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ABSTRACT 
KO2 is a platform for distributed musical applications, 
consisting of the messaging protocol O2 and the signal 
processing language Kronos. This study is an effort to use 
O2 as a comprehensive communications framework for in-
ter-process signal routing, including clock synchronization 
and audio. The Kronos compiler is exposed as an O2 ser-
vice, allowing remotely specified programs to be compiled 
and run in near real-time on various devices in the network. 

1. INTRODUCTION 
With computing devices becoming lightweight and ubiq-
uitous, artworks are being built from an increasingly wide 
array of devices. Software systems are distributed across 
multiple devices, and the need for robust and coherent 
communication arises. 

Some of the technological challenges involved in distrib-
uted music systems include communication and deploy-
ment. Software must be pushed to all the involved devices, 
initialized, and coordinated during run-time. In addition, 
audio signals are routed throughout, often with a separate 
signal stack. 

Several communication protocols exist with the aim of 
allowing independent musical processes to communicate. 
In this paper we use one of them, O2, to develop a frame-
work for distributed processing. We study the feasibility of 
using O2 for audio distribution as well. 

A novel addition to the field is the inclusion of a pro-
gramming language, Kronos, in the system. With Just-in-
Time compilation, distributed systems can contain com-
pute server nodes that compile and execute remotely spec-
ified programs in near real-time. 

The rest of this paper is organized as follows: In Section 
2, Background, we examine the component systems O2 
and Kronos and describe some recent additions to them. In 
addition, prior art related to distributed systems is sur-
veyed. Section 3, Implementation, details the design 
choices behind the framework. Usage and performance is 
discussed in Section 4, Discussion, followed by possible 
Future Work and Conclusion in Sections 5 and 6. 
 

2. BACKGROUND 
O2 can be seen as an extension of OSC. [1] It uses URL-
like address strings and patterns to name the destinations 
of messages containing a list of typed values. OSC 

assumes nothing about the transport and typically requires 
users to enter IP addresses of servers. In contrast, O2 has a 
built-in discovery mechanism to locate named services au-
tomatically, and so addresses always begin with a service 
name. In addition, O2 messages are all timestamped, and 
O2 performs clock synchronization so that timestamps are 
meaningful when messages cross from one host to another. 
Finally, O2 offers a choice of reliable (TCP) or best-effort 
(UDP) message delivery.  

Kronos is a functional audio programming language, an 
idea pioneered by the FAUST project. [2][3] It aims to pro-
vide a powerful, expressive language for describing fixed-
graph signal flows in a multi-rate signal processing envi-
ronment. Kronos was designed to operate on the abstrac-
tive level of unit generators and orchestras. Recent addi-
tions explore the scheduling of musical events and score-
level constructs. [4] 
 

2.1 Recent Developments 

2.1.1 Kronos Meta-Sequencer 
Recently, Kronos was enhanced to support dynamic in-
stantiation of signal processor objects as well as schedul-
ing control messages or arbitrary code by integrating a cus-
tom interpreter with a sequencer and the JiT compiler. [4] 

One of the goals of the Kronos compiler system is to en-
able deployment of stand-alone applications. The meta-se-
quencer implementation was not readily adaptable to this 
scenario, because of its coupling with the compiler. 

Recently, the meta-sequencer was refactored to remove 
the interpreter entirely. Its functionality was moved to a 
small runtime library that Kronos programs can call di-
rectly via the foreign function interface. As a result, stand-
alone applications can now use dynamic instantiation and 
scheduling by linking against the runtime library, without 
needing the complete runtime environment or the com-
piler.  

2.1.2 O2 Hub 
O2’s original discovery mechanism works well in local 
area networks that allow UDP broadcast, but it was found 
that many organizations block WiFi broadcast messages. 
An extension to O2 allows discovery to be managed by any 
O2 process designated as a “hub.” To use a hub, processes 
must obtain the IP address of the hub manually or through 
some external protocol. Processes can then use the hub to 
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discover all other O2 processes. The hub idea works 
equally well over wide area networks. 
O2 has also been extended with connections called “taps,” 
which forward incoming messages from a tapped service 
to some other service, supporting debugging and remote 
monitoring. 

2.2 Distributed Music Systems 

2.2.1 Audio over the network 
Various systems have explored audio transmission over 
shared local and wide area networks using IP (Internet Pro-
tocol) as opposed to specialized real-time protocols and 
dedicated hardware. The Dante system1 sends audio over 
IP using hardware support and appears to applications as 
an audio I/O device. Ravenna is an open standard for me-
dia over IP using the standard real-time streaming protocol 
(RTSP). [5] JackTrip is an application that sends audio 
streams over UDP and has been widely used for live per-
formance over long distances. [6] AuraRT explored dis-
tributed computation for audio synthesis and control in a 
local area network. [7] Our work with O2 is most similar 
to AuraRT in that we are basing audio streaming on a gen-
eral message-passing system that integrates clock synchro-
nization, global object naming and timed messages be-
tween distributed objects. 

2.2.2 Remote Just-in-Time Compilation  
The Java platform is a significant example of remote com-
pilation. The Java Remote Method Invocation enables a 
virtual machine to download and execute bytecode from 
the network. RMI is used in Apache Hadoop, a distributed 
storage system, to run custom search queries over multiple 
storage nodes.2 

2.2.3 Service and Namespace Discovery 
OpenSoundWorld is notable in that it implemented a query 
protocol for OSC where a client can query a server for in-
formation about the address space and the parameters ex-
pected by each addressable node. [8] 

O2 supports multiple services, which are abstractions of 
servers that process O2 messages. Any O2 process can cre-
ate one or more services, and services are automatically 
discovered by other processes. Message addresses begin 
with a service name, and O2 routes messages to the corre-
sponding service, which may be in the same process, on 
the same host computer, or on a remote computer. 

3. IMPLEMENTATION 
This section describes the various components that consti-
tute the KO2 system: the O2 Audio protocol, O2 
Namespace Discovery and the Kronos Compile Server. 

3.1 Object Models in O2 and Kronos 

Object oriented designs are typical in music systems. O2 
services are instances of objects within an application, 
where “application” in O2 refers to a collection of 
                                                        
1 https://www.audinate.com/node/128 

cooperating processes that may be distributed across a 
number of networked machines. O2 messages correspond 
to method calls that have no return value. 

3.1.1 Data Types in O2 
As O2 is concerned with serialization of messages for 
transport over the wire, datatypes play a vital role. The O2 
model is a straightforward extension of the OSC [1] sys-
tem of type string accompanied by binary data. 

However, in OSC, methods are nothing but addresses, 
and no provisions are made to associate type information 
with methods; it is up to each individual method to parse 
the parameter types.  

In O2, message handlers (i.e. methods) may be associ-
ated with type strings of their own. Any method can be 
type-coerced, so that exact type matches are not required, 
yet it still works as expected. This is similar to dynamically 
typed languages in the sense that the data types on the wire 
are an implementation detail of the run-time system. 

3.1.2 Kronos Signal Processor as an Object 
Kronos models signal processors as discrete reactive sys-
tems – sequences of output events as a function of se-
quences of input events. [9] The fundamental properties of 
an object are state, identity and behavior. At the language 
level, Kronos provides no concept of state or identity. 
However, state is used internally by the compiler.  

Mattheussen has demonstrated automated translation be-
tween the traditional object model and Faust [2], a func-
tional audio language. [10] Similarly, Kronos signal pro-
cessors appear as objects to the user, particularly with the 
dynamic instantiation extension. As previously described, 
the reactive inputs of a Kronos signal processor closely re-
semble the methods of an object. 

Passing O2 messages to Kronos objects is a natural fit; 
the O2 methods and their type strings can be automatically 
derived from the Kronos program and type coercion ena-
bled if desired. 

3.2 O2 Namespace Discovery 

In an environment where services can be built dynami-
cally, it is important to provide a mechanism for self-re-
flection: enable components of the distributed system to 
query each other for available methods. 

Like audio, namespace discovery can be built as a user-
space protocol on top of the O2 core. We implemented this 
as a directory service that runs as a process within any O2 
application. Conforming services can register or de-regis-
ter their methods with the directory service.  

3.2.1 Reply messages 
The directory service supports  the querying of O2 
namespaces for method addresses, type strings and docu-
mentation. In addition, methods can be searched for with 
regular expressions. The directory service is detailed in 
Table 1.  

All the query messages require data to be returned to the 
sender, for which there is no built-in facility in O2. We 

2 http://www.oracle.com/technetwork/java/javase/tech/ 
index-jsp-136424.html 
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adopted a reply convention that is already used internally 
in the O2 clock synchronization protocol. 

Each query message contains a 64-bit message identifier, 
which the sender may assign arbitrarily, and a reply ad-
dress. The reply address is appended with /get-reply, 
and the message identifier is sent along with the query re-
sults. 
 

Method name Type Description 
add-method Sss Registers a method by ad-

dress pattern, type string and 
documentation 

remove-service sS Removes all registrations in a 
namespace 

Regex hss
Hss 

Retrieves all method 
metadata where the address 
pattern matches the supplied 
regular expression. The first 
two parameters are query id 
and reply address. 

Table 1. Methods implemented by the directory service 

3.3 Audio over O2 

Rather than extend the O2 core library with audio-specific 
functionality, we decided to implement network audio as a 
protocol in the O2 user space. This avoids further compli-
cating the core of O2.  

O2 Audio is intended as a proof of concept and not ex-
pected to outperform the state of art, but we hope that it 
proves useful for distributed audio applications, especially 
as the existing infrastructure for clock synchronization and 
service discovery can be used. 

3.3.1 Design 
O2 Audio involves sending buffers of audio samples as 
messages over the reliable TCP transport, which guaran-
tees in-order delivery. Receiving audio endpoints are O2 
methods, with globally unique addresses in the form of 
/service/endpoint. The audio is passed as vectors 
of single-precision floating point values, for convenience 
and simplicity at the cost of higher network bandwidth uti-
lization. 

Each endpoint provides a summing mixer, and any pro-
cess within the O2 application can push audio to it. O2 au-
dio can also be synchronized.  

The audio stream can be seen as a contiguous vector of 
samples the receiver reads from. Each stream has a glob-
ally unique identifier, and the summing mixer maintains 
the location of the write head for it.  

A sender can reposition its write head with a synchroni-
zation message. Because O2 provides global clock syn-
chronization, multiple senders can produce audio streams 
that are guaranteed to be synchronously read by the re-
ceiver, even if the data is delivered ahead of time to ac-
count for network and playback latencies. 

3.3.2 Implementation 
The summing mixer is backed by a ring buffer that repre-
sents a view into the audio stream, based on the location of 
the read head. Incoming audio buffers are only  consumed 
if they are within the time range currently in the view.  

Incoming buffers with timestamps falling behind the read 
head indicate that the latency of the network is too big for 
the requested timing.  

Buffers too far ahead of the read head are timestamped 
and scheduled by O2 and delivered at the appropriate time. 
For a detailed description of the O2 audio protocol meth-
ods, please refer to Table 2. 

For now, packet ordering is relegated to the protocol 
layer. The system is only useful on well-performing, non-
congested networks without packet loss. Many UDP-based 
protocols include packet loss recovery and custom order-
ing logic. However, O2 supports using a mix of UDP and 
TCP messages, so reliable transmission can still be 
achieved over congested networks if more latency is ac-
ceptable. 
 

Method name Type Description 
<endpoint>/push Hvf Sum vector of floating point 

samples by stream identi-
fier 

<endpoint>/sync Ht Position stream by identi-
fier according to the time 
point 

<endpoint>/close H Dispose the stream and ex-
pect no further samples 

Table 2. Methods implemented by the audio receiver 
endpoint service 

3.4 Kronos JiT Compile Server as a O2 Service 

Dynamic creation of new services is facilitated by the Kro-
nos compiler, itself exposed as a O2 service: its main 
method compiles textual source code into an executable 
signal processor and wraps it in a new O2 service, as de-
scribed in Section 3.1.2. The compiler methods are shown 
in Table 3. 

Each compile server node provides a mix bus for all the 
signal processor instances within. Depending on the con-
figuration, the mix bus is either played back on local audio 
hardware or pushed to an O2 Audio endpoint. 

3.4.1 Example 
A simple synthesizer written in the Kronos language is 
shown in Listing 1. One could invoke the compile server 
with /new foo <source-code>, and the resulting instance 
would then expose the O2 methods /foo/vibr-freq, 
/foo/vibr-depth and /foo/freq. 
 

vf = Control:Param(“vibr-freq” 6) 
vd = Control:Param(“vibr-depth” 0.05) 
freq = Control:Param(“freq” 440) 
  
Wave:Sin(freq * 1 + Wave:Sin(vf) * vd) 

Listing 1. Simple synthesizer written in the Kronos lan-
guage. 

 
Method name Type Description 
/new ss Compile the received string 

(2) as Kronos code into an 
instance, binding it to the 
received name string (1) 

/delete s Destruct the instance 
bound to the name string 

Table 3. Methods implemented by the JiT compile server 
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4. DISCUSSION 
So far, we have presented the technical foundation of the 
KO2 system. In this section, we envision usage scenarios, 
as well as quantify and measure the performance of the 
system. 

4.1 Collaborative Live Coding 

In this scenario, several performers write code on stage. 
There is a centralized compile and compute server, and the 
performers’ machines are thin clients. Each client can push 
program code to the server via O2 messages: the server 
compiles and runs the code and outputs audio. 

What makes this setup more interesting that simply hav-
ing several independent machines is the fact that the per-
formers could share code, due to having a common a JiT 
context. Namespace discovery allows the performers to be 
informed about the capabilities of new processes as they 
appear in the system. 

We have not yet tried this scenario in practice. It is prob-
able that sharing code increases the risk of breakage during 
performance. The impact and mitigation, as well as the rel-
ative benefit remains to be investigated. 

4.2 Distributed Audio Processing 

Inverting the previously outlined scenario yields a central-
ized controller with several compile servers. This setup 
could be used in an installation, where signal processors 
need to be in the proximity of sensors or actuators. 

Notably, programs can be quickly deployed to the com-
pute nodes without restarting or reconfiguring them. The 
compile server can run on low-power devices, as long as 
the architecture is one of the many supported by LLVM, 
and a full operating system, such as GNU/Linux, is pre-
sent. 

4.3 O2 Audio Latency and Performance 

Merging Technologies Inc. have implemented a commer-
cial system around network audio, based on the Ravenna 
protocol. They claim reliable operation with a throughput 
latency of 1.5 milliseconds, in a networked system consist-
ing of an analog-digital-analog converter connected to a 
Windows PC with a real-time hypervisor and a powerful 
network interface. We have not independently verified this 
number but consider it to be an indication of the upper 
bound in performance attainable with IP-based protocols. 

4.3.1 Bandwidth Requirement 
There are several layers of overhead, some due to the O2 
Audio protocol itself, while some are intrinsic to the 
TCP/IP transport. 

O2 Audio uses 32-bit floating point samples, which 
nearly doubles the bandwidth requirement. However, it 
should have very little impact on latency, the parameter we 
consider the most critical in network audio. 

Some additional overhead is caused by the O2 Audio 
protocol, which encodes endpoint address, type string and 
a stream identifier for each transmitted buffer. For the 
numbers given below, we assume an address pattern of 12 
characters, that an audio buffer of 256 samples is sent in a 

single packet, and that the common IP MSS of 1460 bytes 
is used. In this case, 94% of the transmitted bits are used 
for audio data. For details, please refer to Table 4. 
 

Label Bytes 
O2 header 20 
Sample data 1024 
TCP/IP header 40 
Total 1084 
Overhead 5.86% 
Bandwidth for 
44.1kHz audio 

1459 kbps 

Table 4. Summary of O2 Audio bandwidth for a buffer 
size of 256 samples and 44.1kHz sample rate 

For a 54 Mbps 802.11g network link, the theoretical max-
imum number of transmissible audio channels at 44.1kHz 
sample rate is 37, while a 1Gbps link might be able to sup-
port over 700 channels.   

4.3.2 Latency Measurements 
We measured the round-trip latency of O2 Audio be-

tween two processes. One of them is a simple loopback 
service that performs the computationally trivial operation 
of inverting the signal polarity. The master process gener-
ates an audio stream and sends it for processing in 1000 
sample buffers, and measures the time until the response 
buffer has been received. 

The measurement was performed using std::high_res-
olution_clock in C++ under three different circum-
stances: two O2 processes coexisting in a single operating 
system process, each O2 process as a distinct operating 
system process, and finally, each process running on a dif-
ferent computer in a WiFi network. For the single machine 
measurement we used a Windows 10 PC with a 2.4GHz 
Core i5-6300U processor. For the distributed measurement 
we added a MacOS computer with a 1.8GHz Core i5 pro-
cessor. The WiFi network was set up with the Windows 
machine hosting a network over the ASUS AC51 WiFi 
adapter.  

Table 5 details the measurements; for each scenario, we 
report the median roundtrip latency, as well as the latency 
value that was higher than 90% of the measured values. 
The latter is more indicative of the worst-case performance 
which is relevant in the use case of stable low latency au-
dio. Interestingly, the interprocess latency is slightly lower 
than the in-process latency. This may be due to a higher 
level of resource contention in the case of two aggressively 
polling threads sharing an O2 instance. The interprocess 
scenario may be helped by the loopback socket optimiza-
tions in Windows 10. 

 
Scenario Median 90th percentile 
In-process 0.49ms 0.83ms 
Interpro-
cess 

0.42ms 0.73ms 

WiFi 2.45ms 3.16ms 

Table 5. O2 Audio latency measurements 
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5. FUTURE WORK 

5.1 Audio over O2 

The current audio implementation is fixed to use TCP/IP 
and single precision floating point buffers. Higher perfor-
mance might be attained, especially in poor network con-
ditions, with UDP and lower transport resolution. 

While the latency figures, as shown in Table 5, are good, 
it remains to be seen how the latency characteristics hold 
up under more adverse conditions, such as network load or 
CPU-bound scenarios. 

5.2 Security 

Information security is part of any networked computer 
system. KO2 is wide open: the compile server allows arbi-
trary remote code execution by design. Malignant actors 
must be kept out at the network level. 
Perhaps some form of access control could be built into 
KO2, provided it would not make system setup and initial-
ization more difficult. 

6. CONCLUSIONS 
This study proposes a framework for building distributed 
music applications, with synchronization, communica-
tions and inter-process signal routing provided by O2, and 
dynamic programming provided by Kronos. 

We described the implementation of audio transport over 
the network via O2 messages, as well as dynamic compi-
lation of program code and automated discovery of new 
services and methods. 

In total, the system provides a rare combination of a com-
prehensive platform for distributed applications with, to 
our knowledge, the first remote JiT-compilation capable 
music language. 

The software described in this study is open source and 
freely available.3 Contributions and users are welcome. 
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