B. and D. Rubine. 1995. “Toward Modular,
Portable, Real-Time Software.”Proceedings of the 1995
International Computer Music Conference, ICMA, pp. 65-72.

Fober, D. 1994. “Real-time Midi data flow on Ethernet and the
software architecture of MidiShare.”Proceedings of the 1994
International Computer Music Conference.ICMA, pp. 447-50.

Goto, M., R. Neyama, and Y. Muraoka. 1997. “RMCP: Remote
Music Control Protocol—Design and Applications”,
Proceedings of the 1997 ICMC, ICMA, pp.446-449.

Wright, M. and A. Freed. “OpenSound Control: A New Protocol
for Communicating with Sound Synthesizers.”Proceedings of
the 1997 ICMC.ICMA, pp 101-104.

Young, J. P., and I. Fujinaga. 1999. “Piano Master Classes via the
Internet.”Proceedings of the 1999 International Computer
Music Conference,ICMA, pp. 135-137.


