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Abstract

Conventional keyboard or computer tuning systems suffer from either a lack of “natural’ harmonic
intervals, or the inability to support modulation. In contrast to conventional fixed-pitch systems, a
variable-pitch tuning systerﬁ allows small changes i.n pitch to obtain desirable intervals within a
framework where modulation is possible. Such a system is practical only when the correct pitch
variations can be determined without elaborate notation by the composer. To solve this problem, an
algorithm is proposed that computes pitch from a conventional score. A modification to the basic
algorithm allows a controlled amount of “equal-temperedness”, and similar algorithms can be applied

to microtonal scales.



1. Introduction

Many investigators over several centuries have considered the use of a wide variety of tunings and
scales in music. All of the studies of which we know consider only fixed assignments of pitch to scale
steps; however, the computer makes it practical to consider variable tuning systems, where small
pitch adjustments are made to compensate for the “imperfections” inherent in any fixed-pitch tuning
system. The motivation for this work is found in the practice of instrumental and vocal performers
who routinely make such pitch adjﬁstments, automatically and often without conscious efforts ( [2],

Sections 15.3 and 15.4).

We shall begin with a quick review of the problems of fixed-pitch tuning systems. Then, an
alternative called variable-pitch tuning systems is described. We then consider the problem of
making a computer play "in tune" using a variable-pitch system, and present one algorithm which

seems promising. Finally, some of the remaining problems are described.

2. Fixed-pitch systems

Ordinarily, a tuning system consists of a finite set of ratios ranging from 1>:1 to 2:1 and a reference
corresponding to the ratio 1:1. The system generates a set of pitches whose corresponding
frequencies are in the given ratios. The frequencies may also be scaled by any power of two,
corresponding to octave transpositions. This usually gives new intervals which are perceptually
significant in the context of conventional music'. For example, the conventional equal-tempered,

12-tone tuning system consists of the ratios { 2/'2 for 0£i <11} and the reference frequency 440Hz.

Itis desirable for a tuning system to satisfy two properties:

1. The system should generate “natural’” harmonic intervals.

2. The system should allow modulations from one key to another.

The first property isimportant because harmonic intervals do not produce beating, a readily

1Although it is possible (and sometimes desirable) to consider “stretched” or "compressed” octaves which do not

correspond to power-of-two frequency ratios, we will not consider them in this paper.



recognized and perceptually important phenomenon ( [2], Section 14.4). Thus, a harmonic interval of
1.5 (a musical fifth) has a different perceptual status from ratios such as 1.505 or 1.492. Most scales
are based at least partly upon these special (harmonic) relationships between pitches. The second
property suggests that transbosition must be possible without abandoning the tuning system.
Unfortunately, no “fixed” tuning system can meet both of these requirements perfectly. To illustrate

this point, let us try to design a tuning system that satisfies both properties.

Suppose we begin with the assumption that.our tuning system must include the interval c_)f the
perfect fifth, corresponding to frequency ratios of 3:2. Now, if we want to be able to modulate to this
pitch, we must include the fifth relative to the ratio 3:2, or 32:22, which becomes 9:4, or 9:8 after
octave scaling. To modulate again, we must include the ratio 27:16, and so on. |f we continue in this
fashion, we will generate an infinite set of ratios {Sizzi}, which for all practical purposes represents a

pitch continuum after octave scalings.

In contrast, an equal-tempered tuning system solves the modulation problem because it divides the
octave equally, but the solution is obtained only by sacrificing beat-free “natural” tunings of intervals.
For example, the major third in the 12-tone, equal-tempered system is a rapidly beating interval about

14 cents wider than the ratio 5:4. This is simply not acceptable for some music.

3. Variable-pitch tuning systems

An alternative to fixed-pitch tuning systems is to allow small pitch variations from a given set of
pitches. Slight pitch adjustments are made to correct for otherwise “out-of-tune” intervals. We note
that this is exactly how two brass players, for example, can play a beat-free major third when their
instruments are designed to play a wider, equal-tempered third. The players simply adjust their tuning

stides, or “'lip” the notes to the appropriate pitches.

Because the equal-tempered tuning system contains many good approximations to harmonic
intervals, only slight adjustments are needed to obtain beat-free intervals. It has been suggested that

musicians may choose pitches approximately 10 cents above and below the equal-tempered pitch in



addition to the equal-tempered pitch itself, because the additional pitch choices allow the musician to

produce very nearly beat-free intervals with other scale tones ([2], Section 15.4).

Computers can, of course, generate pitches that are essentially arbitrary, so producing a desired
pitch is no problem. However, it is not always trivial to determine what pitch is appropriate. We
suspect that the problem of pitch determination accounts for the popularity of fixed-pitch tuning
systems in computer-generated music. .in the next section, we will discuss a method for autonﬁating
pitch selection. We will assume that a composer has specified a score using notes from a nominal
12-tone, equal-tempered scale, but that pitches are to be adjusted in accordance with their harmonic

significance.

Although we will describe a specific algorithm, we hope the reader will keep in mind that other
algorithms are certainly possible, and that greater flexibility can be obtained if the composer is
allowed to override the algorithm by specifying exact values. This is desirable for a number Vof
reasons, including intentional dissonance, and situations where beating is not apparent ( [2], Section

15.6).

4. Automating pitch selection
In this section, an algorithm for selecting pitches is described. We will assume that there is a direct
correspondence between pitch and frequency (such as with tones whose partials are harmonic) and

from here on we will speak in terms of frequency rather than pitch.

The algorithm consists of several major steps. In the first step, each set of simultaneously sounding
notes is analyzed harmonically to yield a root and then a chord type. In the second step, this
information is used to determine initial relative frequencies among the notes. In the next step,
common tones and root movement are analyzed to determine an initial absolute frequency for the
notes. In the final step, the initial absolute frequencies are modified to prevent a long term drift of the

basic pitch region as the music progresses.



Each step of the algorithm is applied to each chord in the score, from the beginning to the end of
the score. (Each step is applied to the first chord, then each step is applied to the second, and so on.)
A chord is defined as the beginning of any note, since that point marks a change in the set of notes
presently sounding. At the conclusion of the algorithm, a precise frequency will be specified for each

note in the score.

4.1. Step one: harmonic analysis.

Frequency selection requires an analysis of the notes to be played. Initially, only vertical aspects of
the score are considered, that is, we will base the analysis solely on the notes presently sounding.
Hindemith’s algorithm [5] for determining the root of a chord is applied (getting the “wrong’’ answer
for the root is not critical, and other root-finding algorithms are possible). Hindemith's algorithm is as

follows:

First, eliminate from consideration the upper note of any octave relationship. Then find the “best”
interval in the chord, where intervals are ranked from “best” to “worst” as follows: fifth, fourth, major
third, minor sixth, minor third, major sixth, major second, minor seventh, minor second, major
seventh. If there are two equal intervals in the chord, and no interval ranks higher, then the best
interval is the lower of the two. Interestingly, Hindemith's ranking of intervals corresponds closely to
an ordering of intervals according to the prominence with which mistuning advertises itself. (See

Table 14.1 in Benade [2], page 274).

If the best interval is a fifth, third, or second, then the chord root is the lower note of the best

interval. For best intervals of fourth, sixth, or seventh, the chord root is the upper note.

For a few chords, Hindemith makes exceptions, but we will ignore these. Also, Hindemith does not
assign a root to two-note chords (intervéls) or to a single pitch or one with octave doublings. We will

extend the algorithm to cover these cases as follows:

1.If only one interval remains after eliminating doubled tones, then the interval is
considered the best interval, and the root is determined accordingly.



2. if only a tritone is present, the root is the lowest note of the interval.

3. If only a single note is present, the note is considered to be the root.

Having found the root, we now represent the chord as the set of all intervals above the root, ignoring
octaves. For example, the chord {C4, G4, E5} has the root C4, and contains the intervals {unison,
perfect fifth, major third}. Note the following:

e The interval of the tenth is treated as a third.

e There are 12 possible intervals, including unison.

¢ Since the root-finding algorithm always assigns the root to be a note in the chord, the
unison interval will always be present.

e Since the unison interval is always present, there are 2'' or 2048 possible chords or
interval combinations in this scheme.:
4.2. Step two: relative frequency determination
For each of the 2048 chord types, we store the desired frequency ratios for the intervals of the
chord. For example, for the chord type {unison, major third, perfect fifth}, we might store the ratios

{1:1, 5:4, 3:2}. These ratios will be used to determine the actual pitches that are played.

It may appear that we have ignored the presence of, for example, the minor third between the note
labeled §:4 and the one labeled 3:2. However, this interval is implicit in the chord type, and also
implicit in the corresponding frequency ratios. This implicit interval must be taken into account when

the frequency ratios are established.

To summarize the algorithm up to this point: we take a vertical array of notes, or chord, and apply a
modification of Hindemith’s algorithm to determine the root. The chord is then classified by the
intervals that it contains. Next, appropriate frequency ratios for the notes of the chord are determined

by table lookup, using ihe interval set as index.



4.3. Step three: absolute frequency determination

Now we must determine absolute frequencies for the notes of the chord. Given the relative
frequencies from the previous step, it is only necessary to determine the frequency for one note; all
the others can be computed using the assigned ratios. We will base the pitch on common tones and

octave relationships with the previous chord.

if there is one note in common bétween the present chord and the previous one, use the frequency
for that note in the previous chord as the frequency for the corresponding note in the present chord.
If there are no common tones, but there are two notes with an octave relationship between the
present and previous chords, then use the frequency of the note from the previous chord to
determine the frequency of the note in the present chord. For example, if the previous chord had an
A:3 whose frequency was 221Hz, and the present chord has an A4 (nominally 440Hz), then we would
assign the frequency of 442Hz (2 x 221Hz) to the A " since it has an 6ctave relationship with a note in

the previous chord.

This step is generalized to handle the éase where there is more than one common tone. In this
situation, we would like to minimize the pitch changes in the common tones. To accomplish this, first
choose one of the common tones and compute frequencies for the present chord as in the previous
paragraph. Next, subtract the mean increase in frequency of common tones, expressed in cents,
from each note of the present chord. The effect is to “center’ the new chord so that the common

tones move a minimal distancez.

If there is no common tone or octave, then look for the relationship of the fifth or fourth, and apply
the same resolution for cases where there are multiple relationships between chords. If there are no
fifth or fourth reiationships either, or if we are dealing with the first chord of the score, then chose the

nominal equal-tempered frequency for the root.

2A variant of this algorithm could be to leave the pitch of common tones unaltered. The same computations would be used
to find the other pitches. -



4.4. Step four: preventing drift

If we use common tones to determine the reference pitch for successive chords, there is the
possibility that, after a number of modulations, the pitch will drift away from our original set of
reference pitches (the equal-tempered scale based on A440). For example, consider the following
sequence of chords: {C,, E4}, {E4, G,#}, {G,#, Cs}’ {C4, E4}, ... Each of these is analyzed as a
major third with the root in common with the third of the previous chord. If the ratio assigned to the
third is 5:4, then the second C in thelsequence will have a frequency which is 53/43 times that of the

first C. That is 125:64 or about 41 cents short of the expected octave.

To keep our frame of reference from drifting far off course due to modulations, we perform a final

adjustment to the frequencies determined in the previous step. First, we compute drift as follows:

= 1/n A‘D_—:(f - g)

where § stands for drift (in cents), fi is the chosen frequency for the it note of the chord (in cents),

and g is the nominal equal-tempered frequency for the same note (in cents). .

After computing the drift, the entire chord is transposed by the amount (- § x «), where 0% a< 1.

This has the effect of damping any cumulative drift, and a controls the rate of dampings.

4.5. Further parameterizatibn

Qur goal is to extend the power of the composer, not to take power away from him. So far, we have
developed a scheme to help the composer generate music that is “m tune” in the sense that with
properly initialized tables, beating can be reduced or eliminated. There are situations, however
where a composer might want to increase beating. We can introduce another parameter, B8, to
provide this kind of control. When 8 = 0, the tuning is produced by our aléorithm as described.

When B8 = 1, frequeneles from the reference tuning (equal temperament) are used. For other values

3We could go all out at this point by recognizing that we have constructed a digital high-pass filter which lets momentary
perturbations of pitch pass through, but in the long run cancels any cumulative drift. One could easily construct a higher order
filter, parameterized by cutoff frequency rather than a



of B, frequencies are interpolated or extrapolated accordingly. The final frequencies are thus:
h, + ﬁx(gi - h),
where h, = f, - dxa,
g is the reference tuning forthel note, and

f.is the frequency for the i i note of the chord
before drift compensation

5. An example

Let us apply the algorithm to the simple ii-V7-1 chord progression:
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in Step 1, we eliminate octave doublings and find the “best” interval in each chord:
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The roots are D, G, and C as expected. The chord types can then be represented by intervals above
the root:

{minor third, perfect fifth}

{major third, perfect fifth, minor seventh}
{major third}

Applying Step 2 to the first chord, we obtain the ratios 6:5 for the minor third, and 3:2 for the fifth (or
whatever tuning the table-builder wanted for a major triad). Since this is the first éhord, we choose

the equal-temperament tuning for the root, and compute the other pitches:

D3 = 146.832 Hz {equal temperament)
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A3 = 220.248 (372 x 146.832)
F, = 352.397 (6/5x 2 x 146.832)
D, = 587.328 (4 x 146.832)

Now, we can move on to the second chord, a dominant seventh. Suppose the table gives the
following ratios: 5:4, 3:2, and 1.789 for the third, fifth, and seventh, respectively. (The ratio for the
seventh was chosen to make this example interesting.) In Step 3, we find two common tones, D and

F. We will use D for our initial reference. From the ratios, we compute the following initial

frequencies:

D5 = 587.328 Hz (reference from previous chord)
G3 = 195.776 (2/3x 1/2 x 587.328)

B3 = 244,720 (5/4x 195.776)

F, = 350.245 (1.789.x 195,776)

In Step 4, we compute the mean increase in frequency of the common tones. For the D, the
increase is zero, and for the F, the increase is — 10.60954 cents, yielding a mean of —5.3048 cents,
which is subtracted® from our initial frequencies. The new frequencies, from lowest to highest are:

G, = 196.378 Hz

3
B, = 245.471
F, = 351.320
D, = 589.131

Notice how the interval from F to D is widehed by about 10 cents from the previous chord: the D is

raised and the F is lowered. ‘

Finally, we apply Step 4 to adjust the frequencies toward the nominal equal-tempered pitch. The

drift computation is illustrated below:

Step 3 Freq. Equal-Tempered Freq. Difference

(Hz) (Hz) (cents)

G3 196.378 195.998 3.35327
B3 245.471 246,942 ~10.34356
F 4 - 351.320 349.228 10.33978
D 4 589.131 587.329 5.30352
sum 8.65301

mean 2.16325

Thus, the frequencies from Step 3 are a little over 2 cents sharp on the average, relative to equal

4That is, the frequencies are increased by 5.3048 cents, or multiplied by 1.00307.
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tempered tuning. Assuming a = 0.1, we lower the frequencies 0.216325 cents by multiblying each by

0.999875. The final frequencies are:

Gn3 = 196.353
B, = 245.440
F, = 351.276
D, = 589.057

This completes the computation for the dominant seventh chord. For Step 3 of the last chord, there
is no common tone, so the initial réference is based on fifth and fourth relationships (B to E, G to C,
and F to C). The simplest way to do the computation is to transpose the B, G, and F of the previous
chord by a fifth or fourth (3:2 or 4:3), and use the resulting frequencies as if they were common tones.

These “implied” or “virtual’” common tones will be:

E, = 327.253Hz (4/3 x 245.440)
C, = 261.804 (4/3 x 196.353)
C, = 526.914 (3/2x 351.276)

The remainder of the computations are similar to those for the previous chord.

6. Other considerations

The tabular method of determining frequency ratios may not apply to sounds with inharmonic
spectra. |deally, we would like to model the listener in order to estimate the perceived beating. The
problem then becomes one of adjusting frequencies to minimize the beating functior'L The

formulation of a suitable model, howévef, is likely to be very difficuit.

Similarly, the strength of various harmonics and the octave of the pitch affect the perceived beating

[7], but these factors are ignored by our algorithm in order to make the computation more tractable.

Another consideration is that our algorithm considers only a very local context in determining what
constitutes an appropriate tuning for a chord. In some cases, however, one might want to consider
chords in a more global context. For example, in tonal 'mum\_imﬂ‘»‘conect” tuning for a chord may
depend upon its relétionship to the tonic in addition to its cho‘rd? type Further study of performers

may reveal other criteria for pitch selection.
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7. Conclusions

In this paper, we have discussed the_ problems of fixed-pitch tuning systems and advocated the use
of a more flexible, variablelpitch approach. We have described an approach to tuning that changes
the role of the compﬁterr from passive in’stru,r_pe_nt to active performer and interpreter. We have also )

presented an algorithm that can be used to automate the choice of pitch.

The algorithm_ s"eems to make reasonable pitch selections, but our experience with it is limited. We
plan to determine experimentally the extent to which listeners perceive the subtle tuning adjustments
made by our algorithm. To gain insight into the pitch-selection problem, one could also analyze the
way real performers choose and adjust pitches. For example, reports by Sundberg [6], Hagerman [4],
and Ternstrom [8] discuss measurements of pitch- in performances by instruments, barbershop
quartets, and choirs. Max Mathews has instrumented a violin and measured pitches in a performance

situation.

Much has been said about microtonal scales and the division of the octave into more tr]an 12
intervals. For example, the paper by Balzano [1] uses a group-theoretic approach to suggest that
structures analogous to conventional diatonic scales and triads exist in miérotonal pitch systems. A
set of compositions by Easley Blackwood [3] explores the equal tunings of 13 through 24 notes,
illustrating interesting possibilities for harmony and modulation. An unfortunate characteristic of
these alternate tuning systems, as with the 12-tone equal-tempered tuning, is that many intervals are
“out of tune”. By applying the principles presented in this paper, one could automate the pitch
adjustments that might make microtonal music more palatable to the listener and more versatile to the

compaoser.

In a broader context, this 'study is but one example of the use of the computer as
performer/interpreter rather than simply instrument. Computers will become more helpful to
composers when they can interpret not just pitch, but rhythm, tempo, articulation, dynamics, and

other parameters in an intelligent and musically meaningful way.

-



[1]

[2]

(3]

[4]

5]

(6]

7]

8]

12

References

G. J. Balzano.
The Group-theoretic Description of 12-Fold and Microtonal Pitch Systems,
Computer Music Journal 4(4):66-84, 1980.

A. H. Benade.
Fundamentals of Musical Acoustics.
Oxford University Press, 1976,

E. Blackwood.

Twelve Microtonal Etudes for Electronic Music Media.

Stereo LP Recording available from Easley Blackwood, 5300 S. Shore Drive, Chicago, IL
60615.

score published by G. Schirmer.

B. Hagerman and J. Sundberg.

Fundamental Frequency Adjustment in Barbershop Singing.

Speech Transmission Laboratory Quarterly Progress and Status Report (STL-QPSR 1/1980),
April, 1980.

P. Hindemith.
Craft of Musical Composition, Book 1, Theoretical Part.
Schott, 1942,

J. Sundberg.
In tune or not? A study of fundamental frequency in music practise.

. Speech Transmission Laboratory Quarterly Progress and Status Report (STL-QPSR 1/1982),

April, 1982,

E. Terhardt.
Pitch, consonance, and harmony.
Journal of the Acoustical Society of America (55), 1974,

S. Ternstrom and J. Sundberg.

Acoustical factors related to pitch precision in choir singing.

Speech Transmission Laboratory Quarterly Progress and Status Report (STL-QPSR
2-3/1982), October, 1982.



