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Abstract: Our goal is to automate the analysis of recorded acoustic performances in order to study 
the relationship between scores and performance. An automated system segments a recorded 
performance into individual notes. These are then analyzed to determine pitch and amplitude 
envelopes. Spectral data is also measured. The technique consists of two stages. First, a rough 
estimation stage performs pitch detection based on MQ analysis. Second, an accurate estimation 
stage uses period-synchronous analysis. The data will ultimately be used by a machine learning 
process to build instrument and performance models. Experiments with trumpet tones are described. 

 

1. Introduction 
To produce realistic approximations of acoustic 
instrument tones, it is important to use appropriate 
time-varying control functions. However, control 
functions are complex. Even simple control functions 
use a handful of parameters which depend upon 
musical context. (Dannenberg, Pellerin, and Derenyi 
1998) Because of their complexity, it seems that the 
best way to obtain good control functions is to derive 
and study examples from acoustic performances. Our 
previous work was based on analyses that involved 
many manual steps. For example, performances were 
segmented into individual notes using graphical 
editors. These isolated tones were sorted and 
processed by hand to obtain envelopes for study. 

Consequently, the number of envelopes available for 
study was limited. To explore performance with 
greater precision, we need much more data from a 
wide range of musical styles. We are working on an 
automated analysis system to assist in extracting 
envelopes for study. Simply generating more 
envelope data will not do much good if the envelope 
data must then be analyzed by hand. Therefore, we 
are also working on machine learning techniques for 
processing and generalizing performance models 
from the data. In this paper, however, we will only 
consider the analysis aspects of the overall problem. 

In addition to control envelopes, our synthesis 
method (described below) requires a spectral 
database: a table of spectra indexed by amplitude and 
fundamental frequency. In our previous work, 
regions of tones to be analyzed were selected by 
hand, and the resulting data was then organized into a 
table. By combining pitch and amplitude detection, 
we can automate the process of creating the spectral 
database. 

To summarize, the goal of this work is to 
automatically extract example control functions and 
spectra from digital recordings of acoustic 
instruments. The extracted information is used to 
develop better models of control and to simplify the 
gathering of spectra needed to characterize an 
acoustic instrument. 

1.1 Combined Spectrum Interpolation 
Synthesis 
Combined Spectral Interpolation Synthesis (CSIS), 
described by Derenyi and Dannenberg (1998), 
produces digital audio output from symbolic musical 
score data. CSIS has two sub-parts. 

The first, called the performance model, produces 
time-varying amplitude and frequency control curves 
as an intermediate representation. The performance 
model is based on an examination of measured 
amplitude and frequency contours and how they 
relate to symbolic score data. For example, a quarter 
note followed by a tongued attack will have a much 
different envelope than the same quarter note slurred 
to the next note. 

Previously, notes were carefully selected and 
analyzed by hand, and it was difficult to generalize 
from a small set of examples. The resulting 
performance model, although good, had limitations. 

The performance model drives the second part, called 
the instrument model, which produces the final audio 
output. The instrument model is based on the idea of 
generating the appropriate spectrum for a given 
amplitude and fundamental frequency. To build an 
instrument model, we must measure the spectrum at 
many different frequencies and amplitudes. This is 
also an area where automation can help. 
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1.2 The Problem 
The goal is to obtain control envelopes from a 
performance of real music as opposed to isolated 
tones. We need to relate envelope features to 
symbolic score features, and for that we want the 
envelopes corresponding to individual notes. Thus, 
one of the first requirements is to segment a 
performance into individual notes. Once a note is 
identified, it is straightforward to determine its 
amplitude and frequency envelopes. In addition, we 
need to measure spectra for each pitch at several 
different amplitudes. This is also straightforward 
once notes are identified and separated. The most 
difficult aspect of this problem is to locate transitions 
between notes accurately. When performances are 
resynthesized, small errors in analysis lead to audible 
artifacts, so accuracy is important. (Although our 
goal is not pure resynthesis, it seems reasonable to 
assume that if the data cannot pass the resynthesis 
test, it will lead to problems elsewhere.) Identifying a 
note from a recorded performance is difficult for 
several reasons: 

i. Determining the start or stop time of a note is 
different depending on whether the transition is 
to another note or to silence. 

ii. At transient points such as the attack and release, 
the waveform is not periodic enough to 
determine the frequency reliably, so changes in 
pitch are not always evident. 

iii. Frame-based analysis techniques such as RMS 
amplitude or the STFT tell that something 
happened within a certain frame, but they do not 
give precise timing.  

iv. Sometimes, the performance is "noisy" because 
the performer fails to drive the instrument 
quickly into a stable oscillation. 

v. Sometimes, analyzers output meaningless or 
noisy, ambiguous results. 

Note that the problem could be much more difficult if 
we were to analyze performances involving extended 
techniques – esentially any performances where the 
instrument is not producing a stable oscillation – as 
this would introduce much more energy in the form 
of irregular transients and noise. Also, we are 
currently working only with trumpet and trombone 
tones, so there is no possibility of polyphony as in 
string instruments. 

2. Related Work 
Many researchers have analyzed music signals for 
transcription and music analysis. Space prohibits a 
detailed review of transcription systems, but in 
general, these systems are not so concerned with the 
precise boundaries of notes as they are with the 
identification of notes and the quantization of note 
times into rhythmic values. Foster, Schloss, and 

Rockmore (1982) describe some signal processing 
techniques for identifying note transitions that relate 
to ours: namely, tracking features backward in time 
from well-defined regions, looking for sharp 
transitions in the features indicating an attack. Their 
work addresses overlapping notes in keyboard and 
vibraphone music, a difficult problem that is not 
considered here. 

Work by De Poli, Roda, and Vidolin (1998) is closely 
related to ours, and, like our project, analyzes 
envelopes to study performance nuance. This paper 
notes the difficulty of designating precise starting and 
ending times for notes, and the authors resort to a 
simple threshold crossing technique. This works well 
for studying properties of envelopes, but we found it 
is not accurate enough for detailed envelope models 
and resynthesis using CSIS. 

3. Procedure 
Our analysis procedure consists of two stages. The 
first stage is a rough estimation stage using MQ 
(McAulay-Quatieri) analysis from Beauchamp’s 
(1993) SNDAN program. The second stage is for 
accurate estimation using period-synchronous 
analysis. The first stage calls upon SNDAN to 
estimate pitch, and then applies the following steps: 

i. Quantize each fundamental frequency to the 
nearest semitone. 

ii. Smooth the quantized frequency curve. 

iii. Determine the start and end times of continuous 
frequency segments. 

iv. Eliminate any segment that is too short. 

B. Recorded Performance (Amplitude)A. Score (Sonata for Tpt and Pno by Halsey Stevens)

B. Recorded Performance (Amplitude)

time
C. Extracted Quantized Frequency

time  
Figure 1. Rough estimation stage. 

Figure 1 shows a score, a recorded performance, and 
the extracted and quantized frequency.  

In the second stage, the fundamental frequency and 
estimated start and end times, which are output by the 
first stage, are used as initial values. The process is 
based on the idea of visually following a waveform in 
a waveform editor and works as follows: 
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i. Determine an early steady portion of the note by 
determining where the amplitude reaches 60% of 
the maximum. 

ii. Calculate an initial period in the steady portion 
of each note using an autocorrelation function. 
The fundamental frequency estimate from the 
first stage is used to determine which peak of the 
autocorrelation function represents the 
fundamental, assumed to be constant. 

iii. Calculate power, number of zero-crossings, and 
number of peaks per fundamental period, starting 
from the steady portion and searching backward 
in time. 

iv. If there is no silence between notes, the period 
which has the minimum power value will 
indicate a reasonably accurate start time. If there 
is silence between the notes, determine the start 
time by looking for no zero-crossings or a 20% 
increase in the number of peaks from the 
previous or the initial period. 

v. To determine the end, pick a steady portion of 
the note where the amplitude falls to 20% of the 
maximum. Repeat the previous steps (iii. & iv.), 
but search forward in time instead of backward.  

Figure 2 shows a recorded performance and extracted 
feature parameters for detection with silence before 
and after the note. Note how the number of peaks 
increases sharply on the far left and far right. These 
increases indicate the beginning and end of the note, 
respectively. If the zero crossing count goes to zero, 
that is also interpreted as a beginning or end. 

In addition to note segmentation, we need to analyze 
spectra. A recording is made of a chromatic scale 
with separation between each note. These notes are 
easily segmented using the procedure just described. 
Then, each note is analyzed using period-
synchronous Fourier transforms. RMS amplitude is 
computed period-by-period from the short-term 
spectra. The data is then scanned to select a spectrum 
for each amplitude of interest. The selected tuples of 

(pitch, amplitude, spectrum) data are saved for 
synthesis. 

4. Experiments 
We applied this analysis system to a recorded 
performance of a trumpet playing the first 29 
measures of "Sonata for Trumpet and Piano," by 
Halsey Stevens (1959). There are 81 notes ranging 
from 16th notes to a half note tied with an 8th, at a rate 
116 to 120 beats per minute. Pitches range from f3 to 
a5, and there are 7 rests. Articulations include 
staccato, slurred, and legato. Only one recorded 
performance was fed to the capturing system. The 
system has also been used to capture trumpet and 
trombone spectra necessary for CSI synthesis. 

5. Results 
In our task, we must segment the notes with very 
accurate transition times. Although there is not 
always a well-defined boundary, we would like the 
error to be less than a few periods, or about 5ms. 
Compared to hand labeled data, the automated 
system identified attack positions with an average 
error of 3.7ms, and releases with an average error of 
15.1ms. These numbers are good, but not always 
good enough for our requirements. 

In our experiment, 53 notes (65.3%) were captured 
without problem. 13 meaningless segments, 2 notes 
with shorter attacks, 8 notes with longer attacks, 16 
notes with shorter releases and 2 notes with longer 
releases were also captured. 13 meaningless segments 
are because of frequency analysis errors. 11 of the 
shorter releases are due to the noisy release between 
notes (as shown in Figure 3A.), and 2 of the longer 
releases are due to the misleading shape of the 
amplitude envelop (as shown in Figure 3B.). 4 
shorter releases are due to frequency analysis errors. 

6. Future Work 
The experiment shows promising results, but it is not 
reliable enough for a completely automated system. 

Analysis DirectionStart time detection End time detction

Power

Number of Peaks

Number of
Zero-Crossings

Figure 2. Relationship between recorded performance and feature parameters.
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To improve the accuracy, adoption of more advanced 
analysis and pattern matching techniques, 
consideration of score parameters, and parameter 
tuning for specific instruments will help. To build the 
performance model of CSIS, the captured notes need 
to be labeled with score parameters, and fed to a 
proper machine learning process. 

This technique can be applied not only to CSIS, but 
also to any interesting behavior of notes in a musical 
context. For example, one might study intonation 
trends among different instruments or articulation 
differences between two performers. Using 
automation to parse recordings simplifies the use of 
actual performances as opposed to isolated tones. In 
addition, automated segmentation may make it 
possible to collect enough data to relate analysis 
features to properties of the notated score. For 
example, one might study whether a performer’s 
intonation is biased from equal temperament toward 
harmonic ratios, something that would require an 
examination of intonation in a musical context.  

7. Summary and Conclusions 
We have constructed a system to extract notes from 
recorded music performances. RMS amplitude, the 
number of peaks, and the number of zero-crossings 
are used as features to determine the start and end 
times of notes. Once extracted, notes can be analyzed 
to obtain example envelopes, spectra, and other 
interesting properties. Our techniques segmented 
about two-thirds of  the input data as well as can be 
done manually. This is adequate for some 
applications, but further improvements and/or 
interactive analysis systems will be required for more 
demanding situations. 
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B. Misleading amplitude envelope shape between slurred notes
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Figure 3. Typical Errors


