

*Originally published as: Roger B. Dannenberg, “The Nyquist Composition Environment: Supporting Textual Programming with a Task-
Oriented User Interface,” in Proceedings of the 2008 International Computer Music Conference, San Francisco, CA: The International
Computer Music Association, August 2008. © 2008, Roger B. Dannenberg.

THE NYQUIST COMPOSITION ENVIRONMENT:
SUPPORTING TEXTUAL PROGRAMMING WITH A TASK-

ORIENTED USER INTERFACE*

 Roger B. Dannenberg
 Carnegie Mellon University

School of Computer Science
Pittsburgh, PA, USA

ABSTRACT

Nyquist is a programming language for sound synthesis and
music composition. Nyquist has evolved from a text-only
programming language to include an integrated
development environment (IDE) that adds graphical support
for many tasks. Nyquist is also hosted by Audacity, a
widely used audio editor that can invoke Nyquist functions
written in the form of scripted plug-ins. This article shows
by example how task-oriented interface design can augment
a text-based language.

1. INTRODUCTION

Nyquist is a programming language for sound synthesis and
music composition. It has evolved continuously since its
first version in 1989 [2]. Although the basic Nyquist engine
has remained the same since 1993 [3], the program as it
appears to users has undergone quite a few changes. In
particular, the text-based language is now supported by an
extensive integrated development environment (IDE). The
goal of this paper is to provide an update on these
developments and to illustrate how graphical interfaces can
work to support a text-based computer music system.

One might view these developments in the context of work
by Eaglestone, et al. [6] on cognitive styles and the design
of electroacoustic music software. This work suggests that
some composers will feel more comfortable working with,
for example, text-based systems, and others will be attracted
to direct manipulation graphical interfaces. An integrated
system that supports different cognitive styles might be
easier to use and support a wider range of users.

I will begin with an overview of the basic concepts of
Nyquist for readers who are not familiar with Nyquist or
early articles describing it. Sections 3 through 5 describe
new features of Nyquist and the Nyquist IDE. Subsequent
sections describe implementation choices, the Audacity
environment, and future work. A concluding section
summarizes what we have achieved and learned.

2. NYQUIST BASICS

Nyquist is fairly unique among sound synthesis languages
in that it adopts a strongly functional style of programming
(but see also the Faust language [11]). In particular,
synthesis in Nyquist is performed by functions that operate
on virtual streams of audio samples. Other synthesis
systems do create a similar illusion; for example, unit
generators in csound [16] appear at first glance to be
functions operating on streams. However, closer
examination reveals that csound “streams” are really blocks
of samples, and unit generators are not functions but
procedures that read from sample blocks and store results to
sample blocks.

In Nyquist one can write in a functional style:
osc(pitch) * env(0.1, 0.2, 0.3, 1, 0.5, 0.2)

In this case, it is fairly easy to show that this can be
compiled to a more procedural form, where osc, env, and *
are unit generators and b1, b2, b3 are sample blocks:

b1 = osc(pitch)
b2 = env(0.1, 0.2, 0.3, 1, 0.5, 0.2)
b3 = b1 * b2

This, in a nutshell, is the difference in terms of language
design and semantics between Nyquist and csound (or your
favorite Music N language).

The functional form of Nyquist sound synthesis expressions
has some very interesting features. Sounds in Nyquist are
values that can be passed as parameters, stored in variables,
and returned from functions. While Music N sounds only
exist as a small buffer of samples representing the current
instant of time, Nyquist sounds are accessible at any time
and fully reusable.

The functional style encourages modular programs and
allows users to extend the system with their own set of
personal “unit generators” or synthesis instruments. It is
true that csound (and Music N) programs allow users to
define instruments using an “orchestra” language, but
instruments can only be invoked from a score, whereas

2

Nyquist makes no distinction between scores and
orchestras. Thus, instruments can be defined in terms of
other instruments, and scores can be nested hierarchically.
This generality leads to great flexibility for composers. For
example, a control envelope can extend over the duration of
a score such that timbres of sound objects in the score
evolve according to the overarching control envelope.

To accomplish all this, Nyquist uses a sophisticated lazy
evaluation scheme: sounds are only computed on demand.
Sounds are represented as a linked list of sample blocks to
avoid the need to keep entire sounds in memory. Normally,
sounds are not computed until a play command is executed,
and sounds are computed incrementally, with garbage
collection recycling samples that are no longer needed in
memory. The result is that very little memory is required
even when long sounds are computed. Although the internal
mechanisms are quite complex, the user's view is clean and
elegant, and the execution speed is considerably faster than
existing Music N implementations [5].

3. THE EVOLUTION OF NYQUIST

Originally, Nyquist was a command-line-only program that
extended a small Lisp interpreter, XLISP. Users typed in
expressions or loaded files, and results were written to
sound files or printed on the console. I started teaching
classes with Nyquist in 2002, and immediately, student
feedback showed a desire to make Lisp programming
easier. Ning Hu implemented an integrated development
environment (IDE) for Nyquist on Microsoft Windows
including syntax-directed editing and the ability to plot
signals. This served as a model for a cross-platform Java-
based IDE originally written by students Chris Yealy and

Derek D'Souza.

The presence of a Java-based IDE has led to many new
developments. Increasingly, Nyquist is serving as a
“rendering engine” controlled at a higher level using
graphical design tools in the IDE. In parallel, Nyquist has
been extended with new synthesis capabilities including
ports of STK [1] instruments, linear prediction, piano
synthesis, digital audio effects, a Minimoog emulator, and
new libraries for algorithmic composition.

The most recent development is an implementation of SAL,
a language based on standard functional notation, infix
operators, and familiar-looking control constructs such as
loops and if-then-else. Now, users who are put off by Lisp
syntax may find Nyquist more accessible and easier to
learn.

The thesis of this paper is that a task-oriented working
environment can improve the usefulness of a language (like
Nyquist) for sound synthesis and music composition. In
other words, there can be synergy between a language and
the environment in which it is used. This should be no great
surprise, as other systems such as Max MSP [18] and
SuperCollider [9] certainly benefit from their development
environments. In addition, several non-real-time synthesis
and composition systems incorporate graphical controls and
interfaces to complement text-based programming.
Examples include Cecilia [12] and Siren [13]. Still other
languages and systems have focused on graphical rendering
of compositions and musical data, including SEE [7],
Audicle [17], and FOMUS [14]. This paper will concentrate
on describing new features of the Nyquist development
environment. This work suggests that we think about how
visual interfaces, task-oriented support tools, and language

Figure 1. The Nyquist IDE.

3

design can be further coordinated and extended to provide
better computer support for creative activity.

4. THE NYQUIST DEVELOPMENT
ENVIRONMENT

The main impetus behind Nyquist’s new trajectory has been
the IDE (Integrated Development Environment), which
adds an interface layer between the user and Nyquist. In the
beginning, the IDE provided only an integrated text editor,
graphical display of waveform and control functions, and
some menus and buttons for common commands. Figure 1
illustrates these features of the IDE. Commands are typed in
the upper left text-entry box, with “hints” displayed just
below, and a typescript of Nyquist output is displayed at the
lower left. Additional text windows are for editing files.
Buttons perform commands such as “save the current file
and load it into Nyquist,” and “break from the interactive
debugger and return to command entry.”

The IDE introduced the idea that communication with
Nyquist could be mediated through a graphical user
interface. This in turn has inspired many new features. Most
of the IDE features are oriented around specific tasks that
users have felt could be supported better through graphical
interfaces than by text-based data and program entry.

4.1. Command Completion and Hinting

One interesting feature is command completion or “hinting”
that examines text as the user types it. A list of Nyquist and
XLISP functions are searched, and the full names and
parameter names or matching functions are displayed as
suggestions to the user. For example, in Figure 1, when the
user types step, the Completion List window just below
displays:

hz-to-step(freq)
step-to-hz(pitch)

The user can then click on a line to enter the expression
where the user is typing (expanding step to a complete
function call). If the user right-clicks on the hint, the
reference manual entry for the function is displayed in a
browser. Since the IDE includes an editor for SAL and
LISP files, the command completion operates during file
editing as well as for command entry. The function lists are
extracted automatically from the documentation, and
translated automatically into either SAL or LISP syntax
based on what the user is typing. This facility, originally
implemented by my student, Austin Sung, has been a great
help to novices and experienced users alike.

4.2. Envelope Editor

 An example that provides graphical editing to augment
text-based programming is the Envelope Editor. Nyquist
provides a number of envelope functions for piece-wise
linear, piece-wise exponential, and a few other forms of
general shapes described by parameters. As might be

expected, many users find it clumsy to edit numbers rather
than editing a graphical representation. The Envelope
Editor, a built-in component of the IDE, is a simple but
flexible tool for this task. Envelopes created here are
automatically converted to/from text representations, and
can be edited in either form. Then, they can simply be
referenced by name whenever the envelope is needed in a
Nyquist program. Figure 2 shows the Envelope Editor,
which opens as a sub-window within the IDE.

An important part of the design is the interface between
graphical object editors and text programming. In the
Nyquist IDE, editable objects are generally named by the
user, so in Figure 2 you see a box (upper left) to name or
rename an envelope, and a drop-down menu (upper right) to
select by name and edit a different envelope. After clicking
the “Save” button, the user can access the edited envelope
as a function, e.g. by calling env-1().

Figure 2. The Nyquist IDE Envelope Editor.

Envelopes have a double life: they are callable as functions
but editable as data, both graphically and as text. This raises
several questions: Where are envelopes saved when Nyquist
exits? How is data accessed by the IDE, by a text editor,
and by Nyquist programs? The data (mainly breakpoint
coordinates) for all envelopes are stored in the Nyquist
process as a list. Each envelope is also defined in LISP as a
function.

When the Envelope Editor is opened, it tells the Nyquist
process to print the data, and it “spies” on Nyquist’s output
to capture the envelope data. Each time the user clicks the
editor’s “Save” button, the modified envelope data is sent
back to Nyquist. Within the Nyquist process, envelope
updates are stored as data on a list and also redefine the
corresponding function, e.g. env-1().

Finally, when Nyquist exits, the envelope data is preserved
(as textual data) in a file called the workspace. This is a
general mechanism for saving any data, including scores,
from one run of Nyquist to the next. User desiring access to
the text can easily save the workspace, edit envelopes as

4

text, and reload the workspace to update the envelope
function definitions. The IDE monitors workspace activity
and tries to help the user avoid mistakes. For example, if the
workspace is not loaded before opening the envelope editor
(which might prevent a synchronized view of data in the
LISP and IDE worlds), a warning is issued, and the IDE
offers to load the workspace.

4.3. EQ Editor

 Equalization and filter design is another task that can be
supported by graphical tools. While “old school” users may
be comfortable typing and fine-tuning equalizer gains as
text, Nyquist users can now call up an editing window to
specify multi-band equalization. Figure 3 shows the EQ
editor.

Figure 3. Equalizer interface from the Nyquist IDE.

As with the envelope editor, the EQ editor communicates
with the Nyquist process to maintain a consistent view of a
set of equalizers. In this case, equalizers are numbered, and
the user applies an equalizer by calling, e.g. eq-0(sound-
expression).

4.4. Browser

Nyquist has a number of different instrument definitions
and libraries. While in the past, contributions were simply
added to sub-directories named “demos” and “lib” included
in the release, there is now a user-friendly browser that
offers an index to sounds and examples. The browser (see
Figure 4) uses Nyquist to synthesize sound examples.
Examples are parameterized, and the browser displays
sliders so that users can experiment with different settings.
Code for any example is displayed, and it is easy to copy
and save code, including custom parameter settings, for use
in a composition. The browser works by loading a text
description of examples; it is simple to extend the system by
adding new descriptions for new sounds.

This is another way to bridge between a textual and a
graphical environment. New users and novices can see
directly how the graphical menu, slider, and audio interface
are implemented in terms of text-based programs and
commands. Everything is organized as an invitation to new
users to probe deeper and to learn by doing and by example.

Figure 4. Sound Browser in the Nyquist IDE.

4.5. Preferences

 Nyquist has many settings and options, generally controlled
at the lowest level by setting global variables or calling
functions. For example, the default sound sample rate is set
by calling the function set-default-sound-srate.
Many of these options are now easy to find and change in
the “Preferences” window of the IDE. In addition to making
changes in system behavior, settings are saved and restored
each time the user runs Nyquist. This could always be
accomplished by creating a custom initialization file loaded
by Nyquist at start-up time, but in practice, few people ever
did this, whereas users find it easy to customize the system
now. Figure 5 illustrates the Preferences dialog window.

Figure 5. The Preferences window from the Nyquist
IDE.

5

5. SAL

 Basing Nyquist on Lisp has been a mixed blessing. On the
one hand, the XLISP interpreter at the core of Nyquist has
proven to be very portable, small, extensible, and free of
any licensing fees. Lisp has also facilitated the
implementation of some of the advanced features of
Nyquist, including lazy evaluation of sounds and automatic
garbage collection. On the other hand, many potential users
have asked for a more familiar language. Although Lisp has
many proponents, even most Lisp programmers will admit
that infix operators for math would be nice, and fewer
parentheses could enhance readability. The solution now
being explored is SAL, a programming language designed
by Rick Taube for his Common Music system. [15] To
support SAL, Taube’s SAL compiler was ported to XLISP
and a “SAL mode” was added to the IDE to help users by
highlighting keywords, suggesting proper indentation,
offering “hints” in SAL syntax, and automatically running
the SAL compiler when SAL commands are entered or SAL
program files are loaded. Figure 6 shows a Nyquist program
in both Lisp and SAL for comparison.

;; a Nyquist/Lisp example

(defun ex5 ()

 (play (seq (stretch 0.25

 (seq (env-note c4)

 (env-note d4)))

 (stretch 0.5

 (seq (env-note f4)

 (env-note g4)))

 (env-note c4))))

;; a Nyquist/SAL example

define function ex5()

 play seq(seq(env-note(c4),

 env-note(d4)) ~ 0.25,

 seq(env-note(f4),

 env-note(g4)) ~ 0.5,

 env-note(c4))

Figure 6. Example program in Lisp and SAL.

SAL is not completely independent of either Common
Music or Nyquist, so there are some differences in the two
SAL implementations. Some things supported in Common
Music, in particular the process, are absent from Nyquist,
and therefore there is no define process construct in
SAL for Nyquist. On the other hand, Common Music does
not support signal processing, so a bit of new syntax has
been added to express Nyquist-specific concepts. One
example, shown in Figure 6, is the addition of infix
operators for stretch (~) as well as shift (@). These operators
come from Arctic [3], the language that inspired Nyquist.
(One might ask: Why not use Arctic syntax throughout
instead of SAL? The answer is that SAL was designed as a
replacement for Lisp syntax, so it maps nicely onto existing
Lisp function names, control constructs, and data types.
Arctic could probably serve as the basis for a new syntax
for Nyquist, but it seemed wiser to build upon SAL’s
successful introduction in Common Music.)

6. Open Sound Control

 Another recent extension to Nyquist is a basic facility for
controlling Nyquist sounds via Open Sound Control (OSC).
Since all signal processing and control is based on the
SOUND datatype, Nyquist offers a function, snd-slider,
that creates a sound whose value is determined in (near) real
time by OSC messages. The idea is that there is an array of
virtual sliders that can be set by OSC (or the IDE) and read
by Nyquist. This allows Nyquist sounds to be controlled by
external physical devices or programs. In the spring of
2007, students in my Introduction to Computer Music class
collaborated with students in Pamela Jenning's course on
Physical Computing to build physical controllers connected
to Nyquist synthesis algorithms. For this work, PIC
microcontrollers sent serial data over USB to a computer
running a simple serial-to-open-sound-control program
(included in the Nyquist distribution), which then
transferred data via OSC to Nyquist. Nyquist is not really
designed to be a real-time program, so latency tends to be
high, but it is nonetheless very powerful for prototyping or
for getting values from the real world into Nyquist.

7. IMPLEMENTATION

Nyquist runs on Windows, Macintosh, and Linux systems.
The Nyquist IDE is implemented in Java. This may seem a
strange choice given that Nyquist is created with C and
Lisp. Are three languages really necessary? In retrospect,
Java was a very good choice. One could argue about the
best system, but the cross-platform GUI-building tools are
at least powerful, well-documented, and generally familiar
to students. There are thousands of code examples on the
web that are easily searchable. Another very important
feature is Java’s exception-handling. Especially in GUI-
intensive programs, bugs can often be survived simply by
handling an exception and continuing to run. With garbage
collection, Java is very forgiving of failures to release
memory structures and resources. As new components are
added to the IDE (bugs included), the overall IDE continues
to operate reliably. We do not recommend creating or re-
leasing buggy systems, but it is much better when bugs do
not result in a sudden program exit while users are at work.
Java has the drawback of unreliable realtime performance,
but this is also an issue with Nyquist and not really
necessary for the Nyquist IDE. Overall, the typical
performance feels very responsive.

8. AUDACITY AND NYQUIST

Audacity [10] has become an extremely popular audio
editor. It includes a copy of Nyquist, disguised as a plug-in
scripting language. Users can write Nyquist expressions to
generate or process sounds, which are streamed from user-
selected regions of sound files into Nyquist and back into
Audacity. There are plug-ins to help label silence and
segment recordings, to generate custom fades, to create
tones, perform granular synthesis, etc. This facility is

6

completely independent of the Nyquist IDE, but it is worth
mentioning because it is an alternative working
environment. Audacity is excellent for editing and viewing
digital audio, but the support for language-based synthesis
and composition is very limited. Some people find the
ability to load and view sounds very important to their
development process and are willing to forgo the IDE to
gain access to the editing functions of Audacity.

With Audacity and the Nyquist IDE, we see two ways of
working. In Audacity, the focus is on audio; preparing
Nyquist programs is an external function. With the IDE, the
focus is on program development; viewing or editing audio
is an external function. Obviously, some way to integrate
the processing of audio via programming and via direct
manipulation editors could be of great value.

9. FUTURE WORK

Nyquist and its IDE have come a long way, but there are
still many additions envisioned. There have been several
attempts to create some sort of time-line based graphical
composition interface. One of these was based on the UPIC
system, with very encouraging results. The prototype was
created in C++ for Windows, so it is not integrated with the
Nyquist IDE. Hopefully, there will be a port to Java so that
a UPIC-like interface will be available within the current
environment. Another student project created a prototype
for a graphical score editor where boxes representing sound
objects are placed along a time line, similar to the Animal
system. [8] This prototype requires further development to
be really useful.

Another score-like interface could be introduced for drum
patterns. Currently, Nyquist includes a simple text
representation for entering rhythmic patterns and assigning
them to drum sounds, and there is a nice library of drum
samples created by Phil Light. An effective and flexible
graphical editor for drum patterns along with some libraries
of ready-to-use patterns would be useful to many.

There are more graphical interface tools that could be
introduced. Mechanisms for a slider interface exist, but are
not yet supported by the GUI. Ideally, one should be able to
link instrument parameters to graphical sliders to assist in
fine-tuning sounds. This is already possible in the Sound
Browser shown in Figure 4, but these sliders are configured
within the IDE and are not convenient for developing new
sounds. Furthermore, it is already easy to simply edit text
and reload code, so to be of any use, a slider interface must
be very simple and efficient to set up.

The Open Sound Control Interface has demonstrated that
near-real-time interaction is possible with Nyquist. With a
few more primitives for real-time interaction (perhaps
modelled on those of csound), it could be interesting to
support MIDI interfaces for control, especially to extend the
working environment with physical knobs, sliders, and
other controllers. Along those lines, the mouse and

computer keyboard can also be used as effective controllers
with the right support from the IDE.

10. CONCLUSIONS

Nyquist has evolved from a very powerful but rather hard-
to-use text-based programming language to a powerful
environment for composition and sound synthesis. Our
experience indicates that a task-oriented interface can
greatly enhance the usability of a language like Nyquist. It
is interesting that some “tasks” are not expected ones such
as designing an envelope or a filter, but programming tasks
such as finding the correct name and parameter list for a
function or balancing parentheses. The Nyquist IDE syntax
editor and hinting mechanism are relatively simple
programs, building upon existing text objects and
documentation processors, but the support for even
experienced Nyquist programmers is substantial. As
Nyquist gains more widespread use, especially as a
scripting language for Audacity, the IDE helps by providing
examples, showing connections between graphical
manipulation and text-based control, and by assisting with
language syntax. This in turn makes Nyquist more
accessible to more users. Users, especially students, have
made great suggestions for improvements and implemented
many of them. Thus, Nyquist and its development
environment continue to grow in response to perceived
needs and helpful contributions.

11. ACKNOWLEDGEMENTS

Nyquist would not exist without the contributions of many
students and collaborators, including: Chris Fraley, George
Polly, Peter Velikonja, Dean Rubine, Joe Newcomer, Cliff
Mercer, Ning Hu, Dave Mowatt, Dominic Mazzoni, Chris
Tchou, Morgan Green, Eli Brandt, Pedro Morales, Eduardo
Miranda, Ann Lewis, Erich Neuwirth, Philip Yam, Dave
Borel, Adam Hartman, Stephen Mangiat, Phil Light,
Andreas Pfenning, Chris Yealy, Derek D’Souza, Daren
Mackuck, Michael Rivera, Priyanka Raghavan, and Austin
Sung. Thanks are also due to the creators of csound,
Music4BF, STK, and Common Music, from which Nyquist
inherits. Finally, thanks to IBM, Yamaha, the National
Science Foundation, Carnegie Mellon, and others who have
helped support various facets of Nyquist development
through the years.

12. REFERENCES

[1] Cook, P. and Scavone, G., “The Synthesis ToolKit
(STK),” Proceedings of the International Computer
Music Conference, International Computer Music
Association, (1999), pp. 164-166.

[2] Dannenberg, R. and Fraley, C. “Fugue: A Signal
Manipulation System with Lazy Evaluation and Be-
havioural Abstraction,” 1989 International Computer
Music Conference, Computer Music Association
(October 1989), pp. 76-79.

7

[3] Dannenberg, R., McAvinney, P., and Rubine, D.,
“Arctic: A Functional Approach to Real-Time Control,”
Computer Music Journal, 10(4) (Winter 1986), pp. 67-
78.

[4] Dannenberg, R., “The Implementation of Nyquist, A
Sound Synthesis Language,” Proceedings of the 1993
International Computer Music Conference,
International Computer Music Association (September
1993), pp. 168-171.

[5] Dannenberg, R., “The Implementation of Nyquist, a
Sound Synthesis Language,” Computer Music Journal,
21(3) (Fall 1997), pp. 71-82.

[6] Eaglestone, B., Ford, N., Holdridge, P., and Carter, J.,
“Are Cognitive Styles an Important Factor in the Design
of Electroacoustic Music Software?,” Proceedings of
the 2007 International Computer Music Conference,
International Computer Music Associaation, (2007), pp.
466-473.

[7] Kunze, T. and Taube, H., “SEE--A Structured Event
Editor: Visualizing Compositional Data in Common
Music,” Proceedings of the International Computer
Music Conference, International Computer Music
Association (1996), pp. 63-66.

[8] Lindeman, E., “ANIMAL: A Rapid Prototyping
Environment for Computer Music Systems,” Pro-
ceedings of the International Computer Music Con-
ference, International Computer Music Association
(September 1990), pp. 241-244.

[9] McCartney, J. “SuperCollider: A New Real Time
Synthesis Language,” Proceedings of the 1996 In-
ternational Computer Music Conference. International
Computer Music Association (1996), pp. 257-258.

[10] Mazzoni, D. and Dannenberg, R., “A Fast Data
Structure for Disk-Based Audio Editing,” Computer
Music Journal, 26(2), (Summer 2002), pp. 62-76.

[11] Orlarey, Y., Fober, D., and Letz, S., “Syntactical and
Semantical Aspects of Faust,” Soft Computing 8(9),
(2004), pp. 623-632.

[12] Piche, J. and Burton, A., “Cecilia: A Production
Interface to Csound”, Computer Music Journal 22(2),
(Summer 1998), pp. 52-55.

[13] Pope, S. and Ramakrishnan, C., “Recent Developments
in Siren: Modeling, Control, and Interaction for Large-
scale Distributed Music Software,” Proceedings of the
2003 International Computer Music Conference,
International Computer Music Association (2003), pp.
5-9.

[14] Psenicka, D. “FOMUS, a Music Notation Software
Package for Computer Music Composers,” Pro-
ceedings of the International Computer Music Con-
ference, International Computer Music Association
(2007), pp. 75-78.

[15] Taube, H. “Common Music: A Music Composition
Language in Common Lisp and CLOS,” Computer
Music Journal 15(2), (1991), pp. 21-32.

[16] Vercoe, B., “The Canonical CSound Reference Manual
Version 5.07. Edited by J. ffitch, J. Piché, P. Nix, R.
Boulanger, R. Ekman, D. Boothe, K. Conder, S. Yi, M.
Gogins, A. Cabrera, F. Pinot, and A. Kozar. URL
(accessed 7 Feb 2008):
http://www.csounds.com/manual/html/index.html.

[17] Wang, G. and Cook, P., “Audicle: A Context-sensitive,
On-the-fly Audio Programming Environ/mentality,”
Proceedings of the International Computer Music
Conference, International Computer Music Association
(2004), pp. 256-263.

[18] Zicarelli, D. “An Extensible Real-Time Signal Proc-
essing Environment for Max,” Proceedings of the 1998
International Computer Music Conference.
International Computer Music Association (1998), pp.
463-466.

