
1The Resource-Instance Model of Music Representation

Roger B. Dannenberg, Dean Rubine, Tom Neuendorffer
Information Technology Center

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Email: dannenberg@cs.cmu.edu

ABSTRACT

Traditional software synthesis systems, such as Music V, utilize an instance model of
computation in which each note instantiates a new copy of an instrument. An alternative is the
resource model, exemplified by MIDI ‘‘mono mode’’, in which multiple updates can modify a
sound continuously, and where multiple notes share a single instrument. We have developed a
unified, general model for describing combinations of instances and resources. Our model is a
hierarchy in which resource-instances at one level generate output which is combined to form
updates to the next level. The model can express complex system configurations in a natural
way.

seemingly mutually exclusive models can be1. Introduction
combined to create a comprehensive formalism.Two opposing formalisms are prevalent in music
Armed with this new formalism, we can shed newrepresentations. In the resource model, sounds or
light on existing representation schemes, exposingnotes are produced by controlling an instrument
hidden assumptions, revealing subtle ambiguities,(the resource). In the instance model, sounds or
and unmasking limitations.notes are considered to be independent and

isolated. Resource and instance models can be We will begin by explaining the instance and
seen in traditional music notation, computer music resource models in greater detail. We then
scores, score languages, MIDI, synthesis describe our new formalism, which integrates the
hardware, and synthesis software. Although the two models. The new ‘‘resource-instance’’
distinction between resource and instance models formalism is then applied to MIDI and Music V to
is fundamental, it is not often made (perhaps illustrate particular characteristics of these
because the implications of the distinction are not representation systems. Then, we describe how
well understood). we are applying the formalism in a new system for

music representation and synthesis.Once the distinction is made, it can be seen that
virtually every music representation system
exhibits both formalisms. In other words, music
representations have aspects of both the resource
and instance models. Furthermore, these

1Published as: Dannenberg, Rubine, and Neuendorffer, ‘‘The Resource-Instance
Model of Music Representation,’’ in Proceedings of the 1991 International
Computer Music Conference, International Computer Music Association,
(October 1991), pp. 428-432.

2

resource model, two ‘‘identical’’ notes would at2. The Resource Model
least require generation by distinct resources, soIn the resource model of music representation,
these notes could not be truly identical.there are sound sources (resources) that are

controlled by updates. Updates include
continuous functions such as a vibrato contour and

4. The Resource-Instance Modeldiscrete events such as ‘‘note on’’. Updates are
The resource and instance models cannot becombined and presented to the resource, which can
pushed very far before they break down. In mostproduce only one sound at a time.
resource-oriented systems, there are multiple toneA familiar example of the resource model is MIDI
generators, be they violinists or register sets inMono Mode [IMA 89], in which all MIDI
multiplexed hardware. This gives rise to themessages are presented to a single tone generating
concept of ‘‘limited polyphony,’’ which amountsresource. Discrete updates such as ‘‘note on’’
to saying the instance model is supported up to amessages change the pitch (they do not invoke a
certain level of polyphony by managing a pool ofnew sound using another tone generator), and
undifferentiated resources. We see this evencontinuous controls such as modulation or pitch
within acoustic instruments: a guitar has 6 strings,bend can also update the tone generator. Mono
allowing a limited implementation of the instanceMode applies to a channel, so the channel number
model. An important aspect of transcriptions forbecomes the name for the resource, and updates
classical guitar is the careful use of a limitedare addressed to the resource via their channel
number of strings and fingers to implement musicdesignation.
that is instance-model oriented.

The resource model is most often encountered
Instance models also break down rapidly uponwhen there are physical resources that must be
close inspection. In particular, the independentconsidered such as synthesizer hardware modules
isolated sounds described by the model must beor acoustic instruments. In software synthesis, it is
combined. In the ideal world of mathematics, wepossible to fabricate ‘‘virtual’’ instruments almost
can say that (due to linearity) superposition holds,without limitation, so it is possible to ignore
and combination is not interesting. In practice, theresources completely. Even in traditional music
fact that a mandolin has double strings tuned inmaking with acoustic instruments, composers can
unison indicates that the situation is not so simple.often ignore the question of whether the first or
Also, we know that the generation of a sound issecond violin produces a note. This line of
often just the beginning of the music-makingthinking leads to the instance model.
process. Sounds can be assigned to channels of a
mixer, tracks of a tape, or passed through (non-
linear) effects processors. To describe the big3. The Instance Model
picture, we are forced into thinking about

In the instance model of music representation, the
resources.

resource that produces the sound is not considered,
The resource-instance model uses both resourcesand only the attributes of the sound are relevant. It
and instances to address these problems. Consideris as if, for each sound, we create a copy (or
the case of two electric guitars with distortioninstance) of a resource to produce each sound. In
boxes playing through a single sound system. Thethe instance model, all sounds are independent,
resource-instance model describes this case asand there is no limitation on the number of
follows: the sound system is a resource.simultaneous sounds that can occur.
Resources receive and process updates; in this case

Music V [Mathews 69] is an example of the
the updates are the sounds produced by two

instance model. For each note in the score
distortion guitars (we are deliberately stretching

language, a software instrument is instantiated to
the intuitive concept of ‘‘update’’ here). The

generate the sound. After the sound has been
processing of the updates is to form their sum.

generated, the software instrument is deleted. In
The guitars are instances of a complex instrument.

the instance model, it is well-defined to generate
Each instance consists of a distortion box (a

two or more sounds that are exactly simultaneous
resource) fed by 6 strings (updates to the distortion

and identical in all respects. In contrast, in the

3

box). The string updates are processed by adding
them and then applying distortion.

The term update deserves special attention. An
update in this model is any input that controls a
resource. As described in section 2, an update can
be continuous or discrete, but most importantly, an
update can be generated by another resource.
Thus, updates and resources form a hierarchy.

Note that from the point of view of the strings, the
distortion box is a resource, but from the point of
view of the sound system, distortion boxes are
instances. Similarly, strings are instances from the
point of view of the distortion box, but strings are
also resources. Each of the 6 strings receives

Distortion

Mixer

String

String Updates

?

updates such as fretting, releasing, and strumming.
These updates are not combined by simple
addition but by some complex response. Figure 1: Static description of

(a schema for) a resource-It seems clear now that the concepts of resources
instance hierarchy, showing

and instances are necessary in a complete model, prototypes of resources and how
but that whether something is a resource or an updates are combined. This is
instance depends on the point of view. essentially a ‘‘patch’’ diagram.
Furthermore, there are hierarchical relationships
formed when the sounds produced by instances are
combined at a resource. The resource-instance
model represents sound production as a hierarchy. 5. Explicating Existing Representations
The hierarchy can be represented statically, as in

The resource-instance model can help to illustrate
figure 1, which shows schematically how

details of various representations. For example, in
resources are connected. Each resource in the

the model, every MIDI message is an update of
static figure corresponds to one or more instances

some kind. We can then ask, what resource is the
as shown in the dynamic representation shown in

update for? Is a note-on message an update to the
figure 2.

channel to create a new note, or does every
The resource-instance model does not dictate when channel have 128 pitch resources which are the
resources are created. The guitar example implied destinations of note-on’s? It turns out that MIDI is
that the guitars and strings were all fixed in ambiguous on this point, and manufacturers have
number. However, the instance model can be not agreed on the answer. On some synthesizers, a
accommodated by instantiating a new guitar for second note-on to the same channel and pitch
each note. A special form of update is the causes the note to retrigger. Clearly, these
create-instance update, whose destination is the synthesizers consider the note-on to be an update
resource below the instance in the hierarchy. To to a pitch resource. Other synthesizers will
play a guitar note under the instance model, one actually produce two notes on the same channel
would send a create-instance update to the sound with the same pitch. In these ‘‘instance model’’
system to obtain a guitar, send a create-instance synthesizers, the target of the note-on is the
update to the guitar to obtain a string, and send channel, not a pitch resource. This creates yet
updates to the string to play the note. The resource another ambiguity: since MIDI has no names for
created by a create-instance update is an instance note instances other than pitch, there is no way to
of a prototype. In our terminology, the Music V designate the destination for a note-off update.
orchestra language defines prototypes for (This is not a problem for the pitch-as-resource
resources, and a new resource is created for each synthesizers, where the destination is always the
note in the score. Every resource is an instance of pitch resource.)
some prototype.

4

In Music V, it is not actually the case that notes
must be independent. By sharing buffers between
instruments, it is possible to construct a
hierarchical structure in which updates may be
directed to multiple levels. This is how one would
combine notes before sending them to a
reverberation unit, for example. However, there is
no way to properly implement the create-instance
update. One cannot support an arbitrary number
of instances of reverberation units, for example.

These examples illustrate how the resource-
instance model can shed light on subtle aspects of
the design of music representations.

String 2

Mixer

String 1

String 6

String 6

String 1

String 2

...

...

Fret

Fret

Fret

Pick

Pick

Internal Data
Structure:

Graphical View of the Data:

Distortion A

Distortion B

Pick

Pick

Figure 2: A dynamic representation of figure 1 in which resources are instantiated to
form a tree. Also shown is a graphical view for use in editing the structure.

5

the most recent update and ignores all others.6. Relation to Object Oriented
Programming Scores also have a hierarchical representation in

This model bears some resemblance to object this system. Notes do not exist in isolation as in
oriented programming (OOP) models, but there the instance model, but rather are updates to
are important differences. Our resources are like resources. A note becomes a resource to which
objects in that each resource is unique and can be updates (pitch, modulation, etc.) may be directed.
referenced. Resources are instances of a The score view in figure 2 shows how string
prototype, just as objects are instances of a class. updates might be represented graphically. We are
In our model, we can simulate instance models by implementing a visual score editor based on an
creating a new resource for every update. In earlier multiple-hierarchy data structure for music
section 4 we explained how a new guitar could be representation [Dannenberg 90]. Designing a user
instantiated for every note to obtain instance- interface in which this hierarchy seems natural and
model guitars. The OOP language Smalltalk automatic is a challenge we still face.
[Goldberg 83] uses a similar technique with

We are extending our editor to handle multiplenumbers: a number is an object, but every
media. Here, we see similar issues of instancesoperation, such as addition, creates a new instance
and resources. For example, how does oneof the number class to represent the resulting
represent updates in an animation? An animationvalue.
might have multiple instances of people, each with

In spite of these similarities, our model contains instances of limbs. One might even want to
specific ideas that are not part of the OOP model. synchronize multiple animations. The resource-
OOP does not include the notions of outputs and instance model provides a natural solution to the
updates. Although one can build object naming and representation issues raised here.
hierarchies with OOP, this is not part of the OOP
model. Furthermore, OOP does not have
combining operations or a static description of a 8. Summary and Conclusions
resource-instance hierarchy as in figure 1. (The The instance model of computation, in which each
class hierarchy of OOP is unrelated.) note instantiates a new copy of an instrument, and

the resource model, in which multiple updates can
modify a sound continuously, often exist together

7. Supporting the Resource-Instance at multiple levels of a hierarchy. We have
Model developed a unified, general model for describing

We are developing an integrated music combinations of instances and resources. The
workstation that supports the resource-instance resource-instance model can express and help to
model. In fact, we developed the model during the understand complex system configurations in a
design of a patch editor. A number of patch natural way. The model has practical applications
editors have been described in the literature in the following areas: (1) the description of
[Desain 86, Helmuth 90], but it bothered us that synthesis algorithms, (2) the design of patch
these editors do not address the question of editors, (3) the extension of orchestra languages to
resources. This led to the resource-instance model incorporate the resource model, (4) the design of
and representations such as figure 1, which is what score representations and editors, and (5) the
an instrument designer might create with our design of synthesis hardware and software.
editor. Our patch editor will provide two novel

More importantly, we feel the model provides acapabilities: first, the levels of hierarchy in the
frame of reference that can help to understand andresource-instance model must be represented. (We
compare various music representation systems.plan to use enclosing boxes to group the unit
The model is being used in and supported by thegenerators that constitute a resource prototype
design of a digital audio workstation.from which instances are made.) Second, the

operators for combining the outputs from instances
must be explicit. Summation of all outputs will be
the common case, but other possibilities exist. For
example, the replacement combination takes only

6

9. Acknowledgments
This work was supported by a grant from the IBM
Corporation.

References

[Dannenberg 90] Dannenberg, Roger B. A
Structure for Efficient Update, Incremental
Redisplay and Undo in Display-Oriented Editors.
Software: Practice and Experience 20(2):109-132,
February, 1990.

[Desain 86] Desain, P. Graphical
Programming in Computer Music, a Proposal. In
P. Berg (editor), Proceedings of the International
Computer Music Conference 1986, pages 161-166.
International Computer Music Association, 1986.

[Goldberg 83] Goldberg, A. and D. Robson.
Smalltalk-80: the language and its
implementation. Addison-Wesley, 1983.

[Helmuth 90] Helmuth, M. PATCHMIX: A
C++ X Graphical Interface to Cmix. In
Proceedings of the 1990 International Computer
Music Conference, pages 273-275. Computer
Music Association, 1990.

[IMA 89] IMA. MIDI 1.0 Detailed
Specification. International MIDI Association,
Los Angeles, CA, 1989.

[Mathews 69] Mathews, M. V. The
Technology of Computer Music. MIT Press,
Boston, 1969.

i

Table of Contents
1. Introduction 1
2. The Resource Model 2
3. The Instance Model 2
4. The Resource-Instance Model 2
5. Explicating Existing Representations 3
6. Relation to Object Oriented Programming 5
7. Supporting the Resource-Instance Model 5
8. Summary and Conclusions 5
9. Acknowledgments 6
References 6

ii

List of Figures
Figure 1: Static description of (a schema for) a resource-instance hierarchy, 3

showing prototypes of resources and how updates are combined. This
is essentially a ‘‘patch’’ diagram.

Figure 2: A dynamic representation of figure 1 in which resources are 4
instantiated to form a tree. Also shown is a graphical view for use in
editing the structure.

