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1.1 Abstract 
A model of music listening has been automated. A program 
takes digital audio as input, for example from a compact 
disc, and outputs an explanation of the music in terms of 
repeated sections and the implied structure. For example, 
when the program constructs an analysis of John Coltrane’s 
“Naima,” it generates a description that relates to the 
AABA form and notices that the initial AA is omitted the 
second time. The algorithms are presented and results with 
two other input songs are also described. This work 
suggests that music listening is based on the detection of 
relationships and that relatively simple analyses can 
successfully recover interesting musical structure. 

2 Introduction 
When we listen to a piece of music, we pay attention to 

repetition, and we use repetition or the lack of it to 
understand the structure of the music. This in turn helps us 
to anticipate what will come next, remember what we have 
heard, relate the music to other music, and explain or 
develop simple models of what we are hearing. Any 
structural relationship that we perceive, not just repetition, 
functions in the same way. Although not used in the present 
study, pitch transposition is an especially salient 
relationship. 

In my opinion, this is the essence of listening to music. 
We hear relationships of all kinds among different sounds. 
We develop theories or models that predict what 
relationships are important and recurrent. Sometimes we are 
right, and sometimes that is interesting. Sometimes we are 
wrong, and that can be even more interesting. These ideas 
are not at all new (Simon & Sumner, 1968), but it is good to 
repeat them here in a way that emphasizes how simple the 
whole music listening and music understanding process 
might be, at least at some level. 

Starting with this completely simple-minded view of 
what music and listening are about, my question is, can this 
conception of music understanding be modeled and 
automated? In particular, I am interested in recovering 
structure and information from actual audio – not symbolic 
notation, not synthesized examples, but recorded audio as 
found on a CD. 

This project was motivated by music information 
retrieval problems. Music information retrieval based on 
databases of audio requires a significant amount of meta-
data about the content. Some earlier work on stylistic 
classification indicated that simple, low-level acoustic 
features are useful, but not sufficient to determine music 
style, tonality, rhythm, structure, etc. It seems worthwhile to 
reexamine music analysis as a listening process and see 
what can be automated. A good description of music can be 
used to identify the chorus (useful for music browsing), to 
locate modulations, to suggest boundaries where solos 
might begin and end, and for many other retrieval tasks. In 
addition to music information retrieval, music listening is a 
key component in the construction of interactive music 
systems and compositions. (Rowe, 1993) The techniques 
described here show promise for all of these tasks. 

While thinking about the problems of automated 
listening, given the well-known problems of polyphonic 
transcription, I happened to hear a recording of a jazz ballad 
played in the distance. After recognizing the tune, it 
occurred to me that the signal-to-noise ratio of this setting 
was so bad that I could hardly hear anything but the 
saxophone, yet the structure of the music was strikingly 
clear. I wondered, “Could a computer derive the same 
structure from this same signal?” and “If so, could this serve 
as a model for music understanding?” 

3 Related Work 
Many other researchers have considered the importance 

of patterns and repetition in music. David Cope’s work 
explores pattern processing to analyze music, generally with 
the goal of finding commonalities among different 
compositions. (Cope, 1996) This work is based on symbolic 
music representations and is aimed at the composition rather 
than the listening process. Eugene Narmour has published a 
large body of work on cognitive models for music listening. 
In one recent publication, Narmour (2000) explores 
structural relationships and analogies that give rise to 
listeners’ expectations. Narmour quotes Schenker as saying 
that “repetition … is the basis of music as an art.” The more 
elaborate rules developed by Narmour are complex 
examples of structural relationships described here. 
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Simon and Sumner (Simon & Sumner, 1968) developed 
a model of music listening and music memory in which 
music is coded as simply as possible using operators such as 
repeat and transpose. Compact encodings convey structural 
relationships within a composition, so my work is consistent 
with theirs, and is certainly inspired by it. Other researchers 
have noticed that data compression relies upon the 
discovery and encoding of structure, and so data 
compression techniques have been applied to music as a 
form of analysis. An application to music generation is seen 
in work by Lartillot, Dubnov, Assayag, and Bejerano 
(2001). 

Mont-Reynaud and Goldstein (1985) investigated the 
discovery of rhythmic patterns to locate possible 
transcription errors. Colin Meek created a program to search 
for common musical sequences, and his program has been 
used to identify musical themes. (Meek & Birmingham, 
2001) Conklin and Anagnostopoulou (2001) describe a 
technique for finding recurrent patterns in music, using an 
expectation estimation to determine which recurring 
patterns are significant. This analysis relies on exact 
matches. Another approach to pattern extraction is found in 
Rolland and Ganascia (2000). Stammen and Pennycook 
used melodic similarity measures to identify melodic 
fragments in jazz improvisations. (Stammen & Pennycook, 
1993) 

The nature of music listening and music analysis has 
been a topic of study for many years. A full review is 
beyond the scope of this paper, but this list may highlight 
the variety of efforts in this area. 

4 Overview 
The recording initially examined in this work is 

“Naima,” composed by John Coltrane (1960) and recorded 
by his quartet. As an aside, a danger of this work is that after 
repeated exposure, the researcher is bound to have any 
recording firmly “stuck” in his or her head, so the choice of 
material should be made carefully! “Naima” is basically an 
AABA form, where the A section is only 4 measures, and B 
is 8 measures. There are interesting and clear rhythmic 
motives, transpositional relationships, and harmonic 
structures as well, making this an ideal test case for analysis. 

The analysis takes place in several stages. First, the 
melody is extracted. This is complicated by the fact that the 
piece is performed by a jazz quartet, but the task is 
simplified by the clear, sustained, close-miked, and 
generally high-amplitude saxophone lines. Second, the pitch 
estimates are transcribed into discrete pitches and durations, 
using pitch confidence level and amplitude cues to aid in 
segmentation. Third, the transcribed melodic sequence is 
analyzed for embedded similarities using a matrix 
representation to be described. A simple, recursive melodic 
similarity algorithm was developed to be tolerant of 
transcription errors. Fourth, the similarity matrix is reduced 
by removing redundant information, leaving the most 

significant similarities. Fifth, a clustering algorithm is used 
to find groups of similar melodic material. For example, we 
would hope to find a cluster representing the three A’s in the 
AABA structure. Sixth, while interesting, the clusters reflect 
many more relationships than a human would typically 
describe. A final pass works left-to-right (in time order) to 
find an “explanation” for the piece as a whole. 

The following sections describe this analysis in detail. 
The results of each stage are described, leading to a final 
analysis. 

5 Melody Extraction 
After making a digital copy of the entire recording from 

CD, it was observed that the left channel contains a much 
stronger saxophone signal. This channel was down-sampled 
to 22.05kHz and saved as a mono sound file for analysis. 
The manual steps here could easily be automated by looking 
for the channel with the strongest signal or by analyzing 
both channels separately and taking the one with the best 
results. 

Pitch is estimated using autocorrelation to find candidate 
pitches, and a peak-picking algorithm to decide the best 
estimate: Evaluate windows of 256 samples every 0.02s. 
Perform an autocorrelation on the window. Searching from 
left to right (highest frequency to lowest), first look for a 
significant dip in the autocorrelation to avoid false peaks 
that occur very close to zero. Then search for the first peak 
that is within 90% of the highest peak. Sometimes there is a 
candidate at double this frequency that looks almost as 
good, so additional rules give preference to strong peaks at 
higher frequencies. Details are available as code from the 
author; however, the enhanced autocorrelation method 
(Tolonen & Karjalainen, 2000), unknown to us when this 
work was started, would probably give better results. 
Furthermore, there are much more sophisticated approaches 
for dealing with pitch extraction of melody from polyphonic 
sources. (Goto, 2001) 

Figure 1 illustrates the waveform and an associated pitch 
contour. 

 

 
 

Figure 1. “Naima” left channel from CD recording 
amplitude (top) and pitch contour (bottom). The lines that 
descend to the bottom represent locations where no pitch 
was detected, reported and plotted as zero values. The 
middle of the piece is a piano solo where very little pitch 
information was recovered. An ascending scale is clearly 
visible at the end of the piece. 
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6 Transcription and Segmentation 
The next step is to create a list of discrete notes. RMS 

amplitude information is derived from the original signal by 
removing frequencies below 200 Hz, computing the RMS 
over non-overlapping, square windows of duration 0.01s. 
The transcription works by looking for consecutive, 
consistent pitch estimates. We step one pitch estimate at a 
time, but look at overlapping groups of 15 estimates to help 
deal with noise and error. At each step, a group of 15 
pitches is retrieved (corresponding to a time interval of 
0.3s). Pitch estimates where the RMS value is below a 
threshold are considered unreliable, so they are forced to an 
erroneous value of zero. The pitches are then sorted. If 2/3 
of the data falls in a range of 25 cents, then the pitch is 
deemed to be stable, marking the beginning of a note. 
Consecutive samples are processed similarly to find the 
extent of the note: if 5 of 15 estimates differ by less than 25 
cents, and the median of these is within 70 cents of the start 
of the note, then we extend the note with the median of the 
new group of estimates. When the end of the note is 
reached, we report the pitch as the median of all the pitch 
estimates up to the first 1s of duration. This helps to ignore 
pitch deviations sometimes encountered near the beginnings 
of notes. 

To avoid problems with absolute tuning differences, all 
pitches are kept as floating point numbers giving fractional 
semitones. To transcribe the data, a histogram is contructed 
from the fractional parts of all note pitches, quantized to 10 
cents. The peak in this histogram indicates the difference 
between the tuning reference used in the recording and the 
A440 reference used in our analysis. This will also 
compensate for any systematic error or rounding in our 
admittedly low-resolution pitch estimation procedure. 

Figure 2 illustrates the note transcription as a plot of 
pitch vs. time. The transcription does not include any 
metrical information. 

7 Finding Similarities 
The next step begins the interesting task of looking for 

structure in the data obtained so far. A melodic similarity 
matrix, Mi,j is defined as the duration of similar melodic 
sequences starting at all pairs of notes indexed by i and j. 
We will assume a sequence of n notes is described by pitch 
pi and duration di, ni <≤0 . If pitches do not match, then M 

is zero: pi ≠ pj → Mi,j = 0, so much of M is zero. Non-zero 
entries indicate similarity. For example, the second 4 
measures repeat the first 4, starting at the 7th note. M0,6 = 
14.62 (seconds), the duration of the matching 4-measure 
repetition. 

 

 
 

Figure 2. Transcription of “Naima.” The saxophone at 
roughly the first and last thirds of the piece is transcribed 
fairly well, with only some short notes missing. The piano 
solo in the middle third is almost completely missed. 

7.1 Melodic Similarity 
A simple algorithm is used for determining the duration 

of matching melodic sequences, inspired by Mongeau and 
Sankoff (Mongeau & Sankoff, 1990). The two sequences to 
be compared are processed iteratively: if some initial part of 
sequence 1 matches some initial part of sequence 2, the 
initial parts are discarded and the remainders are compared 
in the next iteration. Matches occur when: 
• the pitches of two notes match and either their durations 

or inter-onset-intervals (IOI) agree within 20% or 0.1s. 
• a match occurs as just described after skipping one note 

of either melody, or one short note (< 0.6s) in each  
melody. 

• two notes of either or both melodies have matching 
pitches, and when merged together, lead to matching 
durations (within 20%). 

This algorithm is applied to every pair of non-equal note 
positions. Since the matrix is symmetric, we store the length 
of the matching sequence starting at i as Mi,j and the length 
of the matching sequence starting at j as Mj,i. 

7.2 Simplification  
If location i,j represents similar sequences, then i+1,j+1 

will probably represent similar, but shorter, sequences, the 
same sequences starting at i,j, excepting the first notes.  
Since this is uninteresting, or at least less significant than i,j , 
we want to remove these entries from M. The algorithm is 
simple: determine the submatrix Mi:u,j:v that corresponds the 
matching sequences at i and j, i.e., the sequence at i runs to 
note u, and the sequence at  j runs to note v. Set every entry 
in the submatrix to zero except for Mi,j. This simplification 
is performed on half the matrix, and the other half is zeroed 
symmetrically about the diagonal. 

In addition, we are not interested in matching sequences 
that contain only one note, so these are also zeroed. 

8 Clustering 
After simplifying the matrix, we have all pairs of similar 

melodic sequences. What if a sequence is repeated more 
than once? If we scan any row or column, all non-zero 
entries represent the beginnings of similar sequences. Why? 
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Because each entry denotes a similarity to the sequence 
starting at the given row or column. We can use this fact to 
construct clusters of similar sequences. A cluster will be a 
group of melodic sequences that are all similar to one 
another. 

The algorithm scans each row of M. At the first non-zero 
element, we note the duration, construct an empty cluster, 
and insert the corresponding pair of sequences into the 
cluster. Continuing to scan the row, as each non-zero 
element is found, and if the duration roughly matches the 
first one (within 40%), we insert the sequence 
(corresponding to the current column) into the cluster. If the 
duration does not match, the element is ignored. The cluster 
is complete when the end of the row is reached. To keep 
track of what sequences have been inserted into clusters, we 
zero all combinations; for example, if the cluster has 
sequences starting at i, j, k, then we zero locations i,j, j,i, i,k, 
k,i, j,k, and k,j. Scanning continues on the next row until the 
entire matrix has been scanned. 

Figure 3 illustrates the clusters that were found. A 
horizontal line denotes a cluster, and the (always non-
overlapping) sequences contained in the cluster are 
indicated by thick bars at the appropriate times. The vertical 
position of a cluster line has no meaning; it is chosen to 
avoid overlap with other clusters. For example, the bottom 
line has 4 thick bars. These correspond to the “A” sections 
in the opening AABA form. The fourth element of the 
cluster corresponds to the “A” section when the saxophone 
enters with BA after the piano solo. Already, the clusters 
express a rich fabric of relationships, many of which would 
be described or at least noticed by a human listener. 
Included within these relationships is the information that 
the structure is AABA and that the melody returns after the 
solo with BA rather than AABA and that the last 2 measures 

are repeated three times near the end. However, the 
information is not very clear, and there is a lot of detail that 
is confusing. In the next section, I show how this can be 
simplified considerably. 

9 A Simplified Representation 
The goal of this final step is to produce an “explanation” 

of the entire piece in terms of structural relationships. This 
is a non-hierarchical explanation and it only presents one 
possible explanation of the material, thereby achieving a 
great simplification over the clusters, which provide for 
essentially every possible explanation. Rather than an 
explanation, you can think of this as a parsing algorithm. 
The output will be a string of symbols, e.g. AABA, 
representing musical structure, but unlike a typical parsing, 
the grammar is unknown, and the symbols are generated by 
the algorithm rather than being defined in a grammar. 

The procedure uses an incremental “greedy” algorithm: 
proceeding from left-to-right, explain each unexplained 
note. An “explanation” is a relationship, i.e. “this note is 
part of a phrase that is similar to this other phrase.” If the 
explanation also explains other notes, they are marked as 
such and not reexamined (this is the greedy aspect). 

More specifically, we start with the first note, and all 
notes are initially marked as “unexplained.” Search for a 
cluster that contains the first note in one of its sequences. 
Create a new symbol, e.g. “A,” as the label for all notes in 
the cluster and mark them. Once a note receives a label, the 
label is not revised. Now, find the next unmarked note and 
repeat this process until all notes are marked or “explained”. 
Any notes that are not covered by any cluster are ignored. 

Figure 4 illustrates the results of this step. Rather than 
using letters, different shadings are used to show the labels 
graphically. We have mentioned the AABA structure many 

 

 
 

Figure 3. Each horizontal line represents one cluster. The elements of the cluster are indicated by heavy lines, showing the 
locations of similar melodic sequences. The melodic transcription shown at the bottom. 

 

 
 

Figure 4. Simplified structural representation of “Naima,” shown below the transcription. Similar sections are shaded similarly. 
The letter labels were added by hand for illustration purposes. Some of the sections in the middle reflect a spurious similarities 
between parts of the piano solo. 
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times in this paper. Looking at Figure 4, the initial AA is 
indicated by the leftmost two rectangles. The B section is 
actually composed of the next 3 rectangles, showing 
substructure of the bridge (which in fact does have the same 
b1b1b2 structure shown here). Next comes the final A 
section, indicated by a shading that matches the first and 
second rectangles. The rectangles representing BA are 
repeated when the saxophone returns after the solo. Thus, 
the program derives almost exactly the same high-level 
description a jazz musician would use to describe the 
structure, without any prior knowledge or grammar of an 
acceptable description! It would be trivial to use a tree-
matching or parsing scheme to map the actual data onto a 
standard form (including AABA) and then produce a 
hierarchical description. (“B is structured as b1b1b2.”) 

Further analysis could be applied to the durations of 
these patterns or motives. It is clear by inspection that the 
ratios of durations of the AAb1b1b2A form is 221122. There 
is no way to tell that the unit here is 2 measures, but this 
would at least give candidates for beat durations that might 
help a beat-tracking algorithm. Also, the fact that these add 
up to 10 rather than 8 or 16 is interesting, an observation 
that a program could easily make if it knew a few 
conventions about song form. 

10 Evaluation With New Input 
This analysis method works well for “Naima,” which is 

to be expected. After all, the system was built specifically 
for this piece, and was modified to overcome problems as 
they were encountered. What about other input? I tested the 
analysis system with two other songs: “Freddie the 
Freeloader,” a jazz standard by Miles Davis, and “We Three 
Kings,” a popular Christmas Carol by John H. Hopkins. 
These were played on trumpet and violin, respectively. 
Because the interesting part of the work is in the analysis 
rather than the polyphonic signal processing, these two 
performances are monophonic. To be fair, these are the first 
test cases after “Naima” (there was no search for good 
examples), and the software was not altered or tuned at all 
to prepare or tune the system for new input. 

“Freddie the Freeloader” is a standard 12-bar blues with 
a simple repeating figure. It was performed by the author, an 
experienced jazz trumpet player, with a moderate amount of 
expression including expressive pitch deviations and 
articulation. The transcription and analysis are shown in 
Figure 5. At first, this result was disappointing. It only 
seems to show the riff in the first two measures repeating in 
measures 3-4 and measures 7-8. Upon closer inspection, 
more structure is revealed. The 12-bar form was played 
twice, with a change in the last 2 measures the second time. 
This created a cluster representing 12 bars repeated twice 
(the small variation was ignored). When the simplification 
algorithm looked for an explanation of measure 5, it found 
this overarching cluster. Thus the explanation of measure 5 
is that it is part of a 12-measure sequence that repeats. This 

ends the explanation because all 24 measures are covered by 
it. Since measures 1 through 4 of the 12-measure sequence 
were already explained in terms of a different cluster, it was 
surprising to see that the program chose the 12-measure 
sequence to explain measure 5. In “Naima,” the clusters do 
not overlap. Nevertheless, the result makes sense and has a 
hierarchical interpretation: the piece consists of 12 measures 
repeated twice. Within each 12 measures, there is additional 
structure: the first 2 measures are repeated at measures 3-4 
and 7-8. (Although transposition relationships are not 
studied here, it is interesting to note that measures 5-6 are a 
simple transposition of measures 1-2.) 

 

 
 

Figure 5. Analysis of “Freddie the Freeloader,” a repeated 
12-bar blues form. Audio is at top, transcription is in the 
middle, and the structural “explanation” is at the bottom. 
The structure shows a repeated riff (3 times) and the 
repetition of the entire 12-bar blues form. 

The Freddie the Freeloader example is successful in that 
it reveals all the structure that can be obtained by 
considering repetition, including hierarchal relationships 
that the software was not intended to find. This example 
illustrates the importance of hierarchy, and future work 
should explicitly allow for hierarchical structure discovery. 
This example also illustrates some of the danger of “greedy” 
algorithms. In this case, the simplification algorithm 
destroyed some potentially interesting structure, namely the 
recurrence of the first two measures at measures 13-14, 15-
16, and 19-20. Fortunately, this is redundant information in 
this case. More work is needed to rank relationships 
according to their importance though. 

“We Three Kings” is a 32-measure form. An amateur 
student performed it on solo violin. If we were to consider 
only 4-measure groups, the form would be AABCDDED. 
The analysis, shown in Figure 6, comes close to revealing 
this structure. The AA repetition is found, as is the first DD 
repetition. Interestingly, the program found a similarity 
between B and E. Any listener would probably agree these 
sections are similar, sharing some pitches and having similar 
arch shapes. The program also found a similarity between 
part of C and part of the final D, thus it did not label the 
final 4 measures correctly. 

It should be emphasized again that the input is audio. No 
parameters were adjusted in the pitch analysis software, so 
there are transcription errors. No beat detection is 
performed, so the program does not have the knowledge of 
beats or bar lines. Nevertheless, the overall analysis is quite 
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good, identifying the more important motives A and D, and 
organizing them within the 32-measure form. 

 
 

Figure 6. Analysis of “We Three Kings.” Audio is at top, 
transcription is in the middle, and the structural 
“explanation” is at the bottom. The structure shows a 
repeated passage (vertical bars) at the beginning and a 
different repetition (black) in the middle. The contrasting 
arch-shaped phrases are not literal repetitions, but were 
found to be similar (diagonal \\\). 

Overall, the performance of this analysis software is 
quite good. The works chosen for analysis are not difficult 
cases, but on the other hand, the program was not modified 
or adapted to cope with new problems that arose. To make 
this a meaningful test, “Freddie” and “We Three Kings” are 
the first test cases after “Naima.” Thus, the algorithm could 
be expected to give similar performance on comparable 
pieces.  

11 Future Work 
Further work is required to consider other relationships. 

For example, in “Naima,” there is a rhythmic motive that 
occurs frequently, making connections between the A and B 
parts, and there is a descending pattern in the second half of 
the B part where essentially the same figure is repeated at 
different transpositions. It should not be too difficult to 
detect these relationships, if the notes are detected. (In the 
present example, some of the shorter notes of the figures are 
not always transcribed.) The difficult problem seems to be 
deciding what relationships are important and which take 
priority. Conklin and Anagnostopoulou (2001) looked at a 
statistical measure for the repetition of a pattern by chance 
as a way to decide if a relationship is significant or not, and 
perhaps similar techniques could be applied here. 

This work could benefit from better transcription tools. 
As mentioned earlier, there is work that already 
demonstrates impressive performance on much more 
difficult transcription tasks. Another possibility is to apply 
polyphonic transcription and look for harmonic 
relationships within a polyphonic preformance. We are 
pursuing this idea now, using a transcription system created 
by Matija Marolt (2001). We plan to perform an analysis 
very much like the one described here but using harmonies 
rather than pitches. This will require a similarity measure 
for harmony and ways to combine outputs from the 
transcriber into harmonic regions. It will be interesting to 
see what this approach does with the piano solo in “Naima.” 
(Our simple pitch analysis detected very little of the piano 
solo, so the music analysis is mostly vacant during the solo 

section, but Marolt’s system captures and transcribes much 
of the polyphonic piano solo.) 

It is important to try this work on a wider range of pieces 
and to work on techniques that work robustly with all kinds 
of music. It may be unreasonable to expect a machine to 
“understand” music as well as humans, but we want the 
system to be as general as possible. This work might be 
extended to handle a broader range of pieces. 

It is not at all clear that the algorithms presented here are 
the best for the task. In fact this work was originally 
intended as a proof-of-concept demonstration, and it was 
surprising to see how well it works. An improved version 
should use a more reliable measure for melodic similarity 
(Mazzoni & Dannenberg, 2001) and should be less eager to 
throw out entries in the similarity matrix. Perhaps a 
hierarchical or lattice-based representation of similarities 
would be better. Finally there is much more that can be done 
in terms of harmonic analysis, melodic tension and 
resolution, and rhythmic structure. 

12 Conclusions 
Listening to music is a rich human experience that no 

computer model can fully replicate. However, some of the 
principle activities and by-products of music listening may 
be subject to modeling with simple mechanisms. 
Specifically, music listening involves the recognition of 
patterns and relationships. The most important relationship 
is repetition. This work demonstrates how a model of 
musical listening can be constructed upon the idea that 
musical repetition gives rise to structural relationships. 
Listening is largely a matter of finding and organizing these 
relationships in order to construct an “explanation” of the 
music in terms of how each part relates to some other part. 
This model is realized by a fully automated music analysis 
system that accepts audio as input and produces a structural 
description as its output. Motives are identified, and the 
structural description tells how a small set of motives can be 
ordered and repeated to form the music as a whole. This 
information reflects common notions of musical description, 
including abstract form (e.g. AABA), identification of 
common themes or motives, and the temporal organization 
of phrases into 4-, 8-, 12-, and 16-measure groups. 

The analysis system has been demonstrated on three 
examples that include jazz and popular melodies, and in all 
cases the analysis is quite close to a standard interpretation. 
Given the difficulties of acoustic analysis, it is quite 
remarkable how well the system produces explanations of 
structure within these examples. Currently, the system is 
somewhat limited by the quality of transcription. With 
improvements to transcription, future enhancements should 
allow the identification of transposition as a relationship, 
thus providing an even more detailed and complete analysis. 
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