

Published as: Roger B. Dannenberg and Ning Hu, “Pattern Discovery Techniques for Music Audio.” In ISMIR 2002 Conference
Proceedings: Third International Conference on Music Information Retrieval, M. Fingerhut, ed., Paris: IRCAM, (2002), pp. 63-70.

Pattern Discovery Techniques for Music Audio
Roger B. Dannenberg and Ning Hu

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1-412-268-3827

{rbd,ninghu}@cs.cmu.edu

ABSTRACT
Human listeners are able to recognize structure in music through
the perception of repetition and other relationships within a piece
of music. This work aims to automate the task of music analysis.
Music is “explained” in terms of embedded relationships,
especially repetition of segments or phrases. The steps in this
process are the transcription of audio into a representation with a
similarity or distance metric, the search for similar segments,
forming clusters of similar segments, and explaining music in
terms of these clusters. Several transcription methods are
considered: monophonic pitch estimation, chroma (spectral)
representation, and polyphonic transcription followed by
harmonic analysis. Also, several algorithms that search for similar
segments are described. These techniques can be used to perform
an analysis of musical structure, as illustrated by examples.

1. INTRODUCTION
Digital sound recordings of music can be considered the lowest
level of music representation. These audio representations offer
nothing in the way of musical or sonic structure, which is
problematic for many tasks such as music analysis, music search,
and music classification. Given the current state of the art,
virtually any technique that reveals structure in an audio recording
is interesting. Techniques such as beat detection, key detection,
chord identification, monophonic and polyphonic transcription,
melody and bass line detection, source separation, speech
recognition, and instrument identification all derive some higher-
level information from music audio. There is some hope that by
continuing to develop these techniques and combine them, we will
be better able to reason about, search, and classify music, starting
from an audio representation.

In this work, we examine ways to discover patterns in music audio
and to translate this into a structural analysis. The main idea is
quite simple: musical structure is signaled by repetition. Of
course, “repetition” means similarity at some level of abstraction
above that of audio samples. We must process sound to obtain a
higher-level representation before comparisons are made, and
must allow approximate matching to allow for variations in
performance, orchestration, lyrics, etc. In a number of cases, our
techniques have been able to describe the main structure of music
compositions.

We have explored several representations for comparing music.
Monophonic transcription can be used for music where a single
voice predominates (even in a polyphonic recording). Spectral
frames can be used for more polyphonic material. We have also
experimented with a polyphonic transcription system.

For each of these representations, we have developed heuristic

algorithms to search for similar segments of music. We identify
pairs of similar segments. Then, we attempt to simplify the
potentially large set of pairs to a smaller set of clusters. These
clusters identify “components” of the music. We can then
construct an explanation or analysis of the music in terms of these
components. The goal is to derive structural descriptions such as
“AABA.”

We believe that the recognition of repetition is a fundamental
activity of music listening. In this view, the structure created by
repetition and transformation is as essential to music as the
patterns themselves. In other words the structure AABA is
important regardless of what A and B represent. At the risk of
oversimplification, the first two A’s establish a pattern, the B
generates tension and expectation, and the final A confirms the
expectation and brings resolution. Structure is clearly important to
music listening. Structure can also contribute expectations or prior
probabilities for other analysis techniques, such as transcription
and beat detection, where knowledge of pattern and form might
help to improve accuracy. It follows that the analysis of structure
is relevant to music classification, music retrieval, and other
automated processing tasks.

2. RELATED WORK
It is well known that music commonly contains patterns and
repetition. Any music theory book will discuss musical form and
introduce notation, such as “AABA,” for describing musical
structures. Many researchers in computer music have investigated
techniques for pattern discovery and pattern search. Cope [8]
searches for “signatures” that are characteristic of composers, and
Rolland and Ganascia describe search techniques [25]. Interactive
systems have been constructed to identify and look for patterns
[29], and much of the work on melodic similarity [13] is relevant
to the analysis of music structure. Aucouturier and Sandler present
another approach to finding patterns in music audio. [2]

Simon and Sumner wrote an early paper on music listening and its
relationship to pattern formation and memory [27], proposing that
we encode melody by referencing patterns and transformations.
This has some close relationships to data compression, which has
also inspired work in music analysis and generation. [15] Narmour
describes a variety of transformative processes that operate in
music to create structures that listeners perceive. [21]

A fundamental idea in this work is to compare every point of a
music recording with every other point. This naturally leads to a
matrix representation in which row i, column j corresponds to the
similarity of time points i and j. A two-dimensional grid to
compute and display self-similarity has been used by Wakefield
and Bartsch [5] and by Foote and Cooper [12].

Mont-Reynaud and Goldstein proposed rhythmic pattern
discovery as a way to improve music transcription. [20] Conklin
and Anagnostopoulou examine a technique for finding significant
exactly identical patterns in a body of music. [7] A different
approach is taken by Meek and Birmingham to search for
commonly occurring melodies or other sequences. [18]

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.
© 2002 IRCAM – Centre Pompidou

Pattern Discovery Techniques for Music Audio

- 2 -

3. PATTERN SEARCH
In this section, we describe the general problem of searching for
similar sections of music. We assume that music is represented as
a sequence si, i = 0…n–1. A segment of music is denoted by a
starting and ending point: (i, k), 0 ≤ i ≤ k < n. Similar sections
consists of two segments: ((i, k), (j, l)), 0 ≤ i ≤ k < j ≤ l < n. For
convenience, we do not allow overlapped segments1, hence k < j.

There are O(n4) possible pairs of segments. To compute a
similarity function of two segments, one would probably use a
dynamic programming algorithm with a cost proportional to the
lengths of the two segments. This increases the cost to O(n6) if
each pair of segments is evaluated independently. However, given
a pair of starting points, i,j, the dynamic programming alignment
step can be used to evaluate all possible pairs of segment
endpoints. There are O(n2) starting points and the average cost of
the full alignment computation is also O(n2), so the total cost is
then O(n4). Using frame sizes from 0.1 to 0.25 seconds and music
durations of several minutes, we can expect n to be in the range of
200 to 2000. This implies that a brute-force search of the entire
segment pair space is will take hours or even days. This has led us
to pursue heuristic algorithms.

In our work, we assume a distance function between elements of
the sequence si. To compute the distance between two segments,
we use an algorithm for sequence alignment based on dynamic
programming. A by-product of the alignment is a sum of distances
between corresponding sequence elements. This measure has the
property that it generally increases with length, whereas longer
patterns are generally desirable. Therefore, we divide distance by
length to get an overall distance rating.

Typically there are many overlapping candidates for similar
segments. Extending or shifting a matching segment by a frame or
two will still result in a good rating. Therefore, the problem is not
so much to find all pairs of similar segments but the locally “best”
matches. In practice, all of our algorithms work by extending
promising matches incrementally to find the “best” match. This
approach reduces the computation time considerably, but
introduces heuristics that make formal descriptions difficult.
Nevertheless, we hope this introduction will help to explain the
following solutions.

4. MONOPHONIC ANALYSIS
Our first approach is based on monophonic pitch estimation,
which is used to transcribe music into a note-based representation.
Notes are represented as a pitch (represented on a continuous
rather than quantized scale), starting time, and duration (in
seconds). The pitch estimation is performed using autocorrelation
[24] and some heuristics for rejecting false peaks and outliers, as
described in an earlier paper. [9]

We worked with a saxophone solo, “Naima,” written and
performed by John Coltrane [6] with a jazz quartet (sax, piano,
bass, and drums). To find matching segments in the transcription,
we construct a matrix M where Mi,j is the length of a segment2
starting at note i and matching a segment at note j.

4.1 Algorithm 1
The search algorithm in this case is a straightforward search of
every combination of i, j such that i < j. For n notes, there are n(n-
−1)/2 pairs. The search proceeds only if there is a close match
between pitch i and pitch j. Although we could use dynamic
programming for note alignment [13, 26], we elected to try a
simple iterative algorithm. The algorithm repeatedly extends the
current pair of similar segments as long as the added notes match
in pitch and approximate duration. In addition to direct matches,
the algorithm is allowed to skip one note after either segment and

look for a match, skip one short note in both segments and look
for a match, consolidate [19] two consecutive notes with matching
pitches to form one with a greater duration and match that to a
note, or match consolidated note pairs following both segments.
These rules might be extended or altered to search for rhythmic
patterns or to allow transpositions.

If segment (i, k) matches (j, l), then in many cases, (i + 1, k) will
match (j + 1, l) and so on. To eliminate the redundant pairs, we
make a pass through the elements of M, clearing cells contained
by longer similar segments. For example if (i, k) matches (j, l), we
clear all elements of the rectangular submatrix Mi..k,j..l except for
Mi,j.

Finally, we can read off pairs of similar segments and their
durations by making another pass over the matrix M. Although
this approach works well if there is a good transcription, it is not
generally possible to obtain a useful melodic transcription from
polyphonic audio. In the next section, we consider an alternative
representation.

5. SPECTRUM-BASED ANALYSIS
When transcription is not possible, a lower-level abstraction based
on the spectrum can be used. We chose to use Wakefield’s
chroma because it seemed to do a good job of identifying similar
segments in an earlier study where the goal was to find the chorus
of a pop song. [4, 5]

The chroma is a 12-element vector where each element represents
the energy associated with one of the 12 pitch classes. Essentially,
the spectrum “wraps around” at each octave and bins are
combined to form the chroma vector. Distance is then defined as
Euclidean distance between vectors normalized to have a mean of
zero and a standard deviation of one. (This particular distance
function was adopted from Bartsch and Wakefield. It seems to
work at least as well as various alternatives, including simple
Euclidean distance, although there is no formal basis for this
choice.)

The most important feature of a chroma representation is that the
music is divided into equal-duration frames rather than notes.
Typically, there will be hundreds or thousands of frames as
opposed to tens or hundreds of notes. Matching will tend to be
more ambiguous because the data is not segmented into discrete
notes. Therefore, we need to use more robust (and expensive)
sequence alignment techniques and therefore more clever
algorithms.

5.1 Brute-Force Approach
At first thought, observing that dynamic programming computes a
global solution from incremental and local properties, one might
try to reuse local computations to form solutions to our similar
segments problem. A typical dynamic programming step computes
the distance at cell i,j in terms of cells to the left (j−1), above
(i−1), and diagonal (i−1, j−1). The value at i,j is:

Mi,j = di,j + min(Mi,j−1, Mi−1,j, Mi−1,j−1)

In terms of edit distances, we use di,j, the distance from frame i to
frame j as either a replacement cost, insertion cost, or deletion
cost, although many alternative cost/distance functions are
possible within the dynamic programming framework. [14]
Unfortunately, even if we precompute the full matrix, it does not
help us in computing the distance between two segments because
of initial boundary conditions, which change for every
combination of i and j. Smith and Waterman’s algorithm [28]
computes a single best common subsequence, but in our case that
would simply be the perfect match along the diagonal. Other
related algorithms for biological sequence matching include
FASTA [23] and BLAST [1], but these would also report the

Pattern Discovery Techniques for Music Audio

- 3 -

diagonal as the longest matching sequence. There are similarities
between these algorithms and ours (presented below). It seems
likely that better and faster music similarity algorithms could be
derived from these and other biological sequence matching
algorithms.

As mentioned in the introduction, the best we can do is to
compute a submatrix starting at i,j for every 0 ≤ i < j < n. This
leaves us with an O(n4) algorithm to compute the distance for
every pair ((i, k), (j, l)). To avoid very long computation times, we
developed a faster, heuristic search.

5.2 Heuristic Search
We compute the distance between two segments by finding a path
from i,j to k,l that minimizes the distance function. Each step of
the path takes one step to the right, downward, or diagonally. In
practice, similar segments are characterized by paths that consist
mainly of diagonal segments because tempo variation is typically
small. Thus we do not need to compute a full rectangular array to
find good alignments. Alternatively, we can compute several or
even all paths with a single pass through the matrix. This method
is described here.

5.3 Algorithm 2
The main idea of this algorithm is to identify path beginnings and
to follow paths diagonally across a matrix until the path rating
falls below some threshold. The algorithm uses three matrices we
will call distance (D), path (P), and length (L). D and L hold real
(floating point) values, and P holds integers. P is initialized to
zero so that we can determine which cells have been computed. If
Pi,j = 0, we say cell i,j is uninitialized. The algorithm scans the
matrix along diagonals of constant i+j as shown in Figure 1,
filling in corresponding cells of D, P, and L. A cell is computed in
terms of the cells to the left, above, and diagonal. First, compute
distances and lengths as follows:

 dh = if Pi,j−1≠0 then Di,j−1+di,j, else �; lh = L i,j−1+√2/2

 dv = if Pi−1,j≠0 then Di−1,j+di,j, else �; lv = L i−1,j+√2/2

 dd = if Pi−1,j−1≠0 then Di−1,j−1+di,j, else �; ld = L i−1,j−1+1

The purpose of the infinity (�) values is to disregard distances
computed from uninitialized cells as indicated by P. The reader
familiar with dynamic programming for string comparison may
recognize dh, dv, and dd as horizontal, vertical, and diagonal
extensions of precomputed paths. In contrast to dynamic
programming, we also compute path lengths lh, lv, and ld. Now, let
c = min(dh/lh, dv/lv, dd/ld). If c is greater than a threshold, the cell
at i,j is left uninitialized. Otherwise, we define Di,j = c, Li,j = lm,
and Pi,j =Pm, where the subscript m represents the cell that
produced the minimum value for c, either (i,j−1), (i−1,j), or
(i−1,j−1).

Because of the length terms, this algorithm may not find optimal
paths. However, we found that when we defined distance without
the length terms, the algorithm was difficult to tune and would
find either paths that are too short or many spurious paths.

As described so far, this computation will propagate paths once
they are started, but how is a path started? When Pi,j is left
uninitialized by the computation described in the previous
paragraph and di,j is below a threshold (the same one used to cut
off paths), Pi,j is set to a new integer value to denote the beginning
of a new path. We also define Di,j = di,j and Li,j = 1 at the
beginning of the path.

 i
 j

Figure 1. In Algorithm 2, the similarity matrix is

computed along diagonals as shown.
After this computation, regions of P are partitioned according to
path names. Every point with the same name is a candidate
endpoint for the same starting point. We still need to decide where
paths end. We can compute endpoints by reversing the sequence
of chroma frames, so that endpoints become starting points. Recall
that starting points are uninitialized cells where di,j is below a
threshold. To locate endpoints, scan the matrix in reverse from the
original order (Figure 1 shows the original order). Whenever a
new path name is encountered, and the distance di,j is below
threshold, find the starting point and output the path. An array can
keep track of which path names have been output and where paths
begin.

6. POLYPHONIC TRANSCRIPTION
Polyphonic transcription offers another approach to similarity.
Although automatic polyphonic transcription has rather high error
rates, it is still possible to recover a significant amount of musical
information. We use Marolt’s SONIC transcription program [16],
which transcribes audio files to MIDI files. SONIC does not
attempt to perform source separation, so the resulting MIDI data
combines all notes into a single track. Although SONIC was
intended for piano transcription, we get surprisingly good results
with arbitrary music sources. Transcriptions inevitably have
spurious notes, so we reduce the transcriptions to a chord
progression using the Harman program by Pardo [22]. Harman is
able to ignore passing tones and other non-chord tones, so in
principle, Harman can help to reduce the “noise” introduced by
transcription errors.

After computing chords with Harman, we generate a sequence of
frames si, 0 < i < n, where each frame represents an equal interval
of time and si is a set of pitch classes corresponding to the chord
label assigned by Harman.

In our experiments with polyphonic transcription, we developed
yet another algorithm for searching for similar segments. This
algorithm is based on an adaptation of dynamic programming for
computer accompaniment [10]. In this accompaniment algorithm,
a score is matched to a performance not by computing a full n×m
matrix but by computing only a diagonal band swept out by a
moving window, which is adaptively centered on the “best”
current score position.

6.1 Algorithm 3
To find similar segments, we will sweep a window diagonally
from upper left to lower right as shown in Figure 2. When a match
is found, indicated by good match scores, the window is moved to
follow the best path. We need to decide where paths begin and
end. For this purpose, we compute similarity (rather than distance)
such that similarity scores increase where segments match, and
decrease where segments do not match.

Pattern Discovery Techniques for Music Audio

- 4 -

Figure 2. In Algorithm 3, the similarity matrix is computed

in diagonal bands swept out along the path shown. The
shaded area shows a partially completed computation.

An example function for similarity of chords is to count the
number of notes in common minus the number of notes not in
common. For chords A and B (sets of pitch classes), the similarity
is:

σ(A, B) = |A∩B| − |A∪B − A∩B|,

where |X| is the number of elements in (cardinality of) set X. Other
functions were tried, including a count of the number of common
pitches, but this has the problem that a dense chord will match
almost anything. (A similarity function based on probabilities
might work better than our ad hoc approach. This is left for future
work.) We will write σi,j to denote σ(si, sj), the similarity between
chords at frames i and j.

When we compute the matrix, we initialize cells to zero and store
only positive values. A path begins when a window element
becomes positive and ends when the window becomes zero again.
The computation for a matrix cell is:

Mi,j = max(Mi,j−1 − p, Mi−1,j − p, Mi−1,j−1) + σi,j − c

where p is a penalty for insertions and deletions, and c is a bias
constant, chosen so that matching segments generate increasing
values along the alignment path, and non-matching segments
quickly decrease to zero.

The computation of M proceeds as shown by the shaded area in
Figure 2. This evaluation order is intended to find locally similar
segments and follow their alignment path. The reason for
computing in narrow diagonal bands is that if M were computed
entire row by entire row, all paths would converge to the main
diagonal where all frames match perfectly. At each iteration, cells
are computed along one row to the left and right of the current
path, spanning data that represents a couple of seconds of time.
Because of the limited width of the path, references will be made
to uninitialized cells in M. These cells and their values are ignored
in the maximum value computation.

This algorithm can be further refined. The score along an
alignment path will be high at the end of the similar segments,
after which the score will decrease to zero. Thus, the algorithm
will tend to compute alignment paths that are too long. We can
improve on the results by interactively trimming a frame from
either end of the path as long as the similarity/length quotient
increases. This does not always work well because of local
maxima. Another heuristic we use is to trim the final part of a path
where the slope is substantially off-diagonal, as shown in Figure
3.

Because the window has a constant size, this algorithm runs in
O(n2) time, and by storing only the portion of the matrix swept by
the window, O(n) space. The algorithm is quite efficient in
practice.

Figure 3. The encircled portion of the alignment path is

trimmed because it represents an extreme difference in tempo.
The remainder determines a pair of similar segments.

7. CLUSTERING
After computing pairs of similar segments with any of the three
previously described algorithms, we need to form clusters to
identify where segments occur more than twice in the music. For
example, if segment A is similar to segment B (as determined by
algorithm 1, 2, or 3), and B is similar to C, we expect A to be
similar to C, forming the cluster {A, B, C}. Essentially, we are
computing the transitive closure of a “similarity” relation over
these segments, where “similarity” means either the segments are
identified as similar by Algorithm 1, 2, or 3, or the segments
overlap significantly (typically, the segment starting and ending
points match within 10 percent of the segment durations). The
transitive closure generates an equivalence relation, which in turn
implies a partition over the set of segments. This partition is the
clustering we are after.

The algorithm is simple: Start with a set of similar pairs, as
computed by Algorithms 1, 2, or 3. Remove any pair from the set
to form the first cluster. Then search the set for pairs (a, b) such
that either a or b (or both) is an approximate match to a segment
in the cluster. If a (or b) is not already in the cluster, add it to the
cluster. Continue extending the cluster in this way until there are
no more similar segments in the set of pairs. Now, repeat this
process to form the next cluster, etc., until the set of pairs is
empty.

Sometimes, a segment in a cluster will correspond to a subsegment
of a pair, e.g. (10, 20) overlaps half of the first segment of the pair
((10, 30), (50, 70)). We do not want to add (10, 30) or (50, 70) to
the cluster because these have length 20, whereas the cluster
element (10, 20) only has length 10. However, it seems clear that
there is a segment similar to (10, 20) starting at 50. In this
situation, we split the pair proportionally to synthesize a matching
pair. In this case, we would create the pair ((10, 20), (50, 60)) and
add (50, 60) to the cluster.

8. ANALYSIS AS EXPLANATION
The final step is to produce an analysis of the musical structure
implied by the clusters. We like to view this as an “explanation”
process. For each section of music, we “explain” the music in
terms of its relationship to other sections. If we could determine
relationships of transposition, augmentation, and other forms of
variation, these relationships would be part of the explanation.
With only similarity, the explanation amounts to labeling music
with clusters.

To build an explanation, recall that music is represented by a
sequence si, 0 ≤ i < n. Our goal is to fill in an array Ei, 0 ≤ i < n,
initially nil, with cluster names, indicating which cluster (if any)
contains a note or frame of music. The explanation E serves to
describe the music as a structure based on the repetition and
organization of patterns.

Pattern Discovery Techniques for Music Audio

- 5 -

Recall that a cluster is a set of intervals. For each i in some
member of the cluster, we set Ei to the name of the cluster. (Names
are arbitrary, e.g. “A”, “B”, “C”, etc.) We then continue searching
for the next i such that Ei = nil and i is in some new cluster. We
then label additional points in Ei with this new cluster. However,
once a label is set, we do not replace it. This gives priority to
musical material that is introduced the earliest, which seems to be
a reasonable heuristic to resolve conflicts when clusters overlap.

9. EXAMPLES
We present results from monophonic pitch estimation and
chroma-based analyses, and we describe some preliminary results
using polyphonic transcription.

9.1 Transcription and Algorithm 1
Figure 4 illustrates an analysis of “Naima” using monophonic
transcription and Algorithm 1 to find similar segments. Audio is
shown at the top to emphasize the input/output relationships for
the casual reader. (The authors realize that very little additional
information is revealed by these low-resolution waveforms.)
Clusters are shown as heavy lines, which show the location of
segments, connected by thin lines. The analysis is shown at the

bottom of the figure. The simple “textbook” analysis of this piece
would be a presentation of the theme with structure AABA,
followed by a piano solo. The saxophone returns to play BA
followed by a short coda. In the computer analysis, further
structure is discovered within the B part (the bridge), so the
computer analysis might be written as AABBCA, where BBC
forms the bridge.

The transcription failed to detect more than a few notes of the
piano solo. There are a few spurious matching segments here.
After the solo, the analysis shows a repetition of the bridge and the
A part: BBCA. This is followed by the coda in which there is
some repetition. Aside from the solo section, the computer
analysis corresponds quite closely to the “textbook” analysis. It
can be seen that the A section is half the duration of the B part,
which is atypical for an AABA song form. If the program had
additional knowledge of standard forms, it might easily guess that
this is a slow ballad and uncover additional structure such as the
tempo, number of measures, etc. Note, for example, that once the
piece is subdivided into segments, further subdivisions are
apparent in the RMS amplitude of the audio signal, indicating a
duple meter. Additional examples of monophonic analysis are
presented in another paper. [11]

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
T im e (s)

Figure 5. Analysis of Beethoven’s Minuet in G performed on piano. The structure, shown at the bottom, is clearly
AABBCCDDAB.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
T im e (s)

Figure 4. Analysis of Naima. Audio is shown at top. Below that is a transcription shown in piano roll notation.
Next is a diagram of clusters. At bottom is the analysis; similar segments are shaded in the same pattern.
The form is AABA, where the B part has additional structure that appears as two solid black rectangles

 and one filled with a “///” pattern. The middle section is a piano solo. The saxophone reenters at the
B section, repeats the A part, and ends with a coda consisting of another repetition.

Pattern Discovery Techniques for Music Audio

- 6 -

9.2 Chroma and Algorithm 2
Figure 5 illustrates an analysis of Beethoven’s “Minuet in G”
(performed on piano) using the chroma representation and
Algorithm 2 for finding similar segments. Because the repetitions
are literal and the composition does not involve improvisation, the
analysis is definitive, revealing that the structure is:
AABBCCDDAB.

Figure 6 applies the same techniques to a pop song [3] with
considerable repetition. Not all of the song structure was
recovered because the repetitions are only approximate; however,
the analysis shows a structure that is clearly different from the
earlier pieces by Coltrane and Beethoven.

9.3 Polyphonic Transcription & Algorithm 3
So far, polyphonic transcription has not yielded good results as
anticipated. Recall that we first transcribe a piece of music and
then construct a harmonic analysis, so the final representation is a
sequence of frames, where each frame is a chord. When we listen
to the transcriptions, we can hear the original notes and harmony
clearly even though many errors are apparent. Similarly, the
harmonic analysis of the transcription seems to retain the
harmonic structure of the original music. However, the resulting
representation does not seem to have clear patterns that are
detectable using Algorithm 3. On the other hand, using synthetic
data, Algorithm 3 successfully finds matching segments.

The observed problems are probably due to many factors. The
analysis often reports different chords when the music is similar;
for example, an A minor chord in one segment and C major in the
other. Since these chords have 2 pitch classes in common and 2
that are different, σ(Amin, Cmaj) = 0, whereas σ(Cmaj, Cmaj) = 3.
Perhaps there is a better similarity function that gives less penalty
for plausible chord substitutions. In addition, chord progressions
in tonal music tend to use common tones and are based on the 7-
note diatonic scale. This tends to make any two chords chosen at
random from a given piece of music more similar, leading to false
positives. Sometimes Algorithm 3 identifies two segments that
have the same single chord, even though the segments are not
otherwise similar. A better similarity metric that requires more
context might help here. Also, there is a fine line between similar
and dissimilar segments, so finding a good value for the bias
constant c is difficult. Finally, the harmonic analysis may be
removing useful information along with the “noise.”

To get a better idea of the information content of this
representation, Figure 7 is based on an analysis of “Let it Be”
performed by the Beatles [17], using polyphonic analysis and
chord labeling. After a piano introduction, the vocal melody starts
at about 13.5s and finishes the first 4 measures at about 27s. This
phrase is repeated throughout the song, so it is interesting to
match this known segment against the entire song. Starting at
every possible offset, we can search for the best alignment with

the score and plot the distance (negative similarity). The distance
is zero at 13.5s because the segment matches itself perfectly. The
segment repeats almost exactly at about 27s, which appears as a
downward spike at 27s. From the graph, it is apparent that the
segment also appears with the repetition several other times, as
indicated by pairs of downward spikes in the figure.

Correlation With First 4 Bars

0

20

40

60

80

100

120

0 50 100 150 200 250

Time Offset (s)

D
is

ta
nc

e

Figure 7. The segment from 13.5s to 27s is aligned at every
pointing the score and the distance is plotted. Downward

spikes indicate a similar segments, of which there are several.
Figure 7 gives a clear indication that the representation contains
information and in fact is finding structure within the music;
otherwise, the figure would appear random. In this case, we are
given the similar segment and only ask “where else does this
occur?” Further work is required to use this information to reliably
detect similar segments, where the segments are not given a
priori.

10. SUMMARY AND CONCLUSIONS
Music audio presents very difficult problems for music analysis
and processing because it contains virtually no structure that is
immediately accessible to computers. Unless we solve the
complete problem of auditory perception and human intelligence,
we must consider more focused efforts to derive structure from
audio. In this work, we constructed programs that “listen” to
music, recognize repeated patterns, and explain the music in terms
of these patterns.

Several techniques can be used to derive a music representation
that allows similarity comparison. Monophonic transcription
works well if the music consists primarily of one monophonic
instrument. Chroma is a simplification of the spectrum and applies
to polyphonic material. Polyphonic transcription simplified by
harmonic analysis offers another, higher-level representation.
Three algorithms for efficiently searching for similar patterns were
presented. One of these works with note-level representations
from monophonic transcriptions and two work with frame-based
representations. We demonstrate through examples that the

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
T im e (s)

Figure 6. Analysis of a pop song (Samantha Mumba, “Baby Come On Over”), showing many repetitions of a single
segment. Similar segments exist around 20s and 60s, but this similarity was not detected.

Pattern Discovery Techniques for Music Audio

- 7 -

monophonic and chroma analysis techniques recover a significant,
and in some cases, essentially complete top-level structure from
audio input.

We find it encouraging that these techniques apply to a range of
music, including jazz, classical, and popular recordings. Of
course, not all music will work as well as our examples. In
particular, through-composed music that develops and transforms
musical material rather than simply repeating it cannot be
analyzed with our systems. This includes improvised jazz and rock
soloing, many vocal styles, and most art music. In spite of these
difficulties, we believe the premise that listening is based on
recognition of repetition and transformation is still valid. The
challenge is to recognize repetition and transformation even when
it is not so obvious.

Several areas remain for future work. We are working to better
understand the polyphonic transcription data and harmonic
analysis, which offer great promise for finding similarity in the
face of musical variations. It would be nice to have a formal model
that could help to resolve structural ambiguities. For example, a
model could enable us to search for patterns and clusters that give
the “best” global explanation for observed similarities. The
distance metrics used for finding similar segments could also use a
more formal approach. Distance metrics should reflect the
probability that two segments are not similar. Another
enhancement to our work would be the use of hierarchy in
explanations. This would, for example, support a two-level
explanation of the bridge in “Naima.” It would be interesting to
combine data from beat tracking, key analysis, and other
techniques to obtain a more accurate view of music structure.
Finally, it would be interesting to find relationships other than
repetition. Transposition of small phrases is a common
relationship within melodies, but we do not presently detect
anything other than repetition. Transposition often occurs in very
short sequences, so a good model of musical sequence comparison
that incorporates rhythm, harmony, and pitch seems to be
necessary to separate random matches from intentional ones.

In conclusion, we offer a set of new techniques and our experience
using them to analyze music audio, obtaining structural
descriptions. These descriptions are based entirely on the music
and its internal structure of similar patterns. Our results suggest
this approach is promising for a variety of music processing tasks,
including music search, where programs must derive high-level
structures and features directly from audio representations.

11. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under award number 0085945. Ann Lewis assisted in the
preparation and processing of data. Matija Marolt offered the use
of his SONIC transcription software, which enabled us to explore
the use of polyphonic transcription for music analysis. Mark
Bartsch and Greg Wakefield provided chroma analysis software.
We would also like to thank Bryan Pardo for his Harman program
and assistance using it. Finally, we thank our other colleagues at
the University of Michigan for their collaboration and many
stimulating conversations.

12. REFERENCES
[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and

Lipman, D.J. A Basic Local Alignment Search Tool. Journal
of Molecular Biology, 215. 403-410.

[2] Aucouturier, J.-J. and Sandler, M., Finding Repeating
Patterns in Acoustic Musical Signals: Applications for Audio
Thumbnailing. in AES22 International Conference on

Virtual, Synthetic and Entertainment Audio, (Espoo, Finland,
2002), Audio Engineering Society, to appear.

[3] Bagge, A., Birgisson, A. and Mumba, S. Baby Come On
Over Baby Come On Over (CD Single), Polydor, 2001.

[4] Bartsch, M. and Wakefield, G.H., To Catch a Chorus: Using
Chroma-Based Representations For Audio Thumbnailing. in
Proceedings of the Workshop on Applications of Signal
Processing to Audio and Acoustics, (2001), IEEE.

[5] Birmingham, W.P., Dannenberg, R.B., Wakefield, G.H.,
Bartsch, M., Bykowski, D., Mazzoni, D., Meek, C., Mellody,
M. and Rand, W., MUSART: Music Retrieval Via Aural
Queries. in International Symposium on Music Information
Retrieval, (Bloomington, Indiana, 2001), 73-81.

[6] Coltrane, J. Naima Giant Steps, Atlantic Records, 1960.

[7] Conklin, D. and Anagnostopoulou, C., Representation and
Discovery of Multiple Viewpoint Patterns. in Proceedings of
the 2001 International Computer Music Conference, (2001),
International Computer Music Association, 479-485.

[8] Cope, D. Experiments in Musical Intelligence. A-R Editions,
Inc., Madison, Wisconsin, 1996.

[9] Dannenberg, R.B. Listening to "Naima": An Automated
Structural Analysis from Recorded Audio, 2002, (in review).

[10] Dannenberg, R.B., An On-Line Algorithm for Real-Time
Accompaniment. in Proceedings of the 1984 International
Computer Music Conference, (Paris, 1984), International
Computer Music Association, 193-198.
http://www.cs.cmu.edu/~rbd/bib-accomp.html#icmc84.

[11] Dannenberg, R.B. and Hu, N., Discovering Musical Structure
in Audio Recordings. in International Conference on Music
and Artificial Intelligence, (2002), Springer, (to appear).

[12] Foote, J. and Cooper, M., Visualizing Musical Structure and
Rhythm via Self-Similarity. in Proceedings of the 2001
International Computer Music Conference, (Havana, Cuba,
2001), International Computer Music Association, 419-422.

[13] Hewlett, W. and Selfridge-Field, E. (eds.). Melodic
Similarity: Concepts, Procedures, and Applications. MIT
Press, Cambridge, 1998.

[14] Hu, N. and Dannenberg, R.B., A Comparison of Melodic
Database Retrieval Techniques Using Sung Queries. in Joint
Conference on Digital Libraries, (2002), Association for
Computing Machinery.

[15] Lartillot, O., Dubnov, S., Assayag, G. and Bejerano, G.,
Automatic Modeling of Musical Style. in Proceedings of the
2001 International Computer Music Conference, (2001),
International Computer Music Association, 447-454.

[16] Marolt, M., SONIC: Transcription of Polyphonic Piano
Music With Neural Networks. in Workshop on Current
Research Directions in Computer Music, (Barcelona, 2001),
Audiovisual Institute, Pompeu Fabra University, 217-224.

[17] McCartney, P. Let It Be Let It Be, Apple Records, 1970.

[18] Meek, C. and Birmingham, W.P., Thematic Extractor. in 2nd
Annual International Symposium on Music Information
Retrieval, (Bloomington, Indiana, 2001), Indiana University,
119-128.

[19] Mongeau, M. and Sankoff, D. Comparison of Musical
Sequences. in Hewlett, W. and Selfridge-Field, E. eds.
Melodic Similarity Concepts, Procedures, and Applications,
MIT Press, Cambridge, 1990.

Pattern Discovery Techniques for Music Audio

- 8 -

[20] Mont-Reynaud, B. and Goldstein, M., On Finding Rhythmic
Patterns in Musical Lines. in Proceedings of the
International Computer Music Conference 1985,
(Vancouver, 1985), International Computer Music
Association, 391-397.

[21] Narmour, E. Music Expectation by Cognitive Rule-Mapping.
Music Perception, 17 (3). 329-398.

[22] Pardo, B. Algorithms for Chordal Analysis. Computer Music
Journal, 26 (2). (in press).

[23] Pearson, W.R. Rapid and Sensitive Sequence Comparison
with FASTP and FASTA. Methods in Enzymology, 183. 63-
98.

[24] Roads, C. Autocorrelation Pitch Detection. in The Computer
Music Tutorial, MIT Press, 1996, 509-511.

 [25] Rolland, P.-Y. and Ganascia, J.-G. Musical pattern extraction
and similarity assessment. in Miranda, E. ed. Readings in
Music and Artificial Intelligence, Harwood Academic
Publishers, 2000, 115-144.

[26] Sankoff, D. and Kruskal, J.B. Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence
Comparison. Addison-Wesley, Reading, MA, 1983.

[27] Simon, H.A. and Sumner, R.K. Pattern in Music. in
Kleinmuntz, B. ed. Formal Representation of Human
Judgment, Wiley, New York, 1968.

 [28] Smith, T.F. and Waterman, M.S. Identification of Common
Molecular Subsequences. Journal of Molecular Biology, 147
(1). 195-197.

[29] Stammen, D. and Pennycook, B., Real-Time Recognition of
Melodic Fragments Using the Dynamic Timewarp Algorithm.
in Proceedings of the 1993 International Computer Music
Conference, (Tokyo, 1993), International Computer Music
Association, 232-235.

1 To understand why, assume there are similar segments, ((i,
k), (j, l)), that overlap, i.e. 0 ≤ i < j ≤ k < l < n. Then, there
is some subsegment of (i, k) we will call (i, m) , m < k,
corresponding to the overlapping region (j, k) and some
subsegment of (k, l) we will call (p, l), p > j, corresponding
to (j, k). Thus, there are three similar segments (i, m), (j, k),
and (p, l) that provide an alternate structure to the original
overlapping pair. In general, a shorter, more frequent
pattern is preferable, so we do not search for overlapping
patterns.
2 An implementation note: for each pair of similar segments,
the starting points are implied by the coordinates i, j, but we
need to store durations. Since we only search half of the
matrix due to symmetry, we store one duration at location i,
j and the other at j, i.

