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ABSTRACT 
Human listeners are able to recognize structure in music through 
the perception of repetition and other relationships within a piece 
of music. This work aims to automate the task of music analysis. 
Music is “explained” in terms of embedded relationships, 
especially repetition of segments or phrases. The steps in this 
process are the transcription of audio into a representation with a 
similarity or distance metric, the search for similar segments, 
forming clusters of similar segments, and explaining music in 
terms of these clusters. Several transcription methods are 
considered: monophonic pitch estimation, chroma (spectral) 
representation, and polyphonic transcription followed by 
harmonic analysis. Also, several algorithms that search for similar 
segments are described. These techniques can be used to perform 
an analysis of musical structure, as illustrated by examples. 

1. INTRODUCTION 
Digital sound recordings of music can be considered the lowest 
level of music representation. These audio representations offer 
nothing in the way of musical or sonic structure, which is 
problematic for many tasks such as music analysis, music search, 
and music classification. Given the current state of the art, 
virtually any technique that reveals structure in an audio recording 
is interesting. Techniques such as beat detection, key detection, 
chord identification, monophonic and polyphonic transcription, 
melody and bass line detection, source separation, speech 
recognition, and instrument identification all derive some higher-
level information from music audio. There is some hope that by 
continuing to develop these techniques and combine them, we will 
be better able to reason about, search, and classify music, starting 
from an audio representation. 

In this work, we examine ways to discover patterns in music audio 
and to translate this into a structural analysis. The main idea is 
quite simple: musical structure is signaled by repetition. Of 
course, “repetition” means similarity at some level of abstraction 
above that of audio samples. We must process sound to obtain a 
higher-level representation before comparisons are made, and 
must allow approximate matching to allow for variations in 
performance, orchestration, lyrics, etc. In a number of cases, our 
techniques have been able to describe the main structure of music 
compositions. 

We have explored several representations for comparing music. 
Monophonic transcription can be used for music where a single 
voice predominates (even in a polyphonic recording). Spectral 
frames can be used for more polyphonic material. We have also 
experimented with a polyphonic transcription system. 

For each of these representations, we have developed heuristic 

algorithms to search for similar segments of music. We identify 
pairs of similar segments. Then, we attempt to simplify the 
potentially large set of pairs to a smaller set of clusters. These 
clusters identify “components” of the music. We can then 
construct an explanation or analysis of the music in terms of these 
components. The goal is to derive structural descriptions such as 
“AABA.” 

We believe that the recognition of repetition is a fundamental 
activity of music listening. In this view, the structure created by 
repetition and transformation is as essential to music as the 
patterns themselves. In other words the structure AABA is 
important regardless of what A and B represent. At the risk of 
oversimplification, the first two A’s establish a pattern, the B 
generates tension and expectation, and the final A confirms the 
expectation and brings resolution. Structure is clearly important to 
music listening. Structure can also contribute expectations or prior 
probabilities for other analysis techniques, such as transcription 
and beat detection, where knowledge of pattern and form might 
help to improve accuracy. It follows that the analysis of structure 
is relevant to music classification, music retrieval, and other 
automated processing tasks. 

2. RELATED WORK 
It is well known that music commonly contains patterns and 
repetition. Any music theory book will discuss musical form and 
introduce notation, such as “AABA,” for describing musical 
structures. Many researchers in computer music have investigated 
techniques for pattern discovery and pattern search. Cope [8] 
searches for “signatures” that are characteristic of composers, and 
Rolland and Ganascia describe search techniques [25]. Interactive 
systems have been constructed to identify and look for patterns 
[29], and much of the work on melodic similarity [13] is relevant 
to the analysis of music structure. Aucouturier and Sandler present 
another approach to finding patterns in music audio. [2] 

Simon and Sumner wrote an early paper on music listening and its 
relationship to pattern formation and memory [27], proposing that 
we encode melody by referencing patterns and transformations. 
This has some close relationships to data compression, which has 
also inspired work in music analysis and generation. [15] Narmour 
describes a variety of transformative processes that operate in 
music to create structures that listeners perceive. [21] 

A fundamental idea in this work is to compare every point of a 
music recording with every other point. This naturally leads to a 
matrix representation in which row i, column j corresponds to the 
similarity of time points i and j. A two-dimensional grid to 
compute and display self-similarity has been used by Wakefield 
and Bartsch [5] and by Foote and Cooper [12].  

Mont-Reynaud and Goldstein proposed rhythmic pattern 
discovery as a way to improve music transcription. [20] Conklin 
and Anagnostopoulou examine a technique for finding significant 
exactly identical patterns in a body of music. [7] A different 
approach is taken by Meek and Birmingham to search for 
commonly occurring melodies or other sequences. [18] 
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3. PATTERN SEARCH 
In this section, we describe the general problem of searching for 
similar sections of music. We assume that music is represented as 
a sequence si, i = 0…n–1. A segment of music is denoted by a 
starting and ending point: (i, k), 0 ≤ i ≤ k < n. Similar sections 
consists of two segments: ((i, k), (j, l)), 0 ≤ i ≤ k < j ≤ l < n. For 
convenience, we do not allow overlapped segments1, hence k < j. 

There are O(n4) possible pairs of segments. To compute a 
similarity function of two segments, one would probably use a 
dynamic programming algorithm with a cost proportional to the 
lengths of the two segments. This increases the cost to O(n6) if 
each pair of segments is evaluated independently. However, given 
a pair of starting points, i,j, the dynamic programming alignment 
step can be used to evaluate all possible pairs of segment 
endpoints. There are O(n2) starting points and the average cost of 
the full alignment computation is also O(n2), so the total cost is 
then O(n4). Using frame sizes from 0.1 to 0.25 seconds and music 
durations of several minutes, we can expect n to be in the range of 
200 to 2000. This implies that a brute-force search of the entire 
segment pair space is will take hours or even days. This has led us 
to pursue heuristic algorithms. 

In our work, we assume a distance function between elements of 
the sequence si. To compute the distance between two segments, 
we use an algorithm for sequence alignment based on dynamic 
programming. A by-product of the alignment is a sum of distances 
between corresponding sequence elements.  This measure has the 
property that it generally increases with length, whereas longer 
patterns are generally desirable. Therefore, we divide distance by 
length to get an overall distance rating. 

Typically there are many overlapping candidates for similar 
segments. Extending or shifting a matching segment by a frame or 
two will still result in a good rating. Therefore, the problem is not 
so much to find all pairs of similar segments but the locally “best” 
matches. In practice, all of our algorithms work by extending 
promising matches incrementally to find the “best” match. This 
approach reduces the computation time considerably, but 
introduces heuristics that make formal descriptions difficult.  
Nevertheless, we hope this introduction will help to explain the 
following solutions. 

4. MONOPHONIC ANALYSIS 
Our first approach is based on monophonic pitch estimation, 
which is used to transcribe music into a note-based representation. 
Notes are represented as a pitch (represented on a continuous 
rather than quantized scale), starting time, and duration (in 
seconds). The pitch estimation is performed using autocorrelation 
[24] and some heuristics for rejecting false peaks and outliers, as 
described in an earlier paper. [9] 

We worked with a saxophone solo, “Naima,” written and 
performed by John Coltrane [6] with a jazz quartet (sax, piano, 
bass, and drums). To find matching segments in the transcription, 
we construct a matrix M where Mi,j is the length of a segment2 
starting at note i and matching a segment at note j. 

4.1 Algorithm 1 
The search algorithm in this case is a straightforward search of 
every combination of i, j such that i < j. For n notes, there are n(n-
−1)/2 pairs. The search proceeds only if there is a close match 
between pitch i and pitch j. Although we could use dynamic 
programming for note alignment [13, 26], we elected to try a 
simple iterative algorithm. The algorithm repeatedly extends the 
current pair of similar segments as long as the added notes match 
in pitch and approximate duration. In addition to direct matches, 
the algorithm is allowed to skip one note after either segment and 

look for a match, skip one short note in both segments and look 
for a match, consolidate [19] two consecutive notes with matching 
pitches to form one with a greater duration and match that to a 
note, or match consolidated note pairs following both segments. 
These rules might be extended or altered to search for rhythmic 
patterns or to allow transpositions. 

If segment (i, k) matches (j, l), then in many cases, (i + 1, k) will 
match (j + 1, l) and so on. To eliminate the redundant pairs, we 
make a pass through the elements of M, clearing cells contained 
by longer similar segments. For example if (i, k) matches (j, l), we 
clear all elements of the rectangular submatrix Mi..k,j..l except for 
Mi,j. 

Finally, we can read off pairs of similar segments and their 
durations by making another pass over the matrix M. Although 
this approach works well if there is a good transcription, it is not 
generally possible to obtain a useful melodic transcription from 
polyphonic audio. In the next section, we consider an alternative 
representation. 

5. SPECTRUM-BASED ANALYSIS 
When transcription is not possible, a lower-level abstraction based 
on the spectrum can be used. We chose to use Wakefield’s 
chroma because it seemed to do a good job of identifying similar 
segments in an earlier study where the goal was to find the chorus 
of a pop song. [4, 5] 

The chroma is a 12-element vector where each element represents 
the energy associated with one of the 12 pitch classes. Essentially, 
the spectrum “wraps around” at each octave and bins are 
combined to form the chroma vector. Distance is then defined as 
Euclidean distance between vectors normalized to have a mean of 
zero and a standard deviation of one. (This particular distance 
function was adopted from Bartsch and Wakefield. It seems to 
work at least as well as various alternatives, including simple 
Euclidean distance, although there is no formal basis for this 
choice.) 

The most important feature of a chroma representation is that the 
music is divided into equal-duration frames rather than notes. 
Typically, there will be hundreds or thousands of frames as 
opposed to tens or hundreds of notes. Matching will tend to be 
more ambiguous because the data is not segmented into discrete 
notes. Therefore, we need to use more robust (and expensive) 
sequence alignment techniques and therefore more clever 
algorithms. 

5.1 Brute-Force Approach 
At first thought, observing that dynamic programming computes a 
global solution from incremental and local properties, one might 
try to reuse local computations to form solutions to our similar 
segments problem. A typical dynamic programming step computes 
the distance at cell i,j in terms of cells to the left (j−1), above 
(i−1), and diagonal (i−1, j−1). The value at i,j is: 

Mi,j = di,j + min(Mi,j−1, Mi−1,j,  Mi−1,j−1) 

In terms of edit distances, we use di,j, the distance from frame i to 
frame j as either a replacement cost, insertion cost, or deletion 
cost, although many alternative cost/distance functions are 
possible within the dynamic programming framework. [14] 
Unfortunately, even if we precompute the full matrix, it does not 
help us in computing the distance between two segments because 
of initial boundary conditions, which change for every 
combination of i and j. Smith and Waterman’s algorithm [28] 
computes a single best common subsequence, but in our case that 
would simply be the perfect match along the diagonal. Other 
related algorithms for biological sequence matching include 
FASTA [23] and BLAST [1], but these would also report the 
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diagonal as the longest matching sequence. There are similarities 
between these algorithms and ours (presented below). It seems 
likely that better and faster music similarity algorithms could be 
derived from these and other biological sequence matching 
algorithms. 

As mentioned in the introduction, the best we can do is to 
compute a submatrix starting at i,j for every 0 ≤ i < j < n. This 
leaves us with an O(n4) algorithm to compute the distance for 
every pair ((i, k), (j, l)). To avoid very long computation times, we 
developed a faster, heuristic search. 

5.2 Heuristic Search 
We compute the distance between two segments by finding a path 
from i,j to k,l that minimizes the distance function. Each step of 
the path takes one step to the right, downward, or diagonally. In 
practice, similar segments are characterized by paths that consist 
mainly of diagonal segments because tempo variation is typically 
small. Thus we do not need to compute a full rectangular array to 
find good alignments. Alternatively, we can compute several or 
even all paths with a single pass through the matrix. This method 
is described here.  

5.3 Algorithm 2 
The main idea of this algorithm is to identify path beginnings and 
to follow paths diagonally across a matrix until the path rating 
falls below some threshold. The algorithm uses three matrices we 
will call distance (D), path (P), and length (L). D and L hold real 
(floating point) values, and P holds integers. P is initialized to 
zero so that we can determine which cells have been computed. If 
Pi,j = 0, we say cell i,j is uninitialized. The algorithm scans the 
matrix along diagonals of constant i+j as shown in Figure 1, 
filling in corresponding cells of D, P, and L. A cell is computed in 
terms of the cells to the left, above, and diagonal. First, compute 
distances and lengths as follows: 

 dh = if Pi,j−1≠0 then Di,j−1+di,j, else �; lh = L i,j−1+√2/2 

 dv = if Pi−1,j≠0 then Di−1,j+di,j, else �; lv = L i−1,j+√2/2 

 dd = if Pi−1,j−1≠0 then Di−1,j−1+di,j, else �; ld = L i−1,j−1+1 

The purpose of the infinity (�) values is to disregard distances 
computed from uninitialized cells as indicated by P. The reader 
familiar with dynamic programming for string comparison may 
recognize dh, dv, and dd as horizontal, vertical, and diagonal 
extensions of precomputed paths. In contrast to dynamic 
programming, we also compute path lengths lh, lv, and ld. Now, let 
c = min(dh/lh, dv/lv, dd/ld). If c is greater than a threshold, the cell 
at i,j is left uninitialized. Otherwise, we define Di,j = c, Li,j = lm, 
and Pi,j =Pm, where the subscript m represents the cell that 
produced the minimum value for c, either (i,j−1), (i−1,j), or 
(i−1,j−1). 

Because of the length terms, this algorithm may not find optimal 
paths. However, we found that when we defined distance without 
the length terms, the algorithm was difficult to tune and would 
find either paths that are too short or many spurious paths. 

As described so far, this computation will propagate paths once 
they are started, but how is a path started? When Pi,j is left 
uninitialized by the computation described in the previous 
paragraph and di,j is below a threshold (the same one used to cut 
off paths), Pi,j is set to a new integer value to denote the beginning 
of a new path. We also define Di,j = di,j and Li,j = 1 at the 
beginning of the path. 

 

 i 
 j 

 
Figure 1. In Algorithm 2, the similarity matrix is 

computed along diagonals as shown. 
After this computation, regions of P are partitioned according to 
path names. Every point with the same name is a candidate 
endpoint for the same starting point. We still need to decide where 
paths end. We can compute endpoints by reversing the sequence 
of chroma frames, so that endpoints become starting points. Recall 
that starting points are uninitialized cells where di,j is below a 
threshold. To locate endpoints, scan the matrix in reverse from the 
original order (Figure 1 shows the original order). Whenever a 
new path name is encountered, and the distance di,j is below 
threshold, find the starting point and output the path. An array can 
keep track of which path names have been output and where paths 
begin. 

6. POLYPHONIC TRANSCRIPTION 
Polyphonic transcription offers another approach to similarity. 
Although automatic polyphonic transcription has rather high error 
rates, it is still possible to recover a significant amount of musical 
information. We use Marolt’s SONIC transcription program [16], 
which transcribes audio files to MIDI files. SONIC does not 
attempt to perform source separation, so the resulting MIDI data 
combines all notes into a single track. Although SONIC was 
intended for piano transcription, we get surprisingly good results 
with arbitrary music sources. Transcriptions inevitably have 
spurious notes, so we reduce the transcriptions to a chord 
progression using the Harman program by Pardo [22]. Harman is 
able to ignore passing tones and other non-chord tones, so in 
principle, Harman can help to reduce the “noise” introduced by 
transcription errors. 

After computing chords with Harman, we generate a sequence of 
frames si, 0 < i < n, where each frame represents an equal interval 
of time and si is a set of pitch classes corresponding to the chord 
label assigned by Harman. 

In our experiments with polyphonic transcription, we developed 
yet another algorithm for searching for similar segments. This 
algorithm is based on an adaptation of dynamic programming for 
computer accompaniment [10]. In this accompaniment algorithm, 
a score is matched to a performance not by computing a full n×m 
matrix but by computing only a diagonal band swept out by a 
moving window, which is adaptively centered on the “best” 
current score position. 

6.1 Algorithm 3 
To find similar segments, we will sweep a window diagonally 
from upper left to lower right as shown in Figure 2. When a match 
is found, indicated by good match scores, the window is moved to 
follow the best path. We need to decide where paths begin and 
end. For this purpose, we compute similarity (rather than distance) 
such that similarity scores increase where segments match, and 
decrease where segments do not match. 
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Figure 2. In Algorithm 3, the similarity matrix is computed 

in diagonal bands swept out along the path shown. The 
shaded area shows a partially completed computation. 

An example function for similarity of chords is to count the 
number of notes in common minus the number of notes not in 
common. For chords A and B (sets of pitch classes), the similarity 
is: 

σ(A, B) = |A∩B| − |A∪B − A∩B|, 

where |X| is the number of elements in (cardinality of) set X. Other 
functions were tried, including a count of the number of common 
pitches, but this has the problem that a dense chord will match 
almost anything. (A similarity function based on probabilities 
might work better than our ad hoc approach. This is left for future 
work.) We will write σi,j to denote σ(si, sj), the similarity between 
chords at frames i and j. 

When we compute the matrix, we initialize cells to zero and store 
only positive values. A path begins when a window element 
becomes positive and ends when the window becomes zero again. 
The computation for a matrix cell is: 

Mi,j = max(Mi,j−1 − p, Mi−1,j − p, Mi−1,j−1) + σi,j − c 

where p is a penalty for insertions and deletions, and c is a bias 
constant, chosen so that matching segments generate increasing 
values along the alignment path, and non-matching segments 
quickly decrease to zero. 

The computation of M proceeds as shown by the shaded area in 
Figure 2. This evaluation order is intended to find locally similar 
segments and follow their alignment path. The reason for 
computing in narrow diagonal bands is that if M were computed 
entire row by entire row, all paths would converge to the main 
diagonal where all frames match perfectly. At each iteration, cells 
are computed along one row to the left and right of the current 
path, spanning data that represents a couple of seconds of time. 
Because of the limited width of the path, references will be made 
to uninitialized cells in M. These cells and their values are ignored 
in the maximum value computation. 

This algorithm can be further refined. The score along an 
alignment path will be high at the end of the similar segments, 
after which the score will decrease to zero. Thus, the algorithm 
will tend to compute alignment paths that are too long. We can 
improve on the results by interactively trimming a frame from 
either end of the path as long as the similarity/length quotient 
increases. This does not always work well because of local 
maxima. Another heuristic we use is to trim the final part of a path 
where the slope is substantially off-diagonal, as shown in Figure 
3. 

Because the window has a constant size, this algorithm runs in 
O(n2) time, and by storing only the portion of the matrix swept by 
the window, O(n) space. The algorithm is quite efficient in 
practice. 

 

 
Figure 3. The encircled portion of the alignment path is 

trimmed because it represents an extreme difference in tempo. 
The remainder determines a pair of similar segments.  

7. CLUSTERING  
After computing pairs of similar segments with any of the three 
previously described algorithms, we need to form clusters to 
identify where segments occur more than twice in the music. For 
example, if segment A is similar to segment B (as determined by 
algorithm 1, 2, or 3), and B is similar to C, we expect A to be 
similar to C, forming the cluster {A, B, C}. Essentially, we are 
computing the transitive closure of a “similarity” relation over 
these segments, where “similarity” means either the segments are 
identified as similar by Algorithm 1, 2, or 3, or the segments 
overlap significantly (typically, the segment starting and ending 
points match within 10 percent of the segment durations). The 
transitive closure generates an equivalence relation, which in turn 
implies a partition over the set of segments. This partition is the 
clustering we are after.  

The algorithm is simple: Start with a set of similar pairs, as 
computed by Algorithms 1, 2, or 3. Remove any pair from the set 
to form the first cluster. Then search the set for pairs (a, b) such 
that either a or b (or both) is an approximate match to a segment 
in the cluster. If a (or b) is not already in the cluster, add it to the 
cluster. Continue extending the cluster in this way until there are 
no more similar segments in the set of pairs. Now, repeat this 
process to form the next cluster, etc., until the set of pairs is 
empty. 

Sometimes, a segment in a cluster will correspond to a subsegment 
of a pair, e.g. (10, 20) overlaps half of the first segment of the pair 
((10, 30), (50, 70)). We do not want to add (10, 30) or (50, 70) to 
the cluster because these have length 20, whereas the cluster 
element (10, 20) only has length 10. However, it seems clear that 
there is a segment similar to (10, 20) starting at 50. In this 
situation, we split the pair proportionally to synthesize a matching 
pair. In this case, we would create the pair ((10, 20), (50, 60)) and 
add (50, 60) to the cluster. 

8. ANALYSIS AS EXPLANATION 
The final step is to produce an analysis of the musical structure 
implied by the clusters. We like to view this as an “explanation” 
process. For each section of music, we “explain” the music in 
terms of its relationship to other sections. If we could determine 
relationships of transposition, augmentation, and other forms of 
variation, these relationships would be part of the explanation. 
With only similarity, the explanation amounts to labeling music 
with clusters. 

To build an explanation, recall that music is represented by a 
sequence si, 0 ≤ i < n. Our goal is to fill in an array Ei, 0 ≤ i < n, 
initially nil, with cluster names, indicating which cluster (if any) 
contains a note or frame of music. The explanation E serves to 
describe the music as a structure based on the repetition and 
organization of patterns. 
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Recall that a cluster is a set of intervals. For each i in some 
member of the cluster, we set Ei to the name of the cluster. (Names 
are arbitrary, e.g. “A”, “B”, “C”, etc.) We then continue searching 
for the next i such that Ei = nil and i is in some new cluster. We 
then label additional points in Ei with this new cluster. However, 
once a label is set, we do not replace it. This gives priority to 
musical material that is introduced the earliest, which seems to be 
a reasonable heuristic to resolve conflicts when clusters overlap. 

9. EXAMPLES 
We present results from monophonic pitch estimation and 
chroma-based analyses, and we describe some preliminary results 
using polyphonic transcription. 

9.1 Transcription and Algorithm 1 
Figure 4 illustrates an analysis of “Naima” using monophonic 
transcription and Algorithm 1 to find similar segments. Audio is 
shown at the top to emphasize the input/output relationships for 
the casual reader. (The authors realize that very little additional 
information is revealed by these low-resolution waveforms.) 
Clusters are shown as heavy lines, which show the location of 
segments, connected by thin lines. The analysis is shown at the 

bottom of the figure. The simple “textbook” analysis of this piece 
would be a presentation of the theme with structure AABA, 
followed by a piano solo. The saxophone returns to play BA 
followed by a short coda. In the computer analysis, further 
structure is discovered within the B part (the bridge), so the 
computer analysis might be written as AABBCA, where BBC 
forms the bridge. 

The transcription failed to detect more than a few notes of the 
piano solo. There are a few spurious matching segments here. 
After the solo, the analysis shows a repetition of the bridge and the 
A part: BBCA. This is followed by the coda in which there is 
some repetition. Aside from the solo section, the computer 
analysis corresponds quite closely to the “textbook” analysis. It 
can be seen that the A section is half the duration of the B part, 
which is atypical for an AABA song form. If the program had 
additional knowledge of standard forms, it might easily guess that 
this is a slow ballad and uncover additional structure such as the 
tempo, number of measures, etc. Note, for example, that once the 
piece is subdivided into segments, further subdivisions are 
apparent in the RMS amplitude of the audio signal, indicating a 
duple meter. Additional examples of monophonic analysis are 
presented in another paper. [11] 

 

0  2 0  4 0  6 0  8 0  1 0 0  1 2 0  1 4 0  
T im e ( s )   

Figure 5. Analysis of Beethoven’s Minuet in G performed on piano. The structure, shown at the bottom, is clearly 
AABBCCDDAB. 

 

 

 

 

0  5 0  1 0 0  1 5 0  2 0 0  2 5 0  
T im e ( s )   

Figure 4. Analysis of Naima. Audio is shown at top. Below that is a transcription shown in piano roll notation. 
Next is a diagram of clusters. At bottom is the analysis; similar segments are shaded in the same pattern.  
The form is AABA, where the B part has additional structure that appears as two solid black rectangles 

 and one filled with a “///” pattern. The middle section is a piano solo. The saxophone reenters at the  
B section, repeats the A part, and ends with a coda consisting of another repetition. 
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9.2 Chroma and Algorithm 2 
Figure 5 illustrates an analysis of Beethoven’s “Minuet in G” 
(performed on piano) using the chroma representation and 
Algorithm 2 for finding similar segments. Because the repetitions 
are literal and the composition does not involve improvisation, the 
analysis is definitive, revealing that the structure is: 
AABBCCDDAB. 

Figure 6 applies the same techniques to a pop song [3] with 
considerable repetition. Not all of the song structure was 
recovered because the repetitions are only approximate; however, 
the analysis shows a structure that is clearly different from the 
earlier pieces by Coltrane and Beethoven. 

9.3 Polyphonic Transcription & Algorithm 3 
So far, polyphonic transcription has not yielded good results as 
anticipated. Recall that we first transcribe a piece of music and 
then construct a harmonic analysis, so the final representation is a 
sequence of frames, where each frame is a chord. When we listen 
to the transcriptions, we can hear the original notes and harmony 
clearly even though many errors are apparent. Similarly, the 
harmonic analysis of the transcription seems to retain the 
harmonic structure of the original music. However, the resulting 
representation does not seem to have clear patterns that are 
detectable using Algorithm 3.  On the other hand, using synthetic 
data, Algorithm 3 successfully finds matching segments. 

The observed problems are probably due to many factors. The 
analysis often reports different chords when the music is similar; 
for example, an A minor chord in one segment and C major in the 
other. Since these chords have 2 pitch classes in common and 2 
that are different, σ(Amin, Cmaj) = 0, whereas σ(Cmaj, Cmaj) = 3. 
Perhaps there is a better similarity function that gives less penalty 
for plausible chord substitutions. In addition, chord progressions 
in tonal music tend to use common tones and are based on the 7-
note diatonic scale. This tends to make any two chords chosen at 
random from a given piece of music more similar, leading to false 
positives. Sometimes Algorithm 3 identifies two segments that 
have the same single chord, even though the segments are not 
otherwise similar. A better similarity metric that requires more 
context might help here. Also, there is a fine line between similar 
and dissimilar segments, so finding a good value for the bias 
constant c is difficult. Finally, the harmonic analysis may be 
removing useful information along with the “noise.” 

To get a better idea of the information content of this 
representation, Figure 7 is based on an analysis of “Let it Be” 
performed by the Beatles [17], using polyphonic analysis and 
chord labeling. After a piano introduction, the vocal melody starts 
at about 13.5s and finishes the first 4 measures at about 27s. This 
phrase is repeated throughout the song, so it is interesting to 
match this known segment against the entire song. Starting at 
every possible offset, we can search for the best alignment with 

the score and plot the distance (negative similarity). The distance 
is zero at 13.5s because the segment matches itself perfectly. The 
segment repeats almost exactly at about 27s, which appears as a 
downward spike at 27s. From the graph, it is apparent that the 
segment also appears with the repetition several other times, as 
indicated by pairs of downward spikes in the figure. 
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Figure 7. The segment from 13.5s to 27s is aligned at every 
pointing the score and the distance is plotted. Downward 

spikes indicate a similar segments, of which there are several. 
Figure 7 gives a clear indication that the representation contains 
information and in fact is finding structure within the music; 
otherwise, the figure would appear random. In this case, we are 
given the similar segment and only ask “where else does this 
occur?” Further work is required to use this information to reliably 
detect similar segments, where the segments are not given a 
priori. 

10. SUMMARY AND CONCLUSIONS 
Music audio presents very difficult problems for music analysis 
and processing because it contains virtually no structure that is 
immediately accessible to computers. Unless we solve the 
complete problem of auditory perception and human intelligence, 
we must consider more focused efforts to derive structure from 
audio. In this work, we constructed programs that “listen” to 
music, recognize repeated patterns, and explain the music in terms 
of these patterns. 

Several techniques can be used to derive a music representation 
that allows similarity comparison. Monophonic transcription 
works well if the music consists primarily of one monophonic 
instrument. Chroma is a simplification of the spectrum and applies 
to polyphonic material. Polyphonic transcription simplified by 
harmonic analysis offers another, higher-level representation. 
Three algorithms for efficiently searching for similar patterns were 
presented. One of these works with note-level representations 
from monophonic transcriptions and two work with frame-based 
representations. We demonstrate through examples that the 
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Figure 6. Analysis of a pop song (Samantha Mumba, “Baby Come On Over”), showing many repetitions of a single  
segment. Similar segments exist around 20s and 60s, but this similarity was not detected. 
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monophonic and chroma analysis techniques recover a significant, 
and in some cases, essentially complete top-level structure from 
audio input. 

We find it encouraging that these techniques apply to a range of 
music, including jazz, classical, and popular recordings. Of 
course, not all music will work as well as our examples. In 
particular, through-composed music that develops and transforms 
musical material rather than simply repeating it cannot be 
analyzed with our systems. This includes improvised jazz and rock 
soloing, many vocal styles, and most art music. In spite of these 
difficulties, we believe the premise that listening is based on 
recognition of repetition and transformation is still valid. The 
challenge is to recognize repetition and transformation even when 
it is not so obvious. 

Several areas remain for future work. We are working to better 
understand the polyphonic transcription data and harmonic 
analysis, which offer great promise for finding similarity in the 
face of musical variations. It would be nice to have a formal model 
that could help to resolve structural ambiguities. For example, a 
model could enable us to search for patterns and clusters that give 
the “best” global explanation for observed similarities. The 
distance metrics used for finding similar segments could also use a 
more formal approach. Distance metrics should reflect the 
probability that two segments are not similar. Another 
enhancement to our work would be the use of hierarchy in 
explanations. This would, for example, support a two-level 
explanation of the bridge in “Naima.” It would be interesting to 
combine data from beat tracking, key analysis, and other 
techniques to obtain a more accurate view of music structure. 
Finally, it would be interesting to find relationships other than 
repetition. Transposition of small phrases is a common 
relationship within melodies, but we do not presently detect 
anything other than repetition. Transposition often occurs in very 
short sequences, so a good model of musical sequence comparison 
that incorporates rhythm, harmony, and pitch seems to be 
necessary to separate random matches from intentional ones.  

In conclusion, we offer a set of new techniques and our experience 
using them to analyze music audio, obtaining structural 
descriptions. These descriptions are based entirely on the music 
and its internal structure of similar patterns. Our results suggest 
this approach is promising for a variety of music processing tasks, 
including music search, where programs must derive high-level 
structures and features directly from audio representations. 
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1 To understand why, assume there are similar segments, ((i, 
k), (j, l)), that overlap, i.e. 0 ≤ i < j  ≤ k < l < n. Then, there 
is some subsegment of (i, k) we will call (i, m) , m < k, 
corresponding to the overlapping region (j, k) and some 
subsegment of (k, l) we will call (p, l), p > j, corresponding 
to (j, k). Thus, there are three similar segments (i, m), (j, k), 
and (p, l) that provide an alternate structure to the original 
overlapping pair. In general, a shorter, more frequent 
pattern is preferable, so we do not search for overlapping 
patterns. 
2 An implementation note: for each pair of similar segments, 
the starting points are implied by the coordinates i, j, but we 
need to store durations. Since we only search half of the 
matrix due to symmetry, we store one duration at location i, 
j and the other at j, i. 


