Real-Time Computer Accompaniment
of Keyboard Performances

Joshua J. Bloch and Roger B. Dannenberg
Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

We have extended the capabilities of real-time
computer accompaniment by developing fast rethods for
matching polyphonic performances against scores. and we
have improved the musicality of the accompaniment
through the use of 2 number of accompaniment heuristics
and techniques. A set of algorithms has been designed to
handle streams of partially ordered events typified by the
key-down events of a keyboard performance. The new
algorithms can be viewed as points in a space of
alternative designs, where the dimensions are (1) the
choice of function that evaluates the quality of a
performance/score association, (2) the mecthod of
detcrmining when to trust the current guess as to score
location, and (3) the method of dealing with compound,
unordered events in the score, Two or more alternatives
along each of these dimensions are described. Substantial
progress has been made in the area of controlling the rate
of passage of musical time to achieve a musical
accompaniment as the soloist speeds up, slows down, and
skips arcund in the score. Several heuristics for musical
accompaniment are presented. Accompaniment systems
based on this work are operational. and demonstrate the
viability of these techniques.

This research was sponsored by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory
Under Contract F33615-81-K-1539.

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, cither expressed or
implied, of the Defcnse Advanced Research Projects
Agency or the US Government.

Copyright (C) 1985 Roger B. Dannenberg

279

1. Introduction

An interesting and challenging task for a computer
music system is to take on the role of accompanist in a
live music performance. Specifically, the system shouid
listen to one or more performers, comparing their
performance to a stored representation of the score.
Assuming a high correlation between performance and
score, the system should synthesize an appropriate
accompaniment. For example, if the performer changes
tempo, the accompaniment should do likewise, and other
parameters such us dynamics and articulation could also
affect the accompaniment. It is assumed that a complete
score is provided for all parts, so no improvisation or real-
time composition is involved. We call this task
“computer accompaniment”, :

To date, only two systems for computer
accompaniment have been described [2, 5], and both
assume that the scote consists of a totally ordered
sequence of notes or events. In the present study, we
consider polyphonic music in which multiple notes (or
other events) can occur simultaneously.

In the process of designing and implementing systems
that deal with polyphonic input, we encountered a
number of design decisions for which there was no clear
first choice. Several of these choices are independent,
leading to a design space of alternative implementations
of polyphonic computer acconipaniment systems. [n
Sections 3 through 6, we will take the reader on a guided
tour of the known design space. In most cases we will
describe the implications of design decisions in a formal
way, but that will not necessarily tell us which decision is
best. Then in Section 7, we describe new techniques for
adjusting the relative time and tempo of the
accompaniment. Finally, in Section 8, we will describe
our implementation of two different designs. We begin
the tour in Section 2 with an overview of accompaniment
systems.

ICMC ’85 Proceedings -

Bloch, J. B. and Dannenberg, R.B., Real-Time Computer Accompaniment of Keyboard Performal_nces.
In Proceedings of the 1985 International Computer Music Conference, (1985), International
Computer Music Association, 279-289. http://www.cs.cmu.edu/~rbd/bib-accomp.html#icmc85.

2. Accompaniment Overview

For convenience, we will call the input to the system
the solo, and the output will be called the accompaniment.
It should be clear that these are simply designations and
do not imply traditional musical form. To distinguish
what is actually played from what the composer wrote, we
will use the terms performance and score. The solo score
is not a written manuscript, but a machine-readable
description of the performance, indicating every expected
cvent and the expected time of the cvent. Similarly, the
accompaniment score specifies every accompaniment
event and the time at which it should occur. Time in the
score is called virtual time, which is “warped” [3, 1] into
real time as necessary to match tempo deviations in the
real-time solo performance.

In general, a system for automated accompaniment has
four important parts (see Figure 2-1). The first part, the
Input Preprocessor extracts information about the solo
from hardware input devices. The Input Preprocessor
may be a pitch detector or a keyboard scanner, for
example. The derived information is fed to the second
part, the Matcher, which compares the solo to a stored
score. The Matcher reports correspondences between the
" solo and thc score to the Accompanist part. The
Accompanist decides how and when to perform the
accompaniment based on timing and location information
it receives from the Matcher. The last part consists of
synthesis hardware and software to generate sounds
according to commands from the Accompanist, [n this
paper, we will only be concerned with the Matcher and
Accompanist.

Performance of

Score
Solo
Input
Preprocessor
e

Matcher

b

Accompaniment

N2

Synthesis

NY

Accompaniment

Figure 2-1: Structure of an accompaniment system.

ICMC '85 Proceedings

280

The Matcher has the difficult task of comparing the
solo to the score to find the best association between
them. The Matcher must tolerate mistakes, and it must
produce its output in real-time as the solo is performed.
In principle, the Matcher could consider note pitches,
starting times, durations, and any other information
provided by the Input Preprocessor. In practice,
however, we have had great success limiting input
information to pitch sequences only for monophonic
accompaniment [2]. One of our polyphonic matchers
uses additional timing information to group pitches into
compound events.

Figure 2-2 illustrates a partial solo performance, its
corresponding score, and the best association between
them (illustrated by connecting lines). In this
monophonic case, the events in the score are totally
ordered, and this limits the number of valid associations
that must be considered. For example, Figure 2-3 shows
an invalid association where the order of the score events
does not correspond to the order of the associated
performance events. This association would not be
allowed (or even considered) by our monophonic
matcher. The problem finding the best association
between a performance and a score has been solved by

using variations of . a technique called dynamic
programming [4].
Performance: A°G E D G B C
Score: AAG E G A B C

Figure 2-2: A performance and score association.

Performance: A E G

Score: A G E

Figure 2-3: An invalid association between
a performance and score.

2.1. A Monophonic Matcher

To illustrate the dynamic programming technique for
matching, we will describe a simple approach for the
monophonic case. This is a slightly edited version of
Section 3 in Dannenberg [2]. Our goal will be to find the
association with the most matches (lines between equal
notes or events). We will call this number the rating of
the association. An integer matrix is computed where
each row corresponds to an event in the score and each
column corresponds to an event in the performance. A
new column is computed for each performed event.

The integer computed for row r and column ¢ answers
the following question: [f we were currently at the A
score event and the ¢ performance event, what would be
the highest rating of any association up to the current
time? The answer to this question can be computed from
the answers for the previous column (the previous
performance event) and from the previous row of the
current column,

The maximum rating up to score event r, performance
event ¢ will be at least as great as theoneup tor — 1, ¢
because considering one more score event cannot reduce
the number of possible matches. Similarly, the maximum
rating up to r, ¢ will be at least as great as the one up to
r,c — 1, where one less performance event is considered.
Furthermore, if score event r matches performance event
¢, then the rating will be exactly one greater than the one
wptor—1,¢-1

These rules can be applied to compute the maximum
rating obtained by any association as shown in the
algorithin in Figure 2-4. As each performance event is
detected, the algorithm computes one more column in the
maxrating matrix. Figure 2-5 illustrates a matrix for the
score A G E G A B C after performance events A G E D.

At this point, the algorithin tells us the maximum
rating, but it does not tell us what events must be
matched to obtain this rating. This information is
required by the accompaniment process. Furthermore,
this must be an on-line algorithm, that is, one that gives
us results incrementally as the input becomes available.
Therefore, we must augnient the algorithm to report the
position in the score of the current performance event.
This is accomplished by remembering the maximum
rating up to the current event. This is the largest value in
the matrix yet computed. Whenever a match results in a
larger value, we assume that a new performance event has
matched a score event and report that the performer is at
the corresponding location in the score. In Figure 2-6,

281

forall i, maxratingli, -1} — 0;
forall j, maxratingl-1, j — 0;
for each new performance event p{c] do
begin
for each score event s{/] do
begin
maxrating{r, c] — max(maxrating{r - 1,),
maxrating{r, ¢ — 1]);
if plc] matches s{/] then
maxrating(r, c] — max(maxrating{r, c},
' 1+ maxrating[r — 1, ¢ = 1]);
end
end

Figure 2-4: Basic algorithm to find the maximum
rating of any association between
the performance and the score.

performance:
AGEDGBC
score A 1111
G 1222
E 1233
G 1233
A 1233
B 1233
C 1233
Figure 2-5: Intermediate state of the computation after

the first five events have been performed.

the matches that cause reports are underlined. Notice
that the D, which is performed, but which is not in the
score, does not give rise to a report of a score location.
Also, when the B is performed, it becomes apparent that
the soloist has skipped an A. The algorithm correctly
reports the new location in the score that corresponds to
the B.

In practice, only “windows”, or subcolumns centered
on the current location are computed, and only the
previous column need be saved to compute the current
one. Thus storage and computation-per-event are each
bounded by constants.

parformance:

score:

P S = s -
DN N NN -~O
WWW WO N = ™M
WWWWWN = O
AR LONAOD
KN B WN =D
PG BN O

A
G
E
G
A
B
c

6: Completed computation of the best match.

Points at which score locations are reported
are underlined.

Figure 2-

ICMC ’'85 Proceedings

2.2. Polyphonic Matching

In contrast to monophonic matchers, a polyphonic
matcher must work with a score in which events are only
partially ordered. This follows from the fact that
whenever events in the score are simultaneous, the actual
order of performance is not specified (even though we
expect all of the events to occur within a fraction of a
second). Thus the chord C E G could be performed G E
C.GCE,CEG,CGE,EGC,or ECG.

In general, we can describe a score as a sequence of sets
of symbols as illustrated at the bottom of Figure 2-7.
Here, symbols within the same set have been circled. In
practice, these sets are derived from a computer-readable
musical score and indicate the expected sequence of
performed events, except the order of events within a set
is of no significance. The solo performance is shown at
the top of Figure 2-7, and the best association of this
performance to the score is indicated by lines. Notice
that lines are allowed to cross when they lead to score
symbols within the same set, thus the Matcher must
consider every possible ordering of each set!

Within this framework, there are at least three design
decisions to be made. The first design decision defines
the meaning of “best” association. The best association is
conveniently defined as one that maximizes a rating
function, and various functions are possible.

G E D G C B

i

Figure 27 An association between a
performance and a polyphonic score.

Performance: A

Score: A

The second design decision tells us when to report the
score location to the Accompanist. Intuitively, the
Matcher must implement the notion of confidence. [f the
Matcher is confident that the current best association
correctly locates the performance in the score, then this
information should be passed to the Accompanist.
Otherwise, the Matcher should remain sitent and collect
more data.

The third design decision is concerned with how to go
about grouping the performance events into sets. One
method, called static grouping, uses timing information to
group nearly-simultaneous performance events into sets,

ICMC '85 Proceedings

282

and then matches the performance sct sequence to the
score set sequence. Notice that this reduces the problem
to one very similar to the monophonic matching
problem: we just substitute event sets for single events.
Another method, called dynamic grouping, considers all
possible groupings of performance events independent of
timing in order to achieve the best association. In the
following sections, we consider each design decision in
turn.

3. Association Rating Functions

Returning to the question of what makes a “good”
association, we define the “best” association to be one
that maximizes a rating function, which is just a function
that takes an association and gives us back a number. For
the accompaniment algorithm to work, this matching
function must determine the best score prefix for a given
performance prefix. We use the notation p{{] for the #
event in the performance, and p{1:4 for the performance
prefix consisting of the first / events. Similarly, s{j] refers
to the j”’ event in the score and s{1:j] is the score prefix
consisting of the first j events in the score. Then, for a
given /, a value of j for which match-rating(p(1:1), {1.j]) is
a maximum must actually correspond to the score prefix
which pf1:4] most closely matches. This j value is called
best-match(p(l:4], s). The corresponding match rating is
called best-match-rating(p[1:d, s). In general, there can be
several values of j at which march-rating(p(1:4], s{1:/])
obtains a maximum, and some form of tie-breaker must
be uscd to determine which of these values is
best-march(p[l:4, s). We take the smallest value, which
corresponds to the shortest score prefix, in the case of a
tie.

In constructing an association, we effectively label each
performance symbol as ecither “extra,” meaning there is
no corresponding symbol in the score, “wrong,” meaning
the corresponding symbol in the score does not match, or
“right,” meaning the corresponding symbol does match.
In addition, events in the score that do not correspond to
performed events are called “missing.” A class of
functions that seem to give appropriate ratings are of the
form:

length of score prefix —

(c,, number of wrong notes +

¢, humber of missing notes +

¢, number of extra notes),
where the ¢’s are “cost coefficients” of the three types of
errors. In addition to being reasonable from an intuitive
musical sense, these functions are amenable to the
dynamic programming approach illustrated in Section
21, and can be used with either monophonic or

polyphonic matchers. Various choices of cost coefficients
make sense and will be discussed below.

4. Reporting Matches to the
Accompanist

The next design decision determines when to report
matches to the Accompanist. This should only happen
when the Matcher is reasonably certain that it can report
a correct location. If there is significant doubt, it is better
to let the Accompanist forge ahead according to the last
known location and tempo than to risk giving the
Accompanist bad information.

There are two general approaches to formalizing this
notion of confidence or certainty, and either approach
can be applied to monophonic or polyphonic matching.
The first approach is to assume that the best-match-rating
will generally increase with the length of the
performance, but that it will decrease when errors are
made. We report location when the best-match-rating is
higher than any previously obtained best-match-rating,
This approach (combined with a suitable rating function)
has the property that it requires only a few matches to
regain “confidencc™ after a single mistake, but it becomes
more cautious, requiring more matches, after a series of
mistakes. On the other hand, this approach will only
work well for low cost coefficients and low error rates,
because high values may lead to a situation where the
best-match-rating has a gencrally downward trend.

The second approach is to base certainty on consistency
of the most likely location as predicted by the best-match
function. We say that a best-match is good enough to
report to the Accompanist if and only if the last note of
the performance prefix is consistent with the score
position which was most likely on the basis of the
previous performance prefix. With our match functions,
this occurs at performance event / when best-match-
rating(p(1:4], s) is greater than best-match-rating(p{l:i-1],
s). This is because the only way to increase the best-
match-rating is to extend the previous best association
with a new match.

5. The Static Matching Algorithm

The third design decision involves a choice of method
to deal with sets of events in the score. The simplest
approach to polyphonic matching is called static
grouping. The basic idea behind static grouping is to
reduce the problem of polyphonic matching to
monophonic matching, which we already know how to
do. This entails breaking the score up into a (totally
ordered) sequence of compound musical events and

283

“parsing” the solo performance into these events in real
time. Once this has been accomplished, we can, in
principle, apply our monophonic matching algorithm.

The compound events (cevts) into which the
polyphonic score is broken consist of all of the note-on
events that happen simultaneously, at any given time. A
cevt may contain just one note if no other notes occur at
the same time. It is clearly trivial break up a printed score
into cevts: all of the notes printed at a given horizontal
position on each staff make up a cevt.

It is not as easy to break up a performance into cevts
becausc timing information is less exact. When a chord is
played on a keyboard, not all of the keys making up the
chord will be pressed simuitaneously. Furthermore, most
real keyboard input systems will serialize the notes that
make up the chord, and may end up thinking that some
of the notes were pressed later than they actually were
due to processing delays from the other notes. But even
in a slow system, with a time resolution of 17100 second,
the observed times between consecutive notes in the same
chord was never more than 9/100 second (90 ms). Now
let us consider how close the times of two consecutive
cevts might be. A reasonable upper limit for the speed at
which notes are played might be 16% notes played at 120
beats/minute. This comes out to 8 notes per second, or
125 ms. between notes. And most real music is much
slower than this. Thus, when a note-on event in a solo
performance is detected, it can be determined if it is in
the same cevt as the previous note by comparing the
times for the two note-on events. [f they are from
different cevts, they will almost certainly not be within
125 ms, and if they are from the same cevt they will
generally be within 90 ms. We arbitrarily chose 100 ms.
as a cutoff point. We call this constant epsilon.

Unfortunately, it is not quite as easy to break a
performance into cevts as the previous paragraph would
suggest. The aforementioned method for grouping notes
into cevts is not guaranteed to be error-free. While the
matching algorithm itself is very robust, and can tolerate
errors in the grouping of events into cevts, the
performance of the system will be better if these errors
are minimized. The primary source of incorrect cevt
grouping from the above criterion is rolled chords. If a
chord is rolled, the time between constituent notes can
easily be greater than epsilon. But it is generally easy to
tell when a note belongs to a rolled chord, as it falls much
closer to the previous note in the same chord than it does
to the first note in the next chord. While the “epsilon
test” can be used pretty reliably to say that two notes are

ICMC "85 Proceedings

in the same cevt, a looser “relative™ test should be applied
before judging them to be in diffcrent cevts. If a note is
much closer to the previous note than it is to the
predicted time of the next solo event, it is declared to be
in the same cevt as the first note, even if they are not
within epsilon. Specifically, if the time between two note-
on events is less then some fraction of the predicted time
from the first event to the next cevt, the second note is
grouped with the first. We use 1/4 as the value for this
fraction, which we call epsilon-fraction. This solves the
chord rolling problem in practice. At first glance, 1/4
might appear to be a bit conservative, but there is a good
reason epsilon-fraction should not be too high. It sets a
limit on how much faster the soloist can play than the
Accompanist thinks he is piaying. [f the soloist exceeds
this limit, the Matcher will start grouping together notes
that actually belong in different cevts. In fact, a little
analysis shows that this maximum tolerable ratio of
soloist tempo to Accompanist tecmpo is the reciprocal of
epsilon-fraction.

As cach note in the solo performance comes in, we
immediately and irrevocably group it into a cevt. Either
the note is grouped into the same cevt as the previous
note, or the note is grouped into a new cevt, depending
on the results of the epsilon/epsilon-fraction test. Since
the grouping is fixed and alternatives are not considered,
wecall the algorithm static grouping.

Several more issues must be addressed before we can
use the above ideas to build a matcher. First, we must
preprocess the solo score into compound events to be
matched. If it is written out. the task is trivial, and if it is
input at a piano keyboard, we just apply the
epsilon/epsilon-fraction test to each note in the piece.

We must also decide how and when the performance
cevts under construction are to be compared with the
score cevts. [n the monophonic matching algorithm. we
compute the best-match function each time we process a
new solo performance event. In the polyphonic version,
we compute a tentative best-match cach time we process a
solo event, and update the calculation cach time we get
another note in the same cevt. A report can be made to
the Accompanist on the basis of this tentative best-match.
When a solo event comes in that is not part of the
previous cevt (by the epsilon/epsilon-fraction test), the
last tentative best-match calculation is declared correct,
This method has the advantage of allowing the
Accompanist to get location and timing information as
soon as the first note in a chord is hit. Generally,
successive notes in the chord will only serve to increase its

ICMC ’85 Proceedings

confidence in the location, but once in a while it will
discover that the tentative best-match location was wrong,

" and send a new location to the Accompanist.

284

One detail remains to be specified. When the
monophonic matcher evaluates best-match, it compares
performance events to score events, and there is no
difficulty deciding whether a performance event matches
a score event. The polyphonic matcher must match
performance cevts under construction to score cevts.
Thus we need to design a function which, given a partial
performance cevt and a score cevt, decides whether they
match. Let us call this function cevt-march. In order to
construct this boolean function, we first design a real-
valued function, cevi-match-rating, which assigns a match
rating to a partial performance cevt and a score cevt.
Clearly the rating should go up for each performed note
that is in the score cevt and down for each performed
note that is not in the score cevt. It sccms reasonable that
cach note should effect the rating in proportion to its
representation in the performed cevt. Thus we use the
function:

(# performed events in score cevt —

performed events not in score cevt) /

performed events.
Cevt-match is true if cevi-match-rating is greater than or
equal to some threshold value!. We use 0.5 as this
threshold value, which corresponds to one wrong note in
a four-note chord. It works fine, but we have no
indication that this value is optimal.

There is a problem with the fact that we accept the last
tentative match-rating as correct as soon as the first note
in the next performance cevt comes in. If a performed
cevt started with the first note in a five note chord, it
would be correct to say that it tentatively matched the
chord. But if no more notes were played in the cevt, it
would not be reasonable to say that they still matched.
Thus it would make sense to do one more calculation of
best-match with a different cevt-match function before
processing the first note of a new cevt. We have not yet
tested this idea.

1One nice thing about our cevt-maich-rating is that the numerator
of the fractional expression for the function can be updated
incrementally each time a new note in the performed cevt comes in.
By recasting the comparison test, the numerator can be compared
dircctly rather than calculating the fraction. Thus the function is very
cheap to calculate incrementatly and involves no multiplication or
division.

6. The Dynamic Matching Algorithm

The dynamic grouping algorithm is also similar to the
monophonic matching algorithm. The main difference is
that dynamic grouping matches a sequence of symbols
(notes) against a sequence of symbol sets (chords), while
the previous monophonic algorithm matches a sequence
against another sequence of symbols. The goal in either
case is to find an association between the two sequences
that maximizes a rating function as discussed in Section 3.

The primary data structure is a matrix where columns
are associated with performance symbols and rows are
associated with score sets (see Figure 6-1). Each matrix
element consists of an integer called value, and a set
called used. The value at row r, column ¢, will be the value
of the rating function in the best association up to and
including score set 4, and performance symbol a . The
used set at row 7, column ¢, will contain the symbols
matched in score set r in order to achieve the
corresponding value. This extra bockkeeping allows us to
avoid matching two performance symbols to the same
score symbol.

Performed Events
a a
Score 4 2 3

Figure 6-1: Matrix data structure used by
the dynamic matching algorithm.

To match the performance to the score, we compute a
column of the matrix as each symbol is read. To avoid a
special case in column one, a column zero is initialized to

correspond to the case where every score event has been
skipped. The precise values in column zero will depend
upon the choice of rating function. Each other cell is
computed in terms of the previous cell in the same row,
the cell in the previous row and previous column, and the
cell in same column but previous rows. Figure 6-2 labels
four cells and we will describe how to compute z from w,
x, and y. We will label the components of these cells as
w.used, x.value, etc. Also, let b be the performance
symbol corresponding to the column of z, let A be the

285

- - ————_—b - -
[— 1] i
] [}]]
I 1]]
A w x
8 y z

Figure 6-2: Orientation and labels for four matrix cells.

score set corresponding to the row of w and x, and let B
be the score set corresponding to the row of y and z. The
algorithm to compute z follows. The particular rating
function in this instance is the number of correct notes
minus the number of skipped or wrong notes. The rating
is neither increased nor decreased for extra (performance)
notes. The set cardinality operator is “ #”,

1) z.value : = y.value;

2) zused 1= y.used,

3)if bin B then

4) il b not in y.used then

5) zvalue := y.value + 1;
6) z.used := y.used union { b }
7 endif;

8) d:= wvalue + 1 — #(A — w.used),
9) ifd>= zvalue then

10) zvalue : = d,
11) zused:= {b}
12) endif

13) endlif;

14) v:= x.value — #(A — x.used);
15) if v>= z.value then

16) zvalue:= v,
17) zused:= {};
18) endif

By embedding this little program in a loop that iterates
down each row of the current column, and by computing
a new column for each performance event, we can
calculate the entire matrix.

We will now give an intuitive explanation of the
algorithm. The basic idea is that we can compute the best
association up to position z by extending previously
computed best associations up to positions w, x and y.

ICMC '85 Proceedings

Lines 1 and 2 handle the case where b is matched to
nothing and symbols before b are matched as for y. Lines
3 through 7 handle the case where b matches a previously
unmatched symbol in B8 and other symbols are matched
as in y. Lines 8 through 12 test to see if a better
association could be had by matching b with B and
matching other symbols as in w. Finally, lines 14 through
18 consider matching b to nothing and matching other
symbols as in x.

When z s in the first row, we must come up with values
for wand x. If we consider the matrix to have a row zero,
with initial value’s of minus infinity and empty used sets,
then the tests in lines 9 and 14 will fuil and the correct z
will be computed in row zero.

After many hours of study, it is still not obvious to us
that this algorithm covers enough possibilities that we
always end up with the maximum zvalue for all possible
associations. A working implcmentation has
demonstrated that the algorithm gives acceptable results
in practical situations, but we have no proof at this time
that the algorithm always gives correct results.

7.The Accompanist

The Input Preprocessor passes each new performance
event to the Matcher. Whenever the Matcher thinks it
knows which event in the solo score corresponds to the
performance event, it reports a match to the
Accompanist. Since the solo score indicates a virtual time
for each event, the Accompanist can speed up or slow
down the accompaniment in order to match the timing of
the solo. It is up to the Accompanist to generate a
musically acceptable accompaniment on the basis of this
information.

In general, the Accompanist synthesizes a virtual time
as a linear function of real time; the slope of this function
gives us the relative rate of “score time” or virtual time
with respect to real time. As new information arrives
from the Matcher, the Accompanist must adjust this
function to maintain a good fit between computed virtual
time and reported virtual times of solo events.

Producing a musical accompaniment as the “virtual
clock” is constantly adjusted is a non-trivial task. When
the clock is reset, it is not-sufficient to merely jump to the
new virtual time in the accompaniment score and start
playing from there. We must decide what to do about
notes that were sounding when the match occurred and

ICMC °85 Proceedings

286

notes that should be sounding at the (virtual) time of the
match. A specific problem with a naive approach is that
it can result in notes with two or more attacks or decays.
If a note has just started playing and the Accompanist
moves the virtual time to a point just before the note
starts playing, it will stop and start again. An analogous
effect will occur if a note has just stopped and the virtual
time is moved to a point just before the note stops. A real
musician will speed up or hold back to come back into
synch with other musicians and then resume playing at
the speed of the other musicians. Our program should
mimic this behavior. We must also address the problem
of how and when to change the tempo of the
accompaniment.

In fact, solving the accompaniment generation problem
in its full generality is a difficult problem in artificial
intelligence. However, our program is able to generate
adequate accompaniment under most circumstances
using fairly straightforward methods which we describe
below.

The accompaniment score is stored as a sequence of
note-on and note-off-events. [n the absence of matches,
each accompaniment event is performed when the virtual
clock reaches the time of the event. A pointer into the
score is maintained in order to know which events have
already been performed. When a match occurs, the
Matcher passes three pieces of information to the
Accompanist: the virtual time of the matched solo event,
a flag indicating whether or not the matched event was
the next event in sequence after the last matched solo
event, and the virtual time of the next solo event in the
score. The third piece of information could be easily
derived from the first, but it is computationally less
expensive for the Matcher to return it.

When a match occurs, the Accompanist invokes two
routines. The first, called change_virt_time, has the dual
function of correcting the setting of the virtual clock and
changing the notes currently sounding. The second,
called adjust_clock speed, has the function of changing the
tempo of the accompaniment performance to reflect that
of the solo performance. In other words, the two routines
adjust respectively the position and speed of the virtual
clock, and these tasks are handled completely
independently.

7.1. Changing Virtual Time

The first thing change_virt_time (CVT) does is to check
the magnitude of the change in virtual time dictatcd by
the match. [f the diffcrence between the current virtual
time and the time of the matched solo event is less than
some minimum value (we use 100 ms.), the time change
request is completely ignored. This has the effect of
allowing the performer to introduce subtleties into his
phrasing (e.g. pushing a note before the beat) without
having the accompaniment jump blindly into synch with
him. It also results in a “smoother” reading of the
accompaniment. If the soloist actually wants to play
slower or faster than the accompaniment, the difference
between the current time and the time of a matched solo
cvent will quickly grow bigger than the minimum value
required to actually process the time change.

When a time change request is actually processed, one
of two things happen. [f the match was “in sequence”
then the accompaniment was merely playing too slow or
too fast for the soloist. Rather than jumping around in
the accompaniment score, which entails the risk of
skipping notes or playing them more than once, the
accompaniment merely continues performing the
accompaniment events in sequence. If it has lagged
behind, it quickly performs the skipped events to catch
up. [fit has jumped ahead, it continues playing the note
that it is playing (if any) until the virtual time for the note
to be turned off is reached. At that time, the soloist will
presumably have caught up. This behavior approximates
the response of a human accompanist.

In some cases, the “in scquence” heuristic described
above can lead to rather odd behavior. The problem
arises when the soloist makes a drastic change in time, say
by miscounting a long rest. When the time change is
greater than 2 seconds, it is better to skip to the right
place in the accompaniment than to race to catch up or to
stop and wait. Our threshold of 2 seconds should really
be replaced with a variable threshold that decreases when
the density of notes in the accompaniment increases.

If the match resulting in a time change was out of
sequence, then the Accompanist’s prior notion of the
soloist’s position in the score was probably wrong. Thus
it makes sense to immediately synchronize with him, now
that the Accompanist thinks it knows where he is. This is
done by making sure that the chord sounding is the chord
that should be sounding at the indicated virtual time.
The accompaniment score is preprocessed to make it easy
to determine this chord. Associated with each event is the
number of notes sounding after this event is performed.

287

To determine the chord sounding at any virtual time, the
Accompanist merely looks back in the accompaniment
score until it sees enough note on-events to account for
the number of notes sounding at the last event occurring
before or at that virtual time. The synthesizer module
itself keeps track of what chord it is currently sounding,
and can easily change this chord to the desired chord by
turning off any undesired notes and turning on any
missing notes. Of course the setting of the virtual clock
and the pointer to the next event to be performed in the
accompaniment score are updated to reflect the time
change.

In summary, CVT employs a two-part approach to
virtual clock adjustment which treats tempo mismatches
differently from actual location changes. This approach
solves, for the most part, the multiple attack/decay
problem referred to above. Small time changes of the
sort that would cause multiple attacks or decays are
generally the result of tempo mismatches, and CVT’s
method of handling tempo mismatches ensures that the
events in the accompaniment score are performed
sequentially, temporarily speeding up or siowing down to
produce this behavior. This roughly mimics the behavior
of a real musician under similar circumstances.

7.2. Adjusting Clock Speed

The second routine invoked by the Accompanist when
a match is detected is adjust_clock_speed (ACS). lts
function is to maintain the value of the virtual clock speed
factor (s). Recall that s is the speed at which the
accompaniment is played relative to the speed at which it
is written in the score. Clearly, s should be maintained at
the speed at which the solo is being played relative to the
speed at which it is written.

When the Matcher reports a match, it provides the time
of the solo event matched, and this time becomes the
current virtual time. By querying the real-time clock,
ACS gets a point on the virtual-time vs, real-time graph.
The rate at which virtual time is progressing is the slope
of this graph. This is the value to which sshould be set.

If the soloist were playing his part exactly as written,
but changed tempos every once in a while, the virtual-
time vs. real-time graph would be a sequence of
connected straight lines. In this case, ACS could
recompute the slope (change in virtual time / change in
real time) after each match and reset s to this value. This
would produce nearty instantaneous responses to changes
in tempo by the soloist. However, real performances
contain local variations in speed that do not indicate

ICMC ’85 Proceedings

actual tempo differences, but merely personal variation in
phrasing. In order to filter this out and smooth out the
performance of the accompaniment, ACS keeps a table of
the last few “match points™. (We keep four points in the
table.) Each time ACS is called, a new point is added to
the table. If the table is alrcady full, the oldest point is
shifted out of the table to make room for the new point.
If the table is full after the point is added, ACS resets s to
the slope of the graph over the range of the points in the
table. A more sophisticated approach would be to fit a
line to these points and set s to its slope. This would use
all points in the table rather than just the first and last,
and would be less susceptible to the influence of a small
number of “off-time” notes. The only potential
disadvantage is the computational expense, which should
not be significant in practice.

If a match is detected out of sequence, it makes no
sense to consider this point to be on the same line as those
prior to it. This could easily result in ludicrous results,
like negative tempos. Therefore, the ACS will only
accumulate points that represent consecutive events from
the solo score in its table. If a point comes in out of
scquence, the table is emptied out except for this point.

Two changes were made to the basic clock speed
adjustment algorithm to improve its performance. Recall
that when a match is detected out of sequence (and at the
beginning of the performance) the table of points on the
virtual-time vs. real-time graph is emptied out. Recail
also that the tempo is not adjusted until the table is full.
If the soloist is playing slowly, or it is a slow section of the
piece, this could take some time. [n the meantime, the
accompaniment might run ahead of or lag behind the
soloist. To prevent this from happening, ACS will reset
the clock speed even if the table is not full, if the real time
difference between the first and last point is greater than
some minimum value. (We use 1 second.)

The second modification to the algorithm is, in a sense,
dual to the first. When a musician plays a fast group of
notes, the rhythm of the group is not necessarily a good
indication of the tempo at which he is playing the piece as
a whole. Therefore, ACS does not bother entering a
point in its table if the real time of the point is too close to
that of the previous point in the table. (In our program,
within 200 ms.) This has the effect of forcing the sample
of music on which a tempo adjustment is made to be of at
least a certain minimum duration. In practice, this should
cause the sample to extend beyond a single fast group of
notes.

ICMC '85 Proceedings

288

The clock speed adjustment algorithm will successfuily
track the tempo of the soloist’s performance. But if his
tempo is very different from the initial tempo of the
accompaniment, the first few seconds of music can sound
quite uncoordinated as the Accompanist figures out how
fast the soloist is playing. This effect is especially
pronounced if the soloist is playing much slower than the
accompaniment, because he is not providing as many
match points to bring the accompaniment in to synch. To
counteract this problem, s should be initialized to the
approximate speed at which the solo will be played
relative to the speed in the score.

The virtual time and clock speed adjustment algorithms
keep the accompaniment synchronized with the solo
pcrformance as long as they are called frequently. But if
the Matcher loses track of the soloist, or if the soloist
stops playing, the Matcher stops reporting matches to the
Accompanist. {f no special action were taken, the virtual
clock would keep ticking away, and the accompaniment
would keep playing at the last calculated tempo, oblivious
to the fact that the soloist was not playing along. In order
to counteract this behavior, the Accompanist is equipped
with runaway detection.

Each time a match is reported, the Matcher tells the
Accompanist the virtual time of the expected next event,
If a sufficient amount of virtual time (in our program, 2
seconds) elapses after the predicted time for the next
event and no match is reported, a runaway is declared.
Once this happens, any notes currently sounding are
turned off and the virtual clock stops moving forward.
The runaway is kept in effect untit a match is detected, at
which point the virtual clock is reset and accompaniment
continues. This has the effect of causing accompaniment
to cease when the Accompanist knows it is not playing
along with the soloist. The accompaniment resumes as
soon as the Matcher reports a new location. If the soloist
has stopped playing, this will happen as soon as he starts
again.

8. Experimental Results

Thus far, we have implemented two polyphonic
accompaniment systems, one using static and one using
dynamic grouping. We have been able to modularize the
software so that new Accompanists and Matchers can be
“plugged in” to an experimental system complete with
Input Processor, Synthesis module, debugging tools and a
user interface. Both systems work well, but neither is
clearly better. The static grouping system is more
susceptible to errors when the timing of the performance
is greatly distorted. On the other hand, the dynamic

grouping system never takes any account of timing and
therefore may not always model the musician's concept of
a good match. In practice, both systems work very well,
and only fail on contrived pathological cases..

One interesting feature of the current implementation
of static grouping is that because it ignores repeated notes
in the same cevt, it is possible to handle trills and other
ornamentations’ with a small amount -of score
preprocessing. The dynamic grouping system as
currently implemented would need some help from the
Input Preprocessor to handle trills.

Both systems use the following costs for the rating

function;
¢,=2¢,=2c¢,=0.
Note that static grouping applies these costs at the level of
cevts, whereas dynamic grouping applies these costs at the
individual note level. Further studies have led us to
consider other choices, particularly
Cw = Cm = ce =2

but we have no experimental data yet.

Both systems also use the first approach in Section 4 to
decide when to report matches to the Accompanist.
Again, this approach works well, but may not be optimal.
The second approach works well on paper, and we intend
to try it in our experimental system.)

9. Concluding Remarks

For reasons that are unrelated to our accompaniment
software, our experimental systems are too slow for
serious performance studies. However, we feel confident
that the technigues outlined in this paper can be used to
construct a system suitable for live performance of a wide
range of scores. Many points in the design space we have
described still need to be evaluated. In addition, there are
many other avenues left to explore.

Our primary model has been keyboard performance,
but there are other possibilities. In . ensemble
performance, it is certainly possible to merge all of the
performed events into one performance and apply our
accompaniment techniques; however, more information
is available if each performer is tracked individually with
his own Input Preprocessor and Matcher. A new module
would then be needed to decide how to combine
information from Matchers and pass it on to the
Accompanist. Ensemble accompaniment is an interesting
area for future research.

Another interesting area is the accompaniment of voice.
The main problem here is that pitch accuracy is not
nearly as high as with most instruments. This leads to a
high percentage of spurious pitches at the lowest input
level, and greater sophistication of either the Input
Preprocessor or the Matcher (or both) is likely to be
necessary to achieve satisfactory performance.

Finally, we have only dealt with music in which events
are completely planned and notated. This omits a large
body of works where improvisation is employed.

10. Summary

We have constructed successful polyphonic computer
accompaniment systems, using a piano-like keyboard as
the input device. The systems accompany a real-time
performance with a stored score, and can handle changes
in tempo, wrong notes, extra notes, and skipped notes.
The principle technique used to follow the solo
performance is a variation of dynamic programming, and
we have described a design space of implementation
alternatives.

11. Acknowledgments

The authors would like to thank the Carnegie-Mellon
University Department of Music for use of the computer
music system on which all of our accompaniment systems
were constructed and tested

References

1. P.J. Bloom. Use of Dynamic Programming for
Automatic Synchronization of Two Similar Speech
Signals. Proceedings of 1EEE [nternational Conference
on Acoustics, Speech, and Signal Processing, 1984, pp.
2.6.1-2.6.4.

2. Roger B. Dannenberg. An On-Line Algorithm for
Real-Time Accompaniment. Proceedings of the 1984
International Computer Music Conflerence, 1984,

3. D. A. Jaffe. Ensemble possibilities and problems in
computer music. Proceedings of the 1984 International
Computer Music Conference, 1984.

4, David Sankoff and Joseph B. Kruskal, editors. Time
Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison. Addison-Wesley,
Reading, Mass., 1983.

5. Barry Vercoe. The synthetic performer in the context
of live performance. Procéedings of the 1984
International Computer Music Con{erence, 1984.

ICMC °85 Proceedings

