An On-Line Algorithm for
Real-Time Accompaniment.

Roger B. Dannenberg

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract
Real-time accompaniment solves most of the
synchronization problems inheremt in taped

accompaniment; however, this new approach requires the
computer to have the ability to follow the soloist. Three
subproblems arise; detecting and processing input from
the live performer, matching this input against a score of
expected input, and generating the timing information
necessary to control the generation of the
accompaniment, It is expected that the live solo
performance will contain mistakes or be imperfectly
detected by the computer, so it necessary to allow for
performance mistakes when matching the actual solo
against the score. An efficient dynamic programming
algorithm for finding the best match between solo
performance and the score is presented. In producing the
accompaniment, it is necessary to generate a time
reference that varies in speed according to the soloist.
Thie notion of virtual time is proposed as a solution to this
problem. Finally, experience with two computer systems
that produce real-time accompaniment is summarized. -

This research was sponsored by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory
Under Contract F33615-81-K-1539.

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects
Agency or the US Government.

Copyright (C) 1985 Roger B. Dannenberg

193

1. Introduction

Real-time digital music synthesis offers unprecedented
flexibility to composers and performers of computer
music. Applications have ranged from simple “player
piano” systems to interactive improvisation involving
both human and computer performers. An interesting
possibility is that of a computer-generated
accompaniment to a human soloist or ensemble. In this
case, the computer is given a score containing parts for
the soloist and for the corresponding accompaniment.
Because the computer follows a human performer, most
of the problems of synchronization between performers
and computer-generated tapes is avoided. In fact, new
artistic possibilities emerge because the accompaniment
can respond to subtleties of the soloist’s performance.

The problem of following a soloist can be divided into
three subproblems. The first subproblem is to detect
what the soloist is doing.1 The second subproblem is to
match the detected input against a score, which contains
the expected input. This matching process must be
tolerant of performance mistakes and of errors in the
detection process. The third subproblem is to produce an
accompaniment that follows the soloist. Techniques are
needed here to perform the accompaniment at the
appropriate rate between detected solo events, and to
recover smoothly when it is determined that the
accompaniment and soloist have their
synchronization.

lost

In this paper, I will concentrate on the second
subproblem by describing a technique for following a live
performer. The technique allows the computer to recover

~

1Alternatively, one might wish to detect indications from a
conductor.

ICMC ’84 Proceedings

Dannenberg, R.B., An On-Line Algorithm for Real-Time Accompaniment. In Proceedings of the

1984 International

Computer Music Conference, (1985),

International Computer Music

Association, 193-198. http://mww.cs.cmu.edu/~rbd/bib-accomp.html#icmc84.

from errors in the performance or the detection of the
performance. This technique has been implemented
successfully on two computer music systems at Carnegie-
Mellon University and is currently undergoing further
experimentation and development.

Previous work in this area has concentrated on
computer input devices, including the sequential drum
[7], sonar sensors for conducting [6], pitch detection [4];
and others[8,2]. Chafe, Renaud, and Rush [3], and
Foster, Schloss, and Rockmore [5] considered the
problem of following a melodic line in order to produce a
transcription of it, but their results are not directly
applicable because most of their algorithms require
knowledge of the future and therefore cannot be realized
in real-time.

At least two problems outside of the realm of music are
closely related to that of matching a performance against
a score. The problem of finding the difference between
two computer data files requires the examination of two
sequences to find the best correspondence between them.
The UNIX? diff program is based on an algorithm by
Stone [9), but this algorithm would take time proportional
to the length of the score for each match in the musical
context, and is therefore ruled out as a good real-time
algorithm. Another related problem is that of matching
computer-detected speech features against known
templates for speech recognition, The dynamic
programming technique [10, 11} used for “time-warping”
in speech research motivated the algorithm described in
this paper. A similar application is described by Bloom
[1}, who uses dynamic programming to synchronize the
dialogue for a film soundtrack with a reference dialogue
recorded during filming.

In the remainder of this paper, T will first describe the
problem in abstract terms that make it easier to reason
about, Then, an algorithm that that solves the problem is
described, and an efficient implementation of the
algorithm is presented. Finally, I will describe my initial
application of the algorithm to computer music.

2. The Model

While the human accompanist relies on visual and
auditory cues of many types, let us assume that the
computer accompanist detects a limited class of

2UNIX is a registered trademark of AT&T Bell Laboratories

ICMC '84 Proceedings

194

performance events. These may be, for example, keys
struck by a pianist, pitches sounded by a cellist, or the
valve positions of a trumpet player. In any case, it must
be possible to compare events from the performance to
those in the score to determine whether they are the same
or different. A solo performance can be regarded as a
stream of events, and a score as an ordered list of
expected events. The score stored by the computer is not
a conventional specification for the performer, but rather
the list of events that would be detected in a correct
performance of the solo. (See Figure 2-1).

The problem is then to find the “best” match between
the two streams. While “best” could be defined many
ways, | chose the following definition: The best match is
the longest common subsequence of the two streams. In
other words, we want to match as many events of the
score to the performance as possible, and vice-versa.
Figure 2-2 illustrates the best match for two event
streams. In this example, the match omits the D from the
performance and the A from the score. Events dropped
from the performance correspond L0 extra (wrong) notes,
and events dropped from the score correspond to notes
that the performer omits.

actual event

stream

match
algorithm
Performance

JJ]JJ

Score

__%GAFFG... 9

expected gvent
stream

"You are here"

accompanimant

Figure 2-1: The actual event stream from the
performance is compared to the expected
event stream from the score to determine

the present location.

In summary, we can model a solo performance and
score as two streams, or sequences, of events. The
problem of following the score as the solo progresses is

performance: AGEDGSB C
A
best match: A G E G B C
R
score: A G E G ABC

Figure 2-2: Two event steams and the best match.

equivalent to finding the best match between the
performance and the score. In the next section, I describe
an algorithm that searches for the best match.

3. The Algorithm

To find the best match, an integer matrix is computed
where each row corresponds to an event in the score and
each column corresponds to a detected performance
event. At each detected performance event, a new
column is computed. (A more efficient form of this
algorithm will be given below.)

The integer computed for row 7 and column ¢ answers
the following question: If we were currently at the Pt
score event and the ¢ performance event, what would be
the length of the best match up to the current time? The
answer to this question can be computed from the
answers for the previous column (the previous
performance event) and from the previous row of the
current column,

The best match up to score event r, performance event
¢ will be at least as long as the one up to r — /, ¢ because
considering one more score event cannot make the best
match any shorter. Similarly, the best match up to 7, ¢
will be at least as long as the one up to r, ¢ — I, where
one less performance event is considered. Furthermore,
if score event r matches performance event ¢, then the
length of the match will be at least one greater than the
length of theoneuptor—1, ¢ — 1.

These rules can be applied to compute the length of the
longest (best) match, as shown in the algorithm in Figure
3-1. As each performance event is detected, the algorithm
computes one more column in the bestlength matrix.
Figure 3-2 illustrates a matrix for the score AGEG A B
Cafter performance events A G ED.

195

forall i, bestlengthli, -1] — 0;
forall j, bestlengthl-1, j] — 0;
for each new performance event p{c] do
begin
for each score event s[7] do
begin
bestlength{r, ¢} — max(bestlengthlr — 1, c,
bestlength(r, ¢ — 1});
if p[c] matches s{/] then
bestlengthlr, c] — max(bestlength[r, c],
1+ bestlength{r — 1, ¢ — 1));
end
end

Figure 3-1: Basic algorithm to find the best
match between the detected
performance and the score.

performance:

GBC
score:

OE>OMOD >

P b b b b b e T
NN
WWWWWwN =M
WwWwwhN=O

Figure 3-2: Intermediate state of the computation after
the first five events have been performed.

At this point, the algorithm tells us the length of the
best match, but it does not tell us what events must be
matched to obtain this length. This information is
required by the accompaniment process. Furthermore,
this must be an on-line algorithm, that is, one that gives
us results incrementally as the input becomes available,
Therefore, we must augment the algorithm to report the
position in the score of the current performance event.
This is accomplished by remembering the length of the -
best match up to the current event. This is the largest
value in the matrix yet computed. Whenever a match
results in a larger value, we assume that a new
performance event has matched a score event and report
that the performer is at the corresponding location in the
score. In Figure 3-3, the matches that cause reports are
underlined. Notice that the D, which is performed, but
which is not in the score, does not give rise to a report of a
score location. Also, when the B is performed, it becomes
apparent that the soloist has skipped an A. The algorithm
correctly reports the new location in the score that
corresponds to the B.

This algorithm can be made more efficient in both

space and time. To save space, notice that only the
previous and the current columns of the matrix are ever

ICMC '84 Proceedings

performance:

score:

(e Y el el -]
NN NNDNN - O
WWWWIWN =M
WWWWWwN=O
LB ONRPLOD
A b WN-D
ICoabwWNR,O

A
G
E
G
A
B
c

Figure 3-3: Completed computation of the best match.

Points at which score locations are reported
are underlined.

needed. There is no need to store the entire matrix. To
save execution time, I make the assumption that the
performance will be a close match to the score; that is, the
performer will never omit or add more than a few events
to the expected score. If this is true, then it is only
necessary to look at a small window of score events
centered around the expected match. However, if the
detected performance deviates radically from the score,
windows will prevent the algorithm from finding the best
match. Figure 3-4 illustrates the values computed for the
same performance and score as before, but with a window
size of 3. The center of the window is determined as
follows: if a match was found and reported in the
previous column, then center the window on the row after
that match. On the other hand, if no match was found,
then move the window down one row. This heuristic
causes the window to follow the score if the number of
performed events corresponds to the number of score
events, even if the events do not match. The window size
should be at least one more than double the number of
consecutive errors to be tolerated. Alternatively, the
window could be adjusted in size to always encompass a
given time interval,

performance:
AGEDGBC
score: A 11
G 122
E 1233
G 3344
A 34414
B 4565
C 8

Figure 3-4; Computation of the best match using
only a small window centered around the
current score location,

ICMC ’84 Proceedings

196

4. More Heuristics

A problem with the algorithm as described is that it
tends to jump ahead in the score when an extra (wrong)
event is detected. This happens whenever the extra event
matches, by coincidence, a score event in the future. The
information is ambiguous: did the soloist produce a
wrong event, or did he skip one or more events? Since
the goal of the algorithm is to produce the longest match,
it jumps ahead in the score, matching the event in the
future. This is often the wrong choice.

Of course, the algorithm continues to keep track of the
possibility that the event was spurious and not part of the
score, so eventually, the correct interpretation should be
discovered. This actually happens if, say, the next two
detected events only match the score at the correct
locations. For example, consider the score BG EFCD
and suppose the first three detected events are F B G.
The algorithm will initially match the F to the fourth
event of the score, but after the B and G are detected, it
will be discovered that a better match can be made at the
beginning of the score (two events match instead of one).

In practice, the score may be more like the following:
BG EFCBDG. In this case, the algorithm would
again match F to the fourth score event, but this time, B
would match the sixth event, and G would match the
eighth! Clearly, some heuristics are needed to discourage
(but not prevent) the algorithm from skipping ahead in
the score. Three heuristics have been implemented.

The first heuristic limits the amount by which the
center of the window can change, as this ultimately limits
the rate at which score events can be skipped. The center
of each window is computed as before, except the center
is only allowed to increase by two rows per detected event
(per column).

The second heuristic associates a penalty with matches
that skip score events. This is done by counting one point
for each pair of matching events and deducting one point
for each event skipped in the score. The matrix is
constructed in terms of these scores rather than simple
match lengths, The effect on the implementation is
minimal: line 7 of Figure 3-1 becomes

bestlength|r, c] — max(bestlengthlr — 1,c] — 1,
bestlength[r, ¢ — 1]);
Finally, it is possible for the highest value in the matrix to

occur in several rows of a column, corresponding to
several locations in the score. The third heuristic says to
always report the match as occurring at the earliest event
in the score whenever a choice arises.

5. Accompaniment

The matching process can be used to report the
temporat location of the live performer with respect to the
score. In this section, I will describe one way to use this
information to produce an accompaniment. It is assumed
that the accompaniment is already composed and stored
in memory, so the only problem is deciding when to
perform each event of the accompaniment,

Consider a conventional real-time system (one that
does not follow live performers) for realizing a
precomposed score. Ordinarily, a starting time would be
attached to each event of the score, and these times would
be compared to a real-time clock to decide when to start
each event.

Now, suppose that one could vary the speed of the
“real-time” clock. This would allow the stored score to be
performed faster or slower than otherwise. In addition, if
the clock could be reset, the score performance could be
made to jump forward or backward. These are exactly
the properties required for real-time accompaniment.
Assuming that the (hardware) real-time clock cannot
change speed or be reset, a software virtual clock is
implemented using the hardware clock as a reference.
Virtual time is defined to be:

R ~ Rref) 'S+ Vref

where R is real time, R, ¢ is the (real) time at which the
virtual clock was last set, S is the speed of the virtual
clock, and V¢ i8 the virtual time at which the clock was
last set. At any time, the virtual clock can be set by
assigning the current real time to R ¢ and the desired
virtual clock time is assigned to Vref‘ In addition, one
could set S to establish the “speed” of virtual time, that is,
the rate at which virtual time passes relative to real time,

In the current implementation, the virtual clock is set
each time a match is reported by the matching process in
response to a detected input event. The virtual time is
determined from the corresponding event in the solo
score, and the real time is determined from a hardware
clock. In addition, the speed S is increased slightly
whenever the virtual clock is set forward, and S is

197

decreased slightly whenever the virtual clock is set
backward.

6. Implementation

An experimental system was constructed using an AGO
keyboard for input and a digital synthesizer for output,
This system supports a single-voice accompaniment of the
solo played on the keyboard. The scores for the solo and
accompaniment are read from a file, after which the user
can perform on the keyboard and listen to both solo and
accompaniment. The program was reimplemented on a
small 8-bit microcomputer system that performs real-time
pitch detection of trumpet sound as solo input, and
generates a single voice accompaniment output. Pitch
detection and synthesis are assisted by hardware.

7. Limitations

As mentioned above, the present set of algorithms
make no attempt to adjust tempos in a particularly
musical manner. Experience has shown that this is not a
serious problem as long as only slight adjustments are
necessary. Furthermore, no effort has been made to
respond to the soloist in any way other than temporally.
For example, a human accompanist is expected to
respond to loudness, articulation, and other nuances in
addition to temporal cues. This is more an omission than
a limitation, and there is much room for improvement
here.

A more fundamental limitation is the assumption that
the input from the soloist is a totally ordered set of events.
This assumption is not valid in at least two interesting
cases. First, one might use multiple sensors to capture the
solo performance. For example, pitch and valve position
might provide two parallel streams of events from a
trumpet. The other case is where multiple events can take
place “simultaneously.” What is simultaneous to a
human performer is not simultaneous at the
implementation level where decisions are made in
microseconds, Furthermore, the order of events at the
microsecond scale is not likely to be under control by
performers. Unfortunately, the present matching
algorithm al/ways considers temporal order, and does not
allow matching to sets of unordered, nearly simultaneous
events. It is therefore not suitable for polyphonic
keyboards or, for example, string quartets.

ICMC ’84 Proceedings

8. Conclusions

As expected, the algorithm can reliably track and
accompany a performer even when extra notes are played
or when notes are omitted. The algorithm does not
require a steady tempo; in fact, it does not use any timing
information whatsoever to follow the soloist.

Many variations of this approach are possible; for
example, one might want to take time into account by
limiting the distance in time that the accompaniment is
allowed to jump forward. One could also consider
assigning priorities to various events. For example, if a
note is known to be performed or detected unreliably, it
might be useful to use this information to follow the
soloist more accurately.

It is difficult to assess the “quality” of the
accompaniment beyond observing that the
accompaniment does indeed follow the performer. In
practice, the trumpet input system is surprisingly tolerant
of slurs, ornamentation, and even sequences of several
wrong notes.

No attempt has been made to incorporate knowledge of
musical interpretation into the accompaniment process.
For example, if the present implementation discovers it is
about to play a sixteenth note and discovers it is behind
the soloist by that amount, it simply skips over the note.
On the other hand, a human accompanist would be more
likely to play the note anyway, and accelerate to catch up
with the soloist.

In the case of new music, performance practice is not
defined by tradition, and the shortcomings of the present
implementation may not be apparent. Furthermore, the
present system is fairly simple and predictable; thus, it
should cause few surprises when confronted with non-
traditional musical material.

9. Acknowledgments

[am happy to acknowledge the help and
encouragement of Paul McAvinney and Marilyn Thomas.
In addition, conversations with Joshua Bloch have led to
improvements in the presentation of material in this
paper.

ICMC 84 Proceedings 198

References

1. P.J. Bloom. Use of Dynamic Programming for
Automatic Synchronization of Two Similar Speech
Signals. Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing, 1984, pp.
2.6.1-2.6.4.

2. W. Buxton, W. Reeves, G. Fedorkow, K. C. Smith,
and R. Baecker. "A Microcomputer-based Conducting
System." Computer Music Journal 4, 4 (Spring 1980),
8-21.

3. Chris Chafe, Bernard Mont-Reynaud, and Loren
Rush. "Toward an Intelligent Editor of Digital Audio:
Recognition of Musical Constructs." Computer Music
Journal 6,1 (Spring 1982), 30-41.

4. Jane Clendinning and Paul E. Dworak. Computer
Pitch Recognition: A New Approach. 1983 ICMC
Proceedings, Computer Music Association, 1983.

5. Scott Foster, W. Andrew Schloss, A. Joseph
Rockmore. "Toward an Intelligent Editor of Digital
Audio; Signal Processing Methods." Computer Music
Journal 6, 1 (Spring 1982), 42-51.

6. Steven M. Haflich and Mark A. Burns. Following a
Conductor; The Engineering of an Input Device. 1983
ICMC Proceedings, Computer Music Association, 1983.

7. Max V. Mathews and Curtis Abbot. "The Sequential
Drum.” Computer Music Journal 4,4 (Winter 1980),
45-59.

8. John Snell. "The Lucasfilm Real-Time Console for
Recording Studios and Performance of Computer
Music." Computer Music Journal 6, 3 (Fall 1982), 33-43.

9. . diffreg.c. Source code for the 4.1BSD Berkeley
Unix ™ diff program.

10. A. Waibel, N. Krishnan, R. Reddy. Minimizing
Computational Cost for Dynamic Programming
Algorithms. Tech. Rept. CMU-CS-81-124, Carnegie-
Mellon University Department of Computer Science,
June, 1981.

11. A. Waibel and B. Yegnanarayana. Comparative
Study of Nonlinear Time Warping Techniques in Isolated
Word Speech Recognition Systems. Tech. Rept. CMU-
CS-81-125, Carnegie-Mellon University Department of
Computer Science, June, 1981.

