

KO2 - DISTRIBUTED MUSIC SYSTEMS WITH O2
AND KRONOS

Vesa Norilo Roger B. Dannenberg

University of the Arts Helsinki
vno11100@uniarts.fi

Carnegie Mellon University
rbd@cs.cmu.edu

ABSTRACT
KO2 is a platform for distributed musical applications,
consisting of the messaging protocol O2 and the signal
processing language Kronos. This study is an effort to use
O2 as a comprehensive communications framework for in-
ter-process signal routing, including clock synchronization
and audio. The Kronos compiler is exposed as an O2 ser-
vice, allowing remotely specified programs to be compiled
and run in near real-time on various devices in the network.

1. INTRODUCTION
With computing devices becoming lightweight and ubiq-
uitous, artworks are being built from an increasingly wide
array of devices. Software systems are distributed across
multiple devices, and the need for robust and coherent
communication arises.

Some of the technological challenges involved in distrib-
uted music systems include communication and deploy-
ment. Software must be pushed to all the involved devices,
initialized, and coordinated during run-time. In addition,
audio signals are routed throughout, often with a separate
signal stack.

Several communication protocols exist with the aim of
allowing independent musical processes to communicate.
In this paper we use one of them, O2, to develop a frame-
work for distributed processing. We study the feasibility of
using O2 for audio distribution as well.

A novel addition to the field is the inclusion of a pro-
gramming language, Kronos, in the system. With Just-in-
Time compilation, distributed systems can contain com-
pute server nodes that compile and execute remotely spec-
ified programs in near real-time.

The rest of this paper is organized as follows: In Section
2, Background, we examine the component systems O2
and Kronos and describe some recent additions to them. In
addition, prior art related to distributed systems is sur-
veyed. Section 3, Implementation, details the design
choices behind the framework. Usage and performance is
discussed in Section 4, Discussion, followed by possible
Future Work and Conclusion in Sections 5 and 6.

2. BACKGROUND
O2 can be seen as an extension of OSC. [1] It uses URL-
like address strings and patterns to name the destinations
of messages containing a list of typed values. OSC

assumes nothing about the transport and typically requires
users to enter IP addresses of servers. In contrast, O2 has a
built-in discovery mechanism to locate named services au-
tomatically, and so addresses always begin with a service
name. In addition, O2 messages are all timestamped, and
O2 performs clock synchronization so that timestamps are
meaningful when messages cross from one host to another.
Finally, O2 offers a choice of reliable (TCP) or best-effort
(UDP) message delivery.

Kronos is a functional audio programming language, an
idea pioneered by the FAUST project. [2][3] It aims to pro-
vide a powerful, expressive language for describing fixed-
graph signal flows in a multi-rate signal processing envi-
ronment. Kronos was designed to operate on the abstrac-
tive level of unit generators and orchestras. Recent addi-
tions explore the scheduling of musical events and score-
level constructs. [4]

2.1 Recent Developments

2.1.1 Kronos Meta-Sequencer
Recently, Kronos was enhanced to support dynamic in-
stantiation of signal processor objects as well as schedul-
ing control messages or arbitrary code by integrating a cus-
tom interpreter with a sequencer and the JiT compiler. [4]

One of the goals of the Kronos compiler system is to en-
able deployment of stand-alone applications. The meta-se-
quencer implementation was not readily adaptable to this
scenario, because of its coupling with the compiler.

Recently, the meta-sequencer was refactored to remove
the interpreter entirely. Its functionality was moved to a
small runtime library that Kronos programs can call di-
rectly via the foreign function interface. As a result, stand-
alone applications can now use dynamic instantiation and
scheduling by linking against the runtime library, without
needing the complete runtime environment or the com-
piler.

2.1.2 O2 Hub
O2’s original discovery mechanism works well in local
area networks that allow UDP broadcast, but it was found
that many organizations block WiFi broadcast messages.
An extension to O2 allows discovery to be managed by any
O2 process designated as a “hub.” To use a hub, processes
must obtain the IP address of the hub manually or through
some external protocol. Processes can then use the hub to

SMC2018 - 452

Roger Dannenberg
Vesa Norilo and Roger B. Dannenberg, “KO2 - Distributed Music Systems with O2 and Kronos,” in
 Cyprus, 2018, pp. 452-456.�

Roger Dannenberg
Proceedings of the 15th Sound and Music Computing Conference (SMC2018),

discover all other O2 processes. The hub idea works
equally well over wide area networks.
O2 has also been extended with connections called “taps,”
which forward incoming messages from a tapped service
to some other service, supporting debugging and remote
monitoring.

2.2 Distributed Music Systems

2.2.1 Audio over the network
Various systems have explored audio transmission over
shared local and wide area networks using IP (Internet Pro-
tocol) as opposed to specialized real-time protocols and
dedicated hardware. The Dante system1 sends audio over
IP using hardware support and appears to applications as
an audio I/O device. Ravenna is an open standard for me-
dia over IP using the standard real-time streaming protocol
(RTSP). [5] JackTrip is an application that sends audio
streams over UDP and has been widely used for live per-
formance over long distances. [6] AuraRT explored dis-
tributed computation for audio synthesis and control in a
local area network. [7] Our work with O2 is most similar
to AuraRT in that we are basing audio streaming on a gen-
eral message-passing system that integrates clock synchro-
nization, global object naming and timed messages be-
tween distributed objects.

2.2.2 Remote Just-in-Time Compilation
The Java platform is a significant example of remote com-
pilation. The Java Remote Method Invocation enables a
virtual machine to download and execute bytecode from
the network. RMI is used in Apache Hadoop, a distributed
storage system, to run custom search queries over multiple
storage nodes.2

2.2.3 Service and Namespace Discovery
OpenSoundWorld is notable in that it implemented a query
protocol for OSC where a client can query a server for in-
formation about the address space and the parameters ex-
pected by each addressable node. [8]

O2 supports multiple services, which are abstractions of
servers that process O2 messages. Any O2 process can cre-
ate one or more services, and services are automatically
discovered by other processes. Message addresses begin
with a service name, and O2 routes messages to the corre-
sponding service, which may be in the same process, on
the same host computer, or on a remote computer.

3. IMPLEMENTATION
This section describes the various components that consti-
tute the KO2 system: the O2 Audio protocol, O2
Namespace Discovery and the Kronos Compile Server.

3.1 Object Models in O2 and Kronos

Object oriented designs are typical in music systems. O2
services are instances of objects within an application,
where “application” in O2 refers to a collection of

1 https://www.audinate.com/node/128

cooperating processes that may be distributed across a
number of networked machines. O2 messages correspond
to method calls that have no return value.

3.1.1 Data Types in O2
As O2 is concerned with serialization of messages for
transport over the wire, datatypes play a vital role. The O2
model is a straightforward extension of the OSC [1] sys-
tem of type string accompanied by binary data.

However, in OSC, methods are nothing but addresses,
and no provisions are made to associate type information
with methods; it is up to each individual method to parse
the parameter types.

In O2, message handlers (i.e. methods) may be associ-
ated with type strings of their own. Any method can be
type-coerced, so that exact type matches are not required,
yet it still works as expected. This is similar to dynamically
typed languages in the sense that the data types on the wire
are an implementation detail of the run-time system.

3.1.2 Kronos Signal Processor as an Object
Kronos models signal processors as discrete reactive sys-
tems – sequences of output events as a function of se-
quences of input events. [9] The fundamental properties of
an object are state, identity and behavior. At the language
level, Kronos provides no concept of state or identity.
However, state is used internally by the compiler.

Mattheussen has demonstrated automated translation be-
tween the traditional object model and Faust [2], a func-
tional audio language. [10] Similarly, Kronos signal pro-
cessors appear as objects to the user, particularly with the
dynamic instantiation extension. As previously described,
the reactive inputs of a Kronos signal processor closely re-
semble the methods of an object.

Passing O2 messages to Kronos objects is a natural fit;
the O2 methods and their type strings can be automatically
derived from the Kronos program and type coercion ena-
bled if desired.

3.2 O2 Namespace Discovery

In an environment where services can be built dynami-
cally, it is important to provide a mechanism for self-re-
flection: enable components of the distributed system to
query each other for available methods.

Like audio, namespace discovery can be built as a user-
space protocol on top of the O2 core. We implemented this
as a directory service that runs as a process within any O2
application. Conforming services can register or de-regis-
ter their methods with the directory service.

3.2.1 Reply messages
The directory service supports the querying of O2
namespaces for method addresses, type strings and docu-
mentation. In addition, methods can be searched for with
regular expressions. The directory service is detailed in
Table 1.

All the query messages require data to be returned to the
sender, for which there is no built-in facility in O2. We

2 http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136424.html

SMC2018 - 453

adopted a reply convention that is already used internally
in the O2 clock synchronization protocol.

Each query message contains a 64-bit message identifier,
which the sender may assign arbitrarily, and a reply ad-
dress. The reply address is appended with /get-reply,
and the message identifier is sent along with the query re-
sults.

Method name Type Description
add-method Sss Registers a method by ad-

dress pattern, type string and
documentation

remove-service sS Removes all registrations in a
namespace

Regex hss
Hss

Retrieves all method
metadata where the address
pattern matches the supplied
regular expression. The first
two parameters are query id
and reply address.

Table 1. Methods implemented by the directory service

3.3 Audio over O2

Rather than extend the O2 core library with audio-specific
functionality, we decided to implement network audio as a
protocol in the O2 user space. This avoids further compli-
cating the core of O2.

O2 Audio is intended as a proof of concept and not ex-
pected to outperform the state of art, but we hope that it
proves useful for distributed audio applications, especially
as the existing infrastructure for clock synchronization and
service discovery can be used.

3.3.1 Design
O2 Audio involves sending buffers of audio samples as
messages over the reliable TCP transport, which guaran-
tees in-order delivery. Receiving audio endpoints are O2
methods, with globally unique addresses in the form of
/service/endpoint. The audio is passed as vectors
of single-precision floating point values, for convenience
and simplicity at the cost of higher network bandwidth uti-
lization.

Each endpoint provides a summing mixer, and any pro-
cess within the O2 application can push audio to it. O2 au-
dio can also be synchronized.

The audio stream can be seen as a contiguous vector of
samples the receiver reads from. Each stream has a glob-
ally unique identifier, and the summing mixer maintains
the location of the write head for it.

A sender can reposition its write head with a synchroni-
zation message. Because O2 provides global clock syn-
chronization, multiple senders can produce audio streams
that are guaranteed to be synchronously read by the re-
ceiver, even if the data is delivered ahead of time to ac-
count for network and playback latencies.

3.3.2 Implementation
The summing mixer is backed by a ring buffer that repre-
sents a view into the audio stream, based on the location of
the read head. Incoming audio buffers are only consumed
if they are within the time range currently in the view.

Incoming buffers with timestamps falling behind the read
head indicate that the latency of the network is too big for
the requested timing.

Buffers too far ahead of the read head are timestamped
and scheduled by O2 and delivered at the appropriate time.
For a detailed description of the O2 audio protocol meth-
ods, please refer to Table 2.

For now, packet ordering is relegated to the protocol
layer. The system is only useful on well-performing, non-
congested networks without packet loss. Many UDP-based
protocols include packet loss recovery and custom order-
ing logic. However, O2 supports using a mix of UDP and
TCP messages, so reliable transmission can still be
achieved over congested networks if more latency is ac-
ceptable.

Method name Type Description
<endpoint>/push Hvf Sum vector of floating point

samples by stream identi-
fier

<endpoint>/sync Ht Position stream by identi-
fier according to the time
point

<endpoint>/close H Dispose the stream and ex-
pect no further samples

Table 2. Methods implemented by the audio receiver
endpoint service

3.4 Kronos JiT Compile Server as a O2 Service

Dynamic creation of new services is facilitated by the Kro-
nos compiler, itself exposed as a O2 service: its main
method compiles textual source code into an executable
signal processor and wraps it in a new O2 service, as de-
scribed in Section 3.1.2. The compiler methods are shown
in Table 3.

Each compile server node provides a mix bus for all the
signal processor instances within. Depending on the con-
figuration, the mix bus is either played back on local audio
hardware or pushed to an O2 Audio endpoint.

3.4.1 Example
A simple synthesizer written in the Kronos language is
shown in Listing 1. One could invoke the compile server
with /new foo <source-code>, and the resulting instance
would then expose the O2 methods /foo/vibr-freq,
/foo/vibr-depth and /foo/freq.

vf = Control:Param(“vibr-freq” 6)
vd = Control:Param(“vibr-depth” 0.05)
freq = Control:Param(“freq” 440)

Wave:Sin(freq * 1 + Wave:Sin(vf) * vd)

Listing 1. Simple synthesizer written in the Kronos lan-
guage.

Method name Type Description
/new ss Compile the received string

(2) as Kronos code into an
instance, binding it to the
received name string (1)

/delete s Destruct the instance
bound to the name string

Table 3. Methods implemented by the JiT compile server

SMC2018 - 454

4. DISCUSSION
So far, we have presented the technical foundation of the
KO2 system. In this section, we envision usage scenarios,
as well as quantify and measure the performance of the
system.

4.1 Collaborative Live Coding

In this scenario, several performers write code on stage.
There is a centralized compile and compute server, and the
performers’ machines are thin clients. Each client can push
program code to the server via O2 messages: the server
compiles and runs the code and outputs audio.

What makes this setup more interesting that simply hav-
ing several independent machines is the fact that the per-
formers could share code, due to having a common a JiT
context. Namespace discovery allows the performers to be
informed about the capabilities of new processes as they
appear in the system.

We have not yet tried this scenario in practice. It is prob-
able that sharing code increases the risk of breakage during
performance. The impact and mitigation, as well as the rel-
ative benefit remains to be investigated.

4.2 Distributed Audio Processing

Inverting the previously outlined scenario yields a central-
ized controller with several compile servers. This setup
could be used in an installation, where signal processors
need to be in the proximity of sensors or actuators.

Notably, programs can be quickly deployed to the com-
pute nodes without restarting or reconfiguring them. The
compile server can run on low-power devices, as long as
the architecture is one of the many supported by LLVM,
and a full operating system, such as GNU/Linux, is pre-
sent.

4.3 O2 Audio Latency and Performance

Merging Technologies Inc. have implemented a commer-
cial system around network audio, based on the Ravenna
protocol. They claim reliable operation with a throughput
latency of 1.5 milliseconds, in a networked system consist-
ing of an analog-digital-analog converter connected to a
Windows PC with a real-time hypervisor and a powerful
network interface. We have not independently verified this
number but consider it to be an indication of the upper
bound in performance attainable with IP-based protocols.

4.3.1 Bandwidth Requirement
There are several layers of overhead, some due to the O2
Audio protocol itself, while some are intrinsic to the
TCP/IP transport.

O2 Audio uses 32-bit floating point samples, which
nearly doubles the bandwidth requirement. However, it
should have very little impact on latency, the parameter we
consider the most critical in network audio.

Some additional overhead is caused by the O2 Audio
protocol, which encodes endpoint address, type string and
a stream identifier for each transmitted buffer. For the
numbers given below, we assume an address pattern of 12
characters, that an audio buffer of 256 samples is sent in a

single packet, and that the common IP MSS of 1460 bytes
is used. In this case, 94% of the transmitted bits are used
for audio data. For details, please refer to Table 4.

Label Bytes
O2 header 20
Sample data 1024
TCP/IP header 40
Total 1084
Overhead 5.86%
Bandwidth for
44.1kHz audio

1459 kbps

Table 4. Summary of O2 Audio bandwidth for a buffer
size of 256 samples and 44.1kHz sample rate

For a 54 Mbps 802.11g network link, the theoretical max-
imum number of transmissible audio channels at 44.1kHz
sample rate is 37, while a 1Gbps link might be able to sup-
port over 700 channels.

4.3.2 Latency Measurements
We measured the round-trip latency of O2 Audio be-

tween two processes. One of them is a simple loopback
service that performs the computationally trivial operation
of inverting the signal polarity. The master process gener-
ates an audio stream and sends it for processing in 1000
sample buffers, and measures the time until the response
buffer has been received.

The measurement was performed using std::high_res-
olution_clock in C++ under three different circum-
stances: two O2 processes coexisting in a single operating
system process, each O2 process as a distinct operating
system process, and finally, each process running on a dif-
ferent computer in a WiFi network. For the single machine
measurement we used a Windows 10 PC with a 2.4GHz
Core i5-6300U processor. For the distributed measurement
we added a MacOS computer with a 1.8GHz Core i5 pro-
cessor. The WiFi network was set up with the Windows
machine hosting a network over the ASUS AC51 WiFi
adapter.

Table 5 details the measurements; for each scenario, we
report the median roundtrip latency, as well as the latency
value that was higher than 90% of the measured values.
The latter is more indicative of the worst-case performance
which is relevant in the use case of stable low latency au-
dio. Interestingly, the interprocess latency is slightly lower
than the in-process latency. This may be due to a higher
level of resource contention in the case of two aggressively
polling threads sharing an O2 instance. The interprocess
scenario may be helped by the loopback socket optimiza-
tions in Windows 10.

Scenario Median 90th percentile
In-process 0.49ms 0.83ms
Interpro-
cess

0.42ms 0.73ms

WiFi 2.45ms 3.16ms

Table 5. O2 Audio latency measurements

SMC2018 - 455

5. FUTURE WORK

5.1 Audio over O2

The current audio implementation is fixed to use TCP/IP
and single precision floating point buffers. Higher perfor-
mance might be attained, especially in poor network con-
ditions, with UDP and lower transport resolution.

While the latency figures, as shown in Table 5, are good,
it remains to be seen how the latency characteristics hold
up under more adverse conditions, such as network load or
CPU-bound scenarios.

5.2 Security

Information security is part of any networked computer
system. KO2 is wide open: the compile server allows arbi-
trary remote code execution by design. Malignant actors
must be kept out at the network level.
Perhaps some form of access control could be built into
KO2, provided it would not make system setup and initial-
ization more difficult.

6. CONCLUSIONS
This study proposes a framework for building distributed
music applications, with synchronization, communica-
tions and inter-process signal routing provided by O2, and
dynamic programming provided by Kronos.

We described the implementation of audio transport over
the network via O2 messages, as well as dynamic compi-
lation of program code and automated discovery of new
services and methods.

In total, the system provides a rare combination of a com-
prehensive platform for distributed applications with, to
our knowledge, the first remote JiT-compilation capable
music language.

The software described in this study is open source and
freely available.3 Contributions and users are welcome.

Acknowledgments

Vesa Norilo’s work has been supported by the Academy
of Finland, award number SA311535.

7. REFERENCES
[1] M. Wright and A. Freed, “OpenSound Control: A

New Protocol for Communicating with Sound
Synthesizers,” in Proc. of the 1997 ICMC, 101-104.

[2] Y. Orlarey, D. Fober, and S. Letz, "Syntactical and
semantical aspects of Faust." Soft Computing
8(9):623-632, 2004.

[3] V. Norilo, "Kronos: A declarative metaprogramming
language for digital signal processing." Computer
Music Journal 39(4):30-48, 2015.

[4] V. Norilo, “Kronos Meta-Sequencer - From Ugens to
Orchestra, Score and Beyond.” In Proc. Of the Int.
Computer Music Conf. (ICMC), Utrecht, 2016.

3 https://github.com/rbdannenberg/o2

[5] Ravenna, “AES67 and RAVENNA in a Nutshell,”
available: https://www.ravenna-network.com/re-
sources/, accessed April 6, 2018.

[6] J.-P. Cáceres and C. Chafe, “JackTrip: Under the
Hood of an Engine for Network Audio,” in Proc. of
the Int. Computer Music Conf. (ICMC), Montreal,
2009, 509-512.

[7] R. B. Dannenberg and P. van de Lageweg, “A System
Supporting Flexible Distributed Real-Time Music
Processing,” in Proceedings of the 2001 Int. Com-
puter Music Conf. (ICMC), San Francisco, 2001, 267-
270.

[8] A. Chaudhary, A.Freed and M. Wright, “An Open
Architecture for Real-time Music Software,” in Proc.
of the 2000 Int. Computer Music Conf. (ICMC),
Berlin, 2000.

[9] Van Roy, Peter. "Programming paradigms for
dummies: What every programmer should know."
New computational paradigms for computer music.
IRCAM, 2009.

[10] K. Matheussen, "Poing Impératif: Compiling
Imperative and Object Oriented Code to Faust." In
Proc. of the Linux Audio Conf (LAC), 2011.

[11] V. Lazzarini, "Audio Signal Processing and Object-
Oriented Systems.", in Proc. of the Int. Conf on
DAFx, 2002.

https://bitbucket.org/vnorilo/k3

SMC2018 - 456

